266 research outputs found

    Density fluctuations and phase separation in a traffic flow model

    Full text link
    Within the Nagel-Schreckenberg traffic flow model we consider the transition from the free flow regime to the jammed regime. We introduce a method of analyzing the data which is based on the local density distribution. This analyzes allows us to determine the phase diagram and to examine the separation of the system into a coexisting free flow phase and a jammed phase above the transition. The investigation of the steady state structure factor yields that the decomposition in this phase coexistence regime is driven by density fluctuations, provided they exceed a critical wavelength.Comment: in 'Traffic and Granular Flow 97', edited by D.E. Wolf and M. Schreckenberg, Springer, Singapore (1998

    Continuous Time and Consistent Histories

    Get PDF
    We discuss the use of histories labelled by a continuous time in the approach to consistent-histories quantum theory in which propositions about the history of the system are represented by projection operators on a Hilbert space. This extends earlier work by two of us \cite{IL95} where we showed how a continuous time parameter leads to a history algebra that is isomorphic to the canonical algebra of a quantum field theory. We describe how the appropriate representation of the history algebra may be chosen by requiring the existence of projection operators that represent propositions about time average of the energy. We also show that the history description of quantum mechanics contains an operator corresponding to velocity that is quite distinct from the momentum operator. Finally, the discussion is extended to give a preliminary account of quantum field theory in this approach to the consistent histories formalism.Comment: Typeset in RevTe

    Two Lane Traffic Simulations using Cellular Automata

    Full text link
    We examine a simple two lane cellular automaton based upon the single lane CA introduced by Nagel and Schreckenberg. We point out important parameters defining the shape of the fundamental diagram. Moreover we investigate the importance of stochastic elements with respect to real life traffic.Comment: to be published in Physica A, 19 pages, 9 out of 13 postscript figures, 24kB in format .tar.gz., 33kB in format .tar.gz.uu, for a full version including all figures see http://studguppy.tsasa.lanl.gov/research_team/papers

    On- and Off-ramps Generating 1/f Noise in Traffic Flow

    Get PDF
    A simple model of a motorway junction consisting of two connected periodic roads is presented; each of them is connected to the other by on- and off-ramps. This constitutes a detailed structure for the region of on- and off-ramps, which is a new aspect of this paper and a useful step towards a more realistic modelling of the vehicular dynamics near the ramps. The traffic flow through the ramps has an effect on the capacity of the main roads. This effect is identified by the formation of the so-called ”plateau” in the fundamental diagram. The value increase of one of the probabilities pin and pout decreases the value of the indicated plateau. Here pin is the probability to enter the main road through the on-ramp and pout denotes the probability to exit the main road through the off-ramp. The first important feature in the simulated system is the symmetry between the connected main roads. This symmetry does not depend on the variation of the difference between the probabilities pin and pout. The other most outstanding feature is the existence of correlations between the connected main roads, which can be traced back to the lane change of vehicles in the ramp regions. These correlations are characterized by the occurrence of 1/fα fluctuations in the global traffic flow of a chosen main road of the simulated system.A simple model of a motorway junction consisting of two connected periodic roads is presented; each of them is connected to the other by on- and off-ramps. This constitutes a detailed structure for the region of on- and off-ramps, which is a new aspect of this paper and a useful step towards a more realistic modelling of the vehicular dynamics near the ramps. The traffic flow through the ramps has an effect on the capacity of the main roads. This effect is identified by the formation of the so-called ”plateau” in the fundamental diagram. The value increase of one of the probabilities pin and pout decreases the value of the indicated plateau. Here pin is the probability to enter the main road through the on-ramp and pout denotes the probability to exit the main road through the off-ramp. The first important feature in the simulated system is the symmetry between the connected main roads. This symmetry does not depend on the variation of the difference between the probabilities pin and pout. The other most outstanding feature is the existence of correlations between the connected main roads, which can be traced back to the lane change of vehicles in the ramp regions. These correlations are characterized by the occurrence of 1/fα fluctuations in the global traffic flow of a chosen main road of the simulated system

    Economics-Based Optimization of Unstable Flows

    Full text link
    As an example for the optimization of unstable flows, we present an economics-based method for deciding the optimal rates at which vehicles are allowed to enter a highway. It exploits the naturally occuring fluctuations of traffic flow and is flexible enough to adapt in real time to the transient flow characteristics of road traffic. Simulations based on realistic parameter values show that this strategy is feasible for naturally occurring traffic, and that even far from optimality, injection policies can improve traffic flow. Moreover, the same method can be applied to the optimization of flows of gases and granular media.Comment: Revised version of ``Optimizing Traffic Flow'' (cond-mat/9809397). For related work see http://www.parc.xerox.com/dynamics/ and http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Two-dimensional Burgers Cellular Automaton

    Full text link
    A two-dimensional cellular automaton(CA) associated with a two-dimensional Burgers equation is presented. The 2D Burgers equation is an integrable generalization of the well-known Burgers equation, and is transformed into a 2D diffusion equation by the Cole-Hopf transformation. The CA is derived from the 2D Burgers equation by using the ultradiscrete method, which can transform dependent variables into discrete ones. Some exact solutions of the CA, such as shock wave solutions, are studied in detail.Comment: Latex2.09, 17 pages including 7 figure

    Car-oriented mean-field theory for traffic flow models

    Full text link
    We present a new analytical description of the cellular automaton model for single-lane traffic. In contrast to previous approaches we do not use the occupation number of sites as dynamical variable but rather the distance between consecutive cars. Therefore certain longer-ranged correlations are taken into account and even a mean-field approach yields non-trivial results. In fact for the model with vmax=1v_{max}=1 the exact solution is reproduced. For vmax=2v_{max}=2 the fundamental diagram shows a good agreement with results from simulations.Comment: LaTex, 10 pages, 2 postscript figure

    Volatile Decision Dynamics: Experiments, Stochastic Description, Intermittency Control, and Traffic Optimization

    Full text link
    The coordinated and efficient distribution of limited resources by individual decisions is a fundamental, unsolved problem. When individuals compete for road capacities, time, space, money, goods, etc., they normally make decisions based on aggregate rather than complete information, such as TV news or stock market indices. In related experiments, we have observed a volatile decision dynamics and far-from-optimal payoff distributions. We have also identified ways of information presentation that can considerably improve the overall performance of the system. In order to determine optimal strategies of decision guidance by means of user-specific recommendations, a stochastic behavioural description is developed. These strategies manage to increase the adaptibility to changing conditions and to reduce the deviation from the time-dependent user equilibrium, thereby enhancing the average and individual payoffs. Hence, our guidance strategies can increase the performance of all users by reducing overreaction and stabilizing the decision dynamics. These results are highly significant for predicting decision behaviour, for reaching optimal behavioural distributions by decision support systems, and for information service providers. One of the promising fields of application is traffic optimization.Comment: For related work see http://www.helbing.or

    On the Stability of the Mean-Field Glass Broken Phase under Non-Hamiltonian Perturbations

    Get PDF
    We study the dynamics of the SK model modified by a small non-hamiltonian perturbation. We study aging, and we find that on the time scales investigated by our numerical simulations it survives a small perturbation (and is destroyed by a large one). If we assume we are observing a transient behavior the scaling of correlation times versus the asymmetry strength is not compatible with the one expected for the spherical model. We discuss the slow power law decay of observable quantities to equilibrium, and we show that for small perturbations power like decay is preserved. We also discuss the asymptotically large time region on small lattices.Comment: 34 page
    corecore