10,150 research outputs found

    A portable laser system for high precision atom interferometry experiments

    Full text link
    We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for a portable gravimeter based on atom interferometry that will be capable of performing high precision gravity measurements directly at sites of geophysical interest. This laser system is constructed in a compact and mobile design so that it can be transported to different locations, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19" rack and emits light at five different frequencies simultaneously on up to 12 fibre ports at a total output power of 800 mW. These frequencies can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked diode lasers with a phase noise spectral density of less than 1 \mu rad/sqrt(Hz) in the frequency range in which our gravimeter is most sensitive to noise. We characterize this laser system and evaluate the performance limits it imposes on an interferometer.Comment: 8 pages, 11 figures; The final publication is available at http://www.springerlink.co

    A nonlinear population Monte Carlo scheme for the Bayesian estimation of parameters of alpha-stable distributions

    Get PDF
    The class of alpha-stable distributions enjoys multiple practical applications in signal processing, finance, biology and other areas because it allows to describe interesting and complex data patterns, such as asymmetry or heavy tails, in contrast with the simpler and widely used Gaussian distribution. The density associated with a general alpha-stable distribution cannot be obtained in closed form, which hinders the process of estimating its parameters. A nonlinear population Monte Carlo (NPMC) scheme is applied in order to approximate the posterior probability distribution of the parameters of an alpha-stable random variable given a set of random realizations of the latter. The approximate posterior distribution is computed by way of an iterative algorithm and it consists of a collection of samples in the parameter space with associated nonlinearly-transformed importance weights. A numerical comparison of the main existing methods to estimate the alpha-stable parameters is provided, including the traditional frequentist techniques as well as a Markov chain Monte Carlo (MCMC) and a likelihood-free Bayesian approach. It is shown by means of computer simulations that the NPMC method outperforms the existing techniques in terms of parameter estimation error and failure rate for the whole range of values of a, including the smaller values for which most existing methods fail to work properly. Furthermore, it is shown that accurate parameter estimates can often be computed based on a low number of observations. Additionally, numerical results based on a set of real fish displacement data are providedE.K. acknowledges the support of Ministerio de Educación of Spain (Programa de Formación de Profesorado Universitario, Ref. AP2008-00469). J.M. acknowledges the partial support of Ministerio de Economía y Competitividad of Spain (program Consolider-Ingenio 2010 CSD2008-00010 COMONSENS and project COMPREHENSION TEC2012-38883-C02-01) and the Office of Naval Research Global (award no. N62909-15-1-2011). At the time of the original submission of this paper, J.M. was with the Department of Signal Theory and Communications, Universidad Carlos III de Madrid (Spain). M.A acknowledges the financial support of the Natural Sciences and Engineering Council of Canada (Discovery Grant 138680), the Coordenação de Apoioao Pessoal do Ensino Superior (grant No.1351/11-7) and the Fundação de Amparo à Pesquisado Estado do Rio de Janeiro (grant No.E-26/110.864/2012), and thanks J. Nolan for providing a free copy of the STABLE software. A.M.S. acknowledges the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico(grant No. 308016/2014-9) and Coordenação de Apoio ao Pessoal do Ensino Superior, DGU Program (grant No. 257/12)

    A Pilot Study on the Association of Mitochondrial Oxygen Metabolism and Gas Exchange During Cardiopulmonary Exercise Testing: Is There a Mitochondrial Threshold?

    Get PDF
    Background: Mitochondria are the key players in aerobic energy generation via oxidative phosphorylation. Consequently, mitochondrial function has implications on physical performance in health and disease ranging from high performance sports to critical illness. The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) allows in vivo measurements of mitochondrial oxygen tension (mitoPO 2 ). Hitherto, few data exist on the relation of mitochondrial oxygen metabolism and ergospirometry-derived variables during physical performance. This study investigates the association of mitochondrial oxygen metabolism with gas exchange and blood gas analysis variables assessed during cardiopulmonary exercise testing (CPET) in aerobic and anaerobic metabolic phases. Methods: Seventeen volunteers underwent an exhaustive CPET (graded multistage protocol, 50 W/5 min increase), of which 14 were included in the analysis. At baseline and for every load level PpIX-TSLT-derived mitoPO 2 measurements were performed every 10 s with 1 intermediate dynamic measurement to obtain mitochondrial oxygen consumption and delivery (mito V . O 2 , mito D . O 2 ). In addition, variables of gas exchange and capillary blood gas analyses were obtained to determine ventilatory and lactate thresholds (VT, LT). Metabolic phases were defined in relation to VT1 and VT2 (aerobic

    Resolving infeasibilities in railway timetabling instances

    Get PDF
    One of the key assumptions of timetabling algorithms is that a solution exists that meets the pre-specified constraints, like driving times, transfer constraints and headway constraints. If this assumption is satisfied, in most cases a timetable can be found rapidly. Nowadays, railways are being used more intensively, which leads to a higher utilization of the network. Due to this increased utilisation, capacity conflicts occur, so that no feasible solution to the timetabling models can be found, without making subtle but non-trivial changes to the initial input. Resolving these conflicts is essential for railway companies with high utilization of infrastructure. In this paper, we consider infeasible timetabling instances together with a list of allowed modifications of the constraints. We iteratively identify local conflicts in these instances and resolve them by adapting some of the constraints, until there are no more conflicts. The adaptations of the constraints are changes in the right-hand sides that we try to make as small as possible but that resolve the infeasibility. We empirically show that our method can be improved by enriching the initial minimal conflicts found with more constraints. In order to keep the problems tractable, an iterative procedure is used to find solutions to subproblems corresponding to conflicts in the complete timetabling instance. In a case study on instances from the Dutch railway network, we show that these instances can be made feasible within a few minutes

    Fermionic Vacuum Energy from a Nielsen-Olesen Vortex

    Full text link
    We calculate the vacuum energy of a spinor field in the background of a Nielsen-Olesen vortex. We use the method of representing the vacuum energy in terms of the Jost function on the imaginary momentum axis. Renormalization is carried out using the heat kernel expansion and zeta functional regularization. With this method well convergent sums and integrals emerge which allow for an efficient numerical calculation of the vacuum energy in the given case where the background is not known analytically but only numerically. The vacuum energy is calculated for several choices of the parameters and it turns out to give small corrections to the classical energy.Comment: 22 pages, 6 figure

    Recurrence and higher ergodic properties for quenched random Lorentz tubes in dimension bigger than two

    Full text link
    We consider the billiard dynamics in a non-compact set of R^d that is constructed as a bi-infinite chain of translated copies of the same d-dimensional polytope. A random configuration of semi-dispersing scatterers is placed in each copy. The ensemble of dynamical systems thus defined, one for each global realization of the scatterers, is called `quenched random Lorentz tube'. Under some fairly general conditions, we prove that every system in the ensemble is hyperbolic and almost every system is recurrent, ergodic, and enjoys some higher chaotic properties.Comment: Final version for J. Stat. Phys., 18 pages, 4 figure

    Genomics and transcriptomics of epizoic Seisonidea (Rotifera, syn. Syndermata) reveal strain formation and gradual gene loss with growing ties to the host

    Get PDF
    Background Seisonidea (also Seisonacea or Seisonidae) is a group of small animals living on marine crustaceans (Nebalia spec.) with only four species described so far. Its monophyletic origin with mostly free-living wheel animals (Monogononta, Bdelloidea) and endoparasitic thorny-headed worms (Acanthocephala) is widely accepted. However, the phylogenetic relationships inside the Rotifera-Acanthocephala clade (Rotifera sensu lato or Syndermata) are subject to ongoing debate, with consequences for our understanding of how genomes and lifestyles might have evolved. To gain new insights, we analyzed first drafts of the genome and transcriptome of the key taxon Seisonidea. Results Analyses of gDNA-Seq and mRNA-Seq data uncovered two genetically distinct lineages in Seison nebaliae Grube, 1861 off the French Channel coast. Their mitochondrial haplotypes shared only 82% sequence identity despite identical gene order. In the nuclear genome, distinct linages were reflected in different gene compactness, GC content and codon usage. The haploid nuclear genome spans ca. 46 Mb, of which 96% were reconstructed. According to ~ 23,000 SuperTranscripts, gene number in S. nebaliae should be within the range published for other members of Rotifera-Acanthocephala. Consistent with this, numbers of metazoan core orthologues and ANTP-type transcriptional regulatory genes in the S. nebaliae genome assembly were between the corresponding numbers in the other assemblies analyzed. We additionally provide evidence that a basal branching of Seisonidea within Rotifera-Acanthocephala could reflect attraction to the outgroup. Accordingly, rooting via a reconstructed ancestral sequence led to monophyletic Pararotatoria (Seisonidea+Acanthocephala) within Hemirotifera (Bdelloidea+Pararotatoria). Conclusion Matching genome/transcriptome metrics with the above phylogenetic hypothesis suggests that a haploid nuclear genome of about 50 Mb represents the plesiomorphic state for Rotifera-Acanthocephala. Smaller genome size in S. nebaliae probably results from subsequent reduction. In contrast, genome size should have increased independently in monogononts as well as bdelloid and acanthocephalan stem lines. The present data additionally indicate a decrease in gene repertoire from free-living to epizoic and endoparasitic lifestyles. Potentially, this reflects corresponding steps from the root of Rotifera-Acanthocephala via the last common ancestors of Hemirotifera and Pararotatoria to the one of Acanthocephala. Lastly, rooting via a reconstructed ancestral sequence may prove useful in phylogenetic analyses of other deep splits
    corecore