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a b s t r a c t

The class of α-stable distributions enjoys multiple practical applications in signal
processing, finance, biology and other areas because it allows to describe interesting and
complex data patterns, such as asymmetry or heavy tails, in contrast with the simpler
and widely used Gaussian distribution. The density associated with a general α-stable
distribution cannot be obtained in closed form, which hinders the process of estimating
its parameters. A nonlinear population Monte Carlo (NPMC) scheme is applied in order
to approximate the posterior probability distribution of the parameters of an α-stable
random variable given a set of random realizations of the latter. The approximate posterior
distribution is computed by way of an iterative algorithm and it consists of a collection
of samples in the parameter space with associated nonlinearly-transformed importance
weights. A numerical comparison of the main existing methods to estimate the α-stable
parameters is provided, including the traditional frequentist techniques aswell as aMarkov
chain Monte Carlo (MCMC) and a likelihood-free Bayesian approach. It is shown by means
of computer simulations that the NPMC method outperforms the existing techniques in
terms of parameter estimation error and failure rate for the whole range of values of
α, including the smaller values for which most existing methods fail to work properly.
Furthermore, it is shown that accurate parameter estimates can often be computed based
on a low number of observations. Additionally, numerical results based on a set of real fish
displacement data are provided.

1. Introduction

1.1. α-stable distributions

The family of α-stable distributions (Nolan, 2015) is a rich class of probability distributions that displays many patterns
of shapes, allowing for asymmetry and heavy tails, opposite to the widely used, but more restrictive, Gaussian distribution.



The class of α-stable distributions has been found suitable for statistical modeling in signal processing, finance and biology,
among other fields (Nolan, 2015). For this reason, efficient computational algorithms for the estimation of the parameters
of α-stable distributions in practical setups are needed.

A random variable is stable if a linear combination of two independent copies of the variable has the same distribution,
up to location and scale parameters. An α-stable distribution is a generalization of the Gaussian distribution and stems from
a more general version of the central limit theorem, avoiding the assumption of finite variance (Nolan, 2015).

We denote a general α-stable distribution as S(α, β, γ , δ), where α ∈ (0, 2] is a stability index (or characteristic
exponent), β ∈ [−1, 1] is a skewness parameter, and γ > 0 and δ ∈ R determine the scale and location, respectively.
The ‘‘shape’’ of the distribution is determined by α and β: lower values of α correspond to heavier tails and a sharper peak,
while β determines the degree and sign of asymmetry (β > 0 corresponding to right-skewness). As α → 2, the distribution
approaches a (non-standard) Gaussian distribution, and β becomes less meaningful and harder to estimate accurately. As
α → 0, the effect of β becomesmore pronounced, the density gets extremely high at the peak and the tails become heavier.
Stable distributions have one single tail forα < 1 andβ = ±1, and both tails otherwise. Themean of anα-stable distribution
is only defined if 1 < α ≤ 2 and the variance is only finite for α = 2 (Gaussian case).

Distributions of the α-stable class have several specific mathematical properties. All (non-degenerate) stable
distributions are unimodal, continuous and have an infinitely differentiable probability density function (pdf) (Nolan, 2015).
However, the pdf is not available in closed form except for a few particular cases (Gaussian, Cauchy and Lévy) (Nolan, 2015),
a fact that has hampered a broader use of stable distributions in practice. The α-stable distribution is generally specified
in terms of its characteristic function Φ(u) = E[exp(iuX)], where E[·] denotes expectation, X is the random variable and
i =

√
−1. In this work we consider the so called 0-parameterization (Nolan, 2015) of the characteristic function

Φ(u) =


exp


iδu − γ α

|u|α

1 + iβ tan

πα

2


sign(u)(|γ u|(1−α)

− 1)


, if α ≠ 1

exp

iδu − γ |u|


1 + iβ

2
π
sign(u) log(γ |u|)


, if α = 1.

This parameterization is continuous in all the parameters and is more suitable for numerical work and statistical inference
than alternative representations that can be found in the literature (Nolan, 2015). It has to be noted that, under the 0-
parameterization, the scale parameter is not the standard deviation (even in the Gaussian case). On the other hand, for
1 < α ≤ 2 the mean is of the form δ0 − βγ (tan πα

2 ), where δ0 denotes the location parameter in the 0-parameterization
(Nolan, 2015).

1.2. Parameter estimation

A large number of methods for the estimation of the parameters of α-stable distributions have been proposed in the
last decades, since the initial work of Fama and Roll (1971). However, accurate estimation of all four parameters, especially
when α is low, is still an open problem and an active area of research. The difficulty of evaluating the pdf associated to an
α-stable distribution (except for a few particular cases), as well as the posterior dependences among the parameters, make
the parameter estimation problem hard.

A computationally simplemethod based on data sample quantiles and look-up tables was proposed inMcCulloch (1986),
as a generalization of the method in Fama and Roll (1971), but it is known to yield consistent parameter estimates only
when 0.4 ≤ α ≤ 2. In Nolan (2015) a modified quantile method is proposed which is claimed to work for any values of the
parameters. It allows to estimate low values of α, but yields poorer estimates of β than the standard quantile method. In
Koutrouvelis (1981), an iterative weighted regression procedure was introduced that fits the parameters to the empirical
characteristic function (ECF) estimated from the data. This technique does not provide solutions for low values of α either.
In Kogon and Williams (1998) a simplified and improved version of the method in Koutrouvelis (1981) is proposed which
greatly reduces the amount of computation by restricting the estimation to an interval of the characteristic function. InNolan
(2001) a maximum likelihood approach was proposed based on a numerical evaluation of the likelihood (Nolan, 1997). This
method uses the quantile estimator of McCulloch (1986) as an initial approximation to the parameters and maximizes the
likelihood via an approximate gradient based search. It implements a fast likelihood evaluation but its use is restricted to
cases when α > 0.4. The fractional lower order moments and the log absolute moments methods have been proposed
in Nikias and Shao (1995) for the symmetric case (β = δ = 0). Both methods are computationally simple but the latter
has proved to be more efficient in practice (Nikias and Shao, 1995). Extensions of these methods have been proposed for
the asymmetric case with δ = 0 in Kuruoglu (2001). These modified methods require transformations of the data into
symmetrized and centered sequences, reducing the available sample size in one half and two thirds, respectively. When the
amount of data is small, as considered here, this results in numerical problems and inconsistent estimates.

In the Bayesian framework, several attempts have been made to estimate the parameters of α-stable distributions by
using Markov chain Monte Carlo (MCMC) algorithms (Gilks, 2005; Robert and Casella, 2004). In Buckle (1995) a Gibbs
sampler is proposed, which requires sampling from a high-dimensional auxiliary variable and has, therefore, a high
computational cost. The randomwalkMetropolis–Hastings (MH) sampler proposed in Lombardi (2007) relies on a likelihood
approximation using the inverse fast Fourier transform (FFT) (Menn and Rachev, 2006) of the characteristic function near
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the mode and Bergström expansions for the tails. This sampler is very sensitive to the value of α, which determines the
threshold between these two regions, as well as the spacing between the FFT samples. For this reason, it is very hard to tune
the algorithm in such a way that acceptable results can be guaranteed for any α.

Likelihood-free or approximate Bayesian computation (ABC) methods have also been applied to this problem. This
family of algorithms avoids the evaluation of the likelihood function using forward simulation from the observation model
(Turner and Van Zandt, 2012; Del Moral et al., 2012). The MCMC and ABC approaches can be combined into MCMC–ABC
methods (Marjoram et al., 2003), that explore the parameter space iteratively using Markov chains with the desired
stationary distribution. These techniques are particularly likely to get stuck or yield extremely high rejection rates, requiring
a prohibitive computational cost even for simple problems. The partial rejection control (PRC)-ABC algorithmwas developed
in Sisson et al. (2007) as an alternative to MCMC–ABC methods, which suffer from severe mixing problems. In Peters et al.
(2012) the PRC–ABC algorithm was applied to the Bayesian inference problem in univariate and multivariate α-stable
models. In this paper we focus on the population Monte Carlo (PMC)-ABC algorithm proposed in Beaumont et al. (2009),
which has been shown to yield the best performance among the existing ABC methods (Turner and Van Zandt, 2012).

In this work, we are especially interested in the particular case when the α parameter is very low (α < 0.5), when
most of the existing techniques fail to perform properly. Data with such properties can arise in the biological sciences
or engineering, where the deviation with respect to average behavior can be very large (Bélanger and Rodríguez, 2001;
Niranjayan and Beaulieu, 2010). In particular, in this paper we are interested in problems where only a small set of heavy-
tailed observations are available, which is the case in many practical applications (Bélanger and Rodríguez, 2001). To the
best of our knowledge this problem has not been specifically addressed in the literature, probably because of the lack of
adequate inference methods.

1.3. Contributions and organization of the paper

In this workwe propose to apply a nonlinear populationMonte Carlo (NPMC)method (Koblents andMíguez, 2013) to the
problem of estimating the parameters of α-stable distributions. The NPMC algorithm is an iterative importance sampling
(IS) scheme that computes nonlinearly transformed weights to mitigate the degeneracy problem common to conventional
IS methods (Bengtsson et al., 2008; Koblents and Míguez, 2013). We resort to an approximation of the likelihood function
based on themethod proposed in Nolan (1997) in order to compute the importance weights. This approximation introduces
an (additional) distortion of the weights that is not accounted for in the analysis of Koblents andMíguez (2013). We address
this issue and provide an explicit error bound for the estimates produced by an importance sampler with nonlinearly
transformed approximate weights. In addition to these theoretical results, we provide computer simulations that show
that the NPMC algorithm outperforms the main existing methods for any value of the parameter α in the interval (0, 2].
Moreover, the NPMC scheme has a low computational cost compared to other Bayesian schemes (e.g., Lombardi, 2007 and
Peters et al., 2012) and our simulations show that it can be robust in data-poor scenarios. Finally, we present numerical
results for a set of real data, corresponding to daily displacements of a set of fish in Ganelon Creek (Canada) in 1998. This
dataset is demanding because only a small number of observations per individual (≈30) are available and the data present
extremely heavy tails for many individuals.

The remaining of this paper is organized as follows. The proposed NPMC inference algorithm is described in Section 2.
Exhaustive computer simulations that illustrate the performance of the NPMCmethod as well as some of the main existing
methods, based on synthetic data, are presented and discussed in Section 3. Simulation results obtained with a set of real
fish displacement data are shown in Section 4. Finally, Section 5 is devoted to the conclusions.

2. Algorithm

2.1. Bayesian inference in α-stable models

Let θ = [α, β, γ , δ]⊤ be a vector containing the parameters of an α-stable distribution and let y = [y1, . . . , yT ]⊤ be
a vector of T independent and identically distributed (i.i.d.) samples from S(α, β, γ , δ). We adopt a Bayesian approach
and aim at approximating the posterior probability distribution of θ given the observation vector y using a Monte Carlo
scheme. The density associated to the posterior distribution is denoted p(θ|y) ∝ p(y|θ)p(θ), where p(θ) and p(y|θ) are
the prior distribution and the likelihood function of the parameters θ, respectively. The likelihood function is factorized as
p(y|θ) =

T
t=1 S(yt; α, β, γ , δ), where S(yt; α, β, γ , δ) denotes the pdf of the α-stable distribution. Since this density does

not have a closed form, it cannot be evaluated exactly and a numerical approximation is needed. While other possibilities
exist, we adopt the approximation proposed in Nolan (1997).

2.2. Nonlinear population Monte Carlo method

The population Monte Carlo (PMC) method (Cappé et al., 2004) is an iterative IS scheme that seeks to approximate a
target probability distribution with associated pdf π(θ). The PMCmethod generates a sequence of proposal pdfs qℓ(θ), ℓ =
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1, . . . , L, that is expected to yield increasingly better approximations of the target pdf as the algorithm converges. However,
IS-based techniques, including PMC methods, suffer from the well known weight degeneracy problem (Bengtsson et al.,
2008; Koblents andMíguez, 2013). This problem arises when the proposal pdf is not well-tailored to the target pdf, yielding
extreme variations of the importance weights (IWs) and a very low sampling efficiency. Weight degeneracy hinders the
application of IS and PMC techniques in many practical applications, in favor of the family of MCMC techniques.

The effort in the field of PMC algorithms has been typically directed toward the design of efficient proposal functions
(Cappé et al., 2008; Djuric et al., 2011). Alternatively, in Koblents and Míguez (2013) a nonlinear PMC (NPMC) scheme was
proposed that specifically addresses the weight degeneracy problem. The emphasis is not placed on the proposal update
scheme, which can be very simple. The main feature of the technique is the application of a nonlinear transformation to
the IWs in order to reduce their variations. In this way, the efficiency of the sampling scheme is improved (especially when
drawing from poor proposals) and the degeneracy of the IWs is drastically mitigated even when the number of generated
samples is relatively small. In this work we apply the clipping transformation of the IWs described in Koblents and Míguez
(2013). The proposed algorithm is displayed in Algorithm 1.

Algorithm 1 Nonlinear PMC targeting π(θ) = p(θ|y).
Iteration (ℓ = 1, . . . , L):

1. DrawM samples {θ
(i)
ℓ }

M
i=1 from the proposal density qℓ(θ):

• at iteration ℓ = 1, let q1(θ) = p(θ), where the prior distribution p(θ) is assumed to have a support set S ∈ R4.
• at iterations ℓ = 2, . . . , L, qℓ(θ) is the truncated Gaussian approximation of p(θ|y) with support S obtained at

iteration ℓ − 1.

2. For i = 1, . . . ,M , compute the unnormalized IWs

w
(i)∗
ℓ ∝

p̂(y|θ(i)
ℓ )p(θ(i)

ℓ )

qℓ(θ
(i)
ℓ )

,

where p̂(y|θ(i)
ℓ ) denotes the likelihood approximation computed using the method of Nolan (1997).

3. For i = 1, . . . ,M , compute TIWs by clipping the IWs as w̄
(i)∗
ℓ = min(w

(i)∗
ℓ , T

MT
ℓ ) and normalize them as w̄

(i)
ℓ =

w̄
(i)∗
ℓ /

M
j=1 w̄

(j)∗
ℓ . The threshold value T

MT
ℓ denotes theMT -th highest unnormalized IW w

(i)∗
ℓ , with 1 < MT < M .

4. Construct a truncated Gaussian approximation qℓ+1(θ) = T N (θ; µℓ, 6ℓ) of the posterior p(θ|y), with support S and
mean vector and covariance matrix computed as

µℓ =

M
i=1

w̄
(i)
ℓ θ

(i)
ℓ , 6ℓ =

M
i=1

w̄
(i)
ℓ (θ

(i)
ℓ − µℓ)(θ

(i)
ℓ − µℓ)

⊤. (1)

In this paper we consider a proper uniform prior pdf for all the parameters, defined on a restricted support S ∈ R4, and
construct a truncated multivariate Gaussian proposal pdf qℓ(θ) at each iteration ℓ = 2, . . . , L, with the same support as
the prior pdf, based on the set of previous samples and IWs. This basic proposal construction can be improved in various
ways, yielding slightly better results in some cases. For example, a defensive approach can be applied (Cappé et al., 2008),
in which a subset of samples is generated from the prior pdf at each iteration, to ensure that the support of the proposal pdf
contains that of the target pdf. This can be useful in those cases when the posterior pdf of some parameters presents heavier
tails than a Gaussian pdf. Heavy-tailed proposals can also be constructed as multivariate Cauchy or Student’s t distributions.
Alternatively, the proposal pdf can be built as a continuous approximation of the target pdf using the samples generated by
the NPMC algorithm and a smoothing kernel, at the expense of an increased computational cost.

The likelihood approximation p̂(y|θ(i)
ℓ ) required in step 2 is computed following Nolan (1997), where an accuratemethod

is provided to compute general stable densities and distribution functions for essentially all values of the parameters.
The method in Nolan (1997) is implemented in Nolan’s STABLE program (available in the website (Nolan, 0000)) and in
Mark Veillette’s Matlab function stblpdf, publicly available as part of the toolbox stbl in the website (Veillette, 2014). This
toolbox uses an alternative parameterization of the characteristic function. Thus, a translation of the location parameter δ is
needed in order to use this function under the 0-parameterization. A discussion on the accuracy of Nolan’s STABLE toolbox
is provided in Gentle et al. (2012).

For the clipping procedure performed in step 3 we consider, at each iteration ℓ, a permutation i1, . . . , iM of the indices
in {1, . . . ,M} such that w

(i1)∗
ℓ ≥ · · · ≥ w

(iM )∗

ℓ and choose a clipping parameter MT < M . We select the threshold value

T
MT

ℓ := w
(iMT )∗

ℓ and apply clipping to the largest IWs, i.e., w̄(ik)∗
ℓ = T

MT
ℓ for k = 1, . . . ,MT , while w̄

(ik)∗
ℓ = w

(ik)∗
ℓ for

k = MT + 1, . . . ,M . This transformation leads to flat TIWs in the region of interest of θ, yielding a baseline of MT effective
samples (those with non-negligible weights) at each iteration, allowing for a robust update of the proposal pdf.

4



The proposed NPMC method can also be applied in cases where the observations are not independent, as long as the
likelihood function can be evaluated or well approximated. For example, in Koblents and Míguez (2013) the proposed
method has been applied to estimate the parameters and hidden states in state-space models.

2.3. Asymptotic convergence of NIS with approximate weights

The clipping of the IWs in step 3 of the NPMC algorithm introduces a distortion in the random probability measure
generated by a nonlinear importance sampler and, therefore, it is not apparent, a priori, that this measure should converge
in the same way as the measure induced by the standard IWs. This issue is addressed in Koblents andMíguez (2013), where
it is shown that, as long as MT

M → 0, the approximation of integrals of bounded functions using IWs and using TIWs both
converge to the same value. However, the analysis in Koblents and Míguez (2013) only yields error rates for convergence in
probability and, more importantly, it relies on the ability to compute the IWs exactly—which is not the case for the problem
addressed in this paper.

In this sectionwe look explicitly into the convergence of the estimates of integrals computed using approximateweights.
In particular, we provide upper bounds for the estimation errors that hold almost surely (a.s.) and depend explicitly on both
the number of generated samples,M , and the approximation error for the IWs. The same as in Koblents and Míguez (2013),
the analysis is valid for a single-stage importance sampler; we do not incorporate the iterations (over the index ℓ) of the
NPMC algorithm.

Recall that π(θ) = p(θ|y) is the target pdf, let q(θ) be the importance function used to generate samples in an IS
scheme (not necessarily normalized) and let h(θ) ∝ π(θ) be a function proportional to π , with the proportionality constant
independent of θ. The samples drawn from q are θ(i), i = 1, . . . ,M , and their associated non-normalized IWs are w(i)∗

=

h(θ(i))/q(θ(i)), i = 1, . . . ,M .
We introduce the weight function g = h/q, hence g(θ(i)) = w(i)∗. The support of g is the same as the support of q and

π , denoted S ⊆ RK . If we assume that both q(θ) > 0 and π(θ) > 0 for any θ ∈ S, then g(θ) > 0 for every θ ∈ S as well (a
standard assumption in classical IS). It is also apparent that π ∝ gq, with the proportionality constant independent of θ.

If the IWs can be computed exactly, the approximation πM of π can be written as

πM(dθ) =

M
i=1

w(i)δθ(i)(dθ),

where w(i)
=

g(θ(i))M
j=1 g(θ(j))

, i = 1, . . . ,M .

If the weight function can only be computed approximately, let us denote its approximation as gϵ . The resulting random
measure is

πM,ϵ(dθ) =

M
i=1

w(i),ϵδθ(i)(dθ),

where w(i),ϵ
=

gϵ (θ(i))M
j=1 gϵ (θ(j))

, i = 1, . . . ,M .

Let us denote by ϕM the clipping transformation used to compute non-normalized TIWs, i.e., w̄(i)∗
= ϕM(w(i)∗), i =

1, . . . ,M . The weighted approximation of π(θ)dθ constructed according to the nonlinear IS scheme is

π̄M,ϵ(dθ) =

M
i=1

w̄(i),ϵδθ(i)(dθ),

where w̄(i),ϵ
=

ϕM (gϵ (θ(i)))M
j=1 ϕM (gϵ (θ(j)))

, i = 1, . . . ,M .

We make the following assumptions on the weight function, g , and its approximation, gϵ .
A.1. For any ϵ ≥ 0, the approximation gϵ of the weight function satisfies the inequality

sup
θ∈S

|g(θ) − gϵ(θ)| ≤ ϵ a.s.

A.2. The weight function g has a finite upper bound and a positive lower bound. Specifically, there exists a real number
0 < a < ∞ such that a−1

≤ g(θ) ≤ a for every θ ∈ S.
A.3. The same bounds of g hold for its approximations gϵ , ϵ ≥ 0. To be specific, a−1

≤ gϵ(θ) ≤ a for every θ ∈ S and any
ϵ ≥ 0.

Note that if the support set S is compact then A.2 holds whenever q > 0 and h > 0 in S. Otherwise, the proposal q has
to be chosen so that it has heavier tails than π .

In the sequel we look into the approximation of integrals of the form

(f , π) =


IS(θ)f (θ)π(θ)dθ,
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where IS(θ) is an indicator function (namely, IS(θ) = 1 if θ ∈ S and IS(θ) = 0 otherwise) and f is a bounded real function in
the parameter space S. We use ∥f ∥∞ = supθ∈S |f (θ)| < ∞ to denote the supremum norm of a bounded function. The set
of bounded functions on S is B(S) = {f : S → R : ∥f ∥∞ < ∞}. The approximations of interest are

(f , πM,ϵ) =

M
i=1

f (θ(i))w(i),ϵ and (f , π̄M,ϵ) =

M
i=1

f (θ(i))w̄(i),ϵ .

The following theorem yields upper bounds for the absolute approximation errors |(f , πM,ϵ) − (f , π)| and |(f , π̄M,ϵ) −

(f , π)| that depend explicitly onM and ϵ.

Theorem 1. Assume that MT ≤
√
M and Assumptions A.1, A.2 and A.3 hold. Then, there exist positive and a.s. finite random

variables Wf ,υ and W̄f ,υ , independent of M and ϵ, such that

|(f , πM,ϵ) − (f , π)| ≤
Wf ,υ

M
1
2 −υ

+ Cϵ (2)

and

|(f , π̄M,ϵ) − (f , π)| ≤
W̄f ,υ

M
1
2 −υ

+ Cϵ (3)

for every f ∈ B(S), arbitrarily small 0 < υ < 1
2 and some finite constant C. Both C and υ are independent of M, MT and ϵ.

A proof is provided in Appendix D. Theorem 1 yields an upper bound for the (random) absolute error that consists of two
terms, one that depends on the number of samples M and another one that depends on the weight approximation error ϵ.
As M → ∞, the first term vanishes with the usual Monte Carlo rate of convergence despite the approximation of the IWs
and the clipping transformation. The second term is proportional to the approximation error, hence it only vanishes when
the routine used to compute gϵ can be made arbitrarily accurate (i.e., ϵ → 0), typically by increasing the computational
effort invested in this calculation.

3. Computer simulations

In this section we provide extensive simulation results to illustrate the performance of the main existing methods for
the estimation of α-stable parameters. The numerical results are obtained for a set of synthetic observations from α-stable
distributions with a wide range of parameters. First we consider the NPMC and two other Bayesian methods: an MCMC
algorithm and an ABC technique. The implemented NPMC and MCMC methods use the likelihood approximation proposed
in Nolan (1997), while the ABC method is based on a likelihood-free approach. Finally, we compare the NPMCmethod with
the more relevant frequentist methods proposed in the literature.

3.1. Performance of the NPMC algorithm

We have performed 5000 independent simulations of the NPMC algorithm to approximate p(θ|y) with different
parameter and observation vectors. In each simulation run, we draw the parameters θ = [α, β, γ , δ]⊤ from a distribution
µ(θ) = µ(α)µ(β)µ(γ )µ(δ) constructed from a set of independent uniform components, i.e.,

µ(α) = U(α; (0, 2]), µ(β) = U(β; [−1, 1]), µ(γ ) = U(γ ; (0, 10]) and µ(δ) = U(δ; [−5, 5]).

In each simulation run, we generate a set of T = 30 samples yt , t = 1, . . . , T , from the resulting α-stable distribution
S(α, β, γ , δ). It is straightforward to generate samples from an α-stable distribution using an extension of the Box–Müller
algorithm (Chambers et al., 1976), which is detailed in Appendix A for the 0-parameterization. We have selected such a low
number of observations in order to reproduce as closely as possible the setup of the fish displacement dataset studied in
Section 4, where around 30 observations are provided for each individual (Bélanger and Rodríguez, 2001). The gathering of
the data can be a costly process in real applications, for example in biology, leading to a lownumber of available observations.
As will be shown in the simulations, even such a low number of observations usually allows to accurately identify the
parameters. However, the estimation precision is highly sensitive to the actual parameter values. See the supplementary
material (Appendix E) for a brief simulation study of the performance with larger observation sets.

We consider two different prior distributions for the inference algorithm. On the one hand, we consider a prior
distribution p1(θ) = µ(θ). In this case, the support of the prior pdf is S1 = (0, 2]×[−1, 1]× (0, 10]×[−5, 5]. Additionally,
we consider a broader prior distribution for γ and δ, namely, p2(γ ) = U(γ ; (0, 100]) and p2(δ) = U(δ; [−50, 50]), to show
the algorithm dependence on the prior distribution. Therefore, the support of the prior pdf p2 is S2 = (0, 2] × [−1, 1] ×

(0, 100]× [−50, 50]. Note that other prior choices can be considered. For example, a Gaussian prior pdf for δ and a uniform
or Gaussian prior pdf for log γ can also be easily constructed. In cases where it is suspected that the location parameter δ
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Fig. 1. Smooth representation of the final MSE versus the final NESS obtained by the NPMC algorithm in each simulation run, obtained with the p1 (left)
and p2 (right) priors. Average and median simulation runs are depicted with big squares and circles, respectively.

can be very large it may be convenient to shift the data towards 0. We run the NPMC algorithm with L = 10 iterations in
both settings, withM = 300 andMT = 20 with the p1 prior, andM = 103 andMT = 30 with the p2 prior.

At each iteration of the NPMC algorithm, ℓ = 1, . . . , L, we compute the mean square error (MSE) associated to each
parameter θk, k = 1, . . . , 4, as MSEℓ,k =

M
i=1 w̄

(i)
ℓ (θ

(i)
ℓ,k − θk)

2
= (µℓ,k − θk)

2
+ σ 2

ℓ,k, where µℓ,k is the kth component of
the mean vector µℓ and the variance term σ 2

ℓ,k is the (k, k) component of matrix 6ℓ (see Algorithm 1). The global MSE is
obtained as MSEℓ =

1
4

4
k=1 MSEℓ,k, by averaging over the parameter vector components θk, k = 1, . . . , 4. We additionally

compute at each iteration an approximation of the normalized effective sample size (NESS) as Mneff
ℓ = [M

M
i=1(w̄

(i)
ℓ )2]−1

(Koblents and Míguez, 2013), which serves as an indicator of the numerical stability of the algorithm.
In Fig. 1 a smooth representation of the final MSE values (MSEL) versus the final NESS (Mneff

L ) values obtained in each
of the 5000 simulation runs is shown. Results obtained with the narrow prior distribution p1(θ) (left) and the broad prior
distribution p2(θ) (right) are displayed. A Gaussian kernel has been used to smooth the discrete sample representations. The
big squares and circles represent simulation runswith a finalMSEL close to the global mean andmedian values, respectively.
As can be observed from the figure, in both cases the final NESS presents bimodality. A subset of the simulations ends upwith
a low NESS value, yielding higher MSE values on average. When the broader prior is used, we obtain poorer performance,
with a low final NESS. However, when the final NESS is Mneff

L > 0.3, the performance is similar with both choices of the
prior. These different behaviors are due to the value of parameter α, as will be made clear in the rest of this section.

In Fig. 2 (left) some statistics (mean, median, 5% and 95% quantiles) of the final NESS value are represented versus the
true value of α. The curves have been obtained from the final NESS values obtained at each simulation run, averaged over
intervals of α of length 0.2. It can be observed that low α values (that is, stable distributions with heavy tails) yield low NESS
values after convergence of the algorithm. Very similar NESS results are obtained with the broader prior p2. In Fig. 2 (right)
the evolution along the iterations of the MSE of each parameter (MSEℓ,k) is represented, averaged over 5000 simulations
runs, for the narrow (solid lines) and broad (dashed lines) prior distributions. The initial values MSE0,k have been obtained
from the samples drawn from the prior p(θ) at the first iteration, before computing the IWs. It can be observed that the MSE
smoothly decreases, reaching a steady value in 5 or 6 iterations. Parameters α and β attain similar performance with both
choices of the prior, since the corresponding marginal priors are the same under p1 and p2. However, parameters γ and δ
attain a significantly poorer performance with the broader prior p2. Especially, the γ parameter is estimated more poorly
with the p2 prior, on average.

We have also performed computer simulations with different proposal constructions (not shown). In particular, we have
considered a defensive approach, in which 10% of the samples are generated from the prior pdf at each iteration ℓ > 1. In
this case, slightly better results have been obtained in some cases. On the contrary, using amultivariate Cauchy as a proposal
pdf yields a somewhat higher MSE, especially when α is low. For simplicity, in the following we abide by the plain truncated
Gaussian proposal pdf.

3.2. Performance of a Metropolis–Hastings random walk

In this section we consider a MH algorithm which, similarly to the NPMC method, uses the likelihood approximation
proposed in Nolan (1997). Initially, we have implemented the MH method proposed in Lombardi (2007), which uses a
likelihood approximation based on the inverse FFT of the characteristic function and Bergström expansions for the tails.
However, this algorithm has turned out to be extremely sensitive to the selection of certain key parameters, such as the
spacing between the FFT samples or the threshold between the two regions. Thus, it is fairly complicated, if not impossible,
to adjust those parameters for a general case, particularly when the distribution of interest is heavy-tailed, as already noted
in Peters et al. (2012). For this reason, we do not present simulation results for the algorithm of Lombardi (2007) in this
paper. We have not considered the Gibbs sampling method proposed in Buckle (1995) either since it turns out even more
computationally demanding than the random walk MCMC algorithm, as stated in Lombardi (2007).
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Fig. 2. Left: Final NESS statistics versus the true value of α with the narrow prior pdf p1(θ). Right: Evolution along the iterations of the MSE of each
parameter, obtained with the narrow prior p1 (solid lines) and broad prior p2 (dashed lines).

Alternatively, and provided that the method in Nolan (1997) yields a good approximation to the likelihood for almost all
values of the parameters (except for α ≈ 0), we consider a standardMH algorithmwhich uses the likelihood approximation
in Nolan (1997) to compute the acceptance ratio. The Metropolis–Hastings algorithm with the likelihood approximation
computed with the method in Nolan (1997) is displayed in Appendix B.

We consider a proposal distribution q(θ|θ(i−1)) = T N (θ; θ(i−1), 6) constructed as a truncated Gaussian random walk
with covariancematrix6 = diag(0.25, 0.25, 1, 1), with the same support S as the prior pdf. The total chain length has been
set to I = 3000 and I = 104 for the priors p1(θ) and p2(θ), respectively. This yields a total amount of processed samples
equal to that of the NPMC method in Section 3.1. The bulk of the execution time of both techniques is the evaluation of
the likelihood approximation for each sample θ(i), and thus both have a very similar computational complexity. TheMarkov
chains generated by theMHalgorithmhave been post-processed, removing a burn-in period of 10% of the number of samples
I and then thinning by a factor of 9. Thus, we have obtained final sample sets of lengthM = 300 andM = 104 for the priors
p1 and p2, respectively, the same as for the NPMCmethod.We have performed 5000 independent simulationswith the same
settings as the NPMC algorithm in Section 3.1.

In Fig. 3 (left) statistics of the final average NESS obtained by the MH algorithm are represented versus the true value
of α, for the prior distribution p1(θ). Note that in the MCMC literature the ESS is defined differently from that used in IS
techniques. In this case, it is an indicator of the size of a i.i.d. sample with the same variance as the current one, and is
computed as Mneff

= [1 + 2


∞

j=1 ϱ̂(j)]−1, where ϱ̂(j) = corr(θ(0), θ(j)) is the average autocorrelation function at lag j. It
can be observed that, similarly to the results obtained with the NPMC method, for low values of α the performance of the
algorithm is poorer. In this case, however, even for α values between 1 and 2, the NESS is around 20%, which indicates that
the resulting samples are highly correlated. Fig. 3 (right) displays the average autocorrelation function obtained from the
final Markov chains when either p1(θ) or p2(θ) is used as a prior. It can be seen that the final samples obtained with the
prior p2 present a much higher correlation than with p1 (the final sample size is also larger in this case).

3.3. Performance of a likelihood-free method

The PRC–ABC method was developed in Sisson et al. (2007) as an alternative to MCMC–ABC methods, which suffer from
severe mixing problems. In Peters et al. (2012) a PRC–ABC method is applied to the α-stable parameters problem, which is
claimed to outperform previous Bayesian attempts, such as the Gibbs sampler in Buckle (1995) and theMHmethod in Lom-
bardi (2007). However, the PRC–ABCmethoddescribed in Peters et al. (2012) requires the setting of a large number of param-
eters, which affect the performance of the method and are very difficult to adjust for arbitrary α. We have performed simu-
lations of the PRC–ABCmethod with the set of parameters suggested by the authors (with the summary statistics computed
from the McCulloch quantiles). However, we have obtained highly inaccurate results for most values of α. The likelihood-
free approximation is claimed to improve as the tolerance level ϵ decreases, but in practice it becomes inconsistent for low
ϵ. As a stopping criterion, the authors propose to run 10 replicate sampler implementations, and to stop the algorithmwhen
the NESS consistently drops below a given threshold, which results in a great increase in the computational complexity.

On the other hand, a PMC–ABC method was proposed in Beaumont et al. (2009), as an alternative to the PRC–ABC
technique, which has been shown to introduce a bias in the approximation of the posterior. A comparison including the
main ABC methods is provided in Turner and Van Zandt (2012), which suggests that the PMC based scheme is the one with
the best performance. We have come to the same conclusions through our simulations and, for this reason, we include the
PMC–ABC scheme in this comparison, instead of the PRC–ABC method of Peters et al. (2012). However, we have selected
some of the parameters as suggested by Peters et al. (2012).

The PMC–ABC method performs iterative importance sampling with L iterations, substituting the evaluation of the
likelihood function by the ABC approximation based on forward simulations from the observation model. A sequence of
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Fig. 3. Left: NESS statistics versus the true value of α obtained by the MH algorithm with the prior distribution p1(θ). Right: Average auto-correlation
function of the final chains generated by the MHmethod, after removing the burn-in period and thinning the output, obtained with priors p1(θ) and p2(θ).

decreasing tolerance parameters ϵ1 ≥ · · · ≥ ϵL has to be specified. At the first iteration, ℓ = 1, the proposal distribution
q1(θ) is selected as the prior, and for iterations ℓ = 2, . . . , L it is constructed as a truncated multivariate Gaussian pdf
qℓ(θ) = T N (θ; µℓ−1, 6ℓ−1), in the same manner as for the NPMC method. At each iteration ℓ = 1, . . . , L, pairs of samples
θ

(i)
ℓ ∼ qℓ(θ) and y(i)

ℓ ∼ p(y|θ(i)
ℓ ) are drawn until M samples are accepted. The acceptance rule is that a distance metric ρ

between the observations y and the samples y(i)
ℓ is below a threshold ϵℓ, i.e., ρ(y, y(i)

ℓ ) < ϵℓ. The metric ρ (the Euclidean
distance in our case) is typically computed in terms of some nearly-sufficient low-dimensional summary statistics of the
data. At each iteration, the IWs are computed as w

(i)
ℓ ∝ p(θ(i)

ℓ )/qℓ(θ
(i)
ℓ ), i = 1, . . . ,M , which assumes a flat likelihood for

the accepted samples and zero likelihood for the rest (Beaumont et al., 2009; Turner and Van Zandt, 2012). The PMC–ABC
algorithm is outlined in Appendix C.

We consider as summary statistics the quantile method estimates of McCulloch (1986), as suggested in Peters et al.
(2012). The tolerance parameter sequence has been set to ϵℓ ∈ {100, 99, . . . , 2, 1, 0.9, . . . , 0.1}, with L = 109 iterations,
and the number of samples per iteration has been set toM = 1000.

The acceptance rate becomes extremely low as the threshold parameter ϵℓ decreases and, particularly, when α is low,
which results in a high running time for the algorithm. For this reason, we have limited the execution of this method to
15 min (which is far more than the time required by the NPMC and the MH methods to converge under the same setting).
We have performed 2500 independent simulations of this algorithm, with the prior distribution p1(θ) only. Around 50% of
the simulations reached iteration ℓ = 100.

In Fig. 4 we present the results obtained by the PMC–ABC method under the prior distribution p1(θ). The left plot shows
the statistics (mean, median, 5% and 95% quantiles) of the final NESS at the final iteration of the PMC–ABC algorithm. In this
case, the NESS is computed in the same manner as for the NPMCmethod. It can be observed that, particularly for low α, the
final NESS takes very low values, around 0.2 on average in the best case. In the right plot, the evolution of the average MSE
is represented versus the iteration index ℓ. Only a slight improvement in terms of MSE can be observed along the iterations.
If we further reduce the threshold ϵℓ in order to improve the likelihood approximation, the computational time shoots up
and the NESS values drop, leading to numerical instabilities. The results obtainedwith the broader prior p2(θ) are extremely
poor and have been omitted.

3.4. Comparison of the Bayesian methods

In Fig. 5, the final average MSE of each parameter is represented versus the true value of α, as obtained by the NPMC
and the MHmethods with both prior choices p1(θ) and p2(θ), and by the PMC–ABC method only with prior p1(θ). The MSE
has been computed from the final sample, taking into account both the bias and the variance of the estimates, since the full
posterior approximation allows to do so. It can be observed that both the NPMC and the MH techniques perform similarly
with the prior distribution p1(θ), except for α < 0.2, where the NPMC attains better results. However, when the broader
prior p2 is considered, the MH algorithm yields highly inaccurate results due to the inefficiency of the Markov chains to
explore the broader space of θ (which leads to low acceptance rates and a high correlation among samples). This leads
to a minor MSE reduction w.r.t. the prior distribution, especially for γ and δ. Much longer chains would be required to
obtain reasonable results with this prior distribution. On the contrary, the NPMC method obtained similar MSE values in
the estimation of α and β with both prior choices, for any value of α. The γ and δ parameters present significantly worse
performance with the broader prior p2, especially for low values of α. This reveals that with the low amount of observations
considered in this setting (T = 30), the γ (and, to a lesser extent, δ) parameter cannot be identified when the distribution
of interest presents very heavy tails. The selection of an informative prior for γ and δ leads to more efficient and robust
algorithms, since it avoids the overestimation of these parameters, and allows to reduce the number of required samples.
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Fig. 4. Left: Final NESS statistics versus the true value of α obtained by the PMC–ABC algorithm with the prior distribution p1(θ). Right: Evolution along
the iterations of the average MSE obtained by the PMC–ABC method with prior p1(θ).

Fig. 5. Average finalMSE of each parameter versus the true value ofα, obtained by the NPMC andMHmethods, with the p1(θ) and p2(θ) prior distributions
and 5000 simulations, and by the PMC–ABC method with p1(θ) and 2500 simulations. The curves have been obtained by averaging the final MSE obtained
in each simulation run in intervals of α of length 0.2.

The likelihood-free method performs poorly compared to any of the other Bayesian techniques, for all α. In view of these
results, the NPMC algorithm appears to clearly outperform the other Bayesian methods.

It is of particular interest to understand the behavior of the addressed Bayesian algorithms when α takes low values, in
particular when α < 0.5. When α is close to zero, it is well known that the resulting α-stable density presents an extremely
sharp mode and heavy tails. Very large variations of the likelihood function prevent standard Bayesian methods from
performing properly, especially when the prior pdf is broad with respect to the likelihood. For instance, it often results in a
very high rejection rate for MCMC algorithms, which require very long chains to provide reasonable estimates. Likelihood-
free methods are particularly inefficient and turn out to be of no practical use in this case. Standard IS techniques also
suffer from this problem, and require very large sample sizes due to the weight degeneracy. However, the proposed NPMC
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Fig. 6. Empirical MSE of each parameter averaged over 105 independent simulations versus the true value of α, obtained by the QT1, QT2, ECF, MLE, LAM
and NPMCmethods. The curves have been obtained by averaging the empirical MSE values obtained in each simulation run within intervals of α of length
0.2. The curves of the NPMC correspond to the prior p1 .

algorithm specifically addresses the degeneracy problem and is especially suited for problems where themode of the target
pdf is very sharp. Large weight variations are handled by the clipping procedure, ensuring a robust performance in the
difficult case when α is very low.

3.5. Comparison of the NPMC algorithm with non-Bayesian methods

In this section we provide a comparison of the performance of the NPMC method with some of the main non-Bayesian
methods proposed in the literature. Specifically, we consider the classical quantile method proposed in McCulloch (1986)
(QT1), the modified quantile method in Nolan (2015) (QT2), the ECF-based method of Kogon and Williams (1998) (ECF),
the ML estimation method of Nolan (2001) (MLE) and the log-absolute moments method proposed in Nikias and Shao
(1995) (LAM). All of these methods are implemented in the toolbox STABLE for different platforms, and provide point
estimates θ̂k of the α-stable parameters from a set of observed data. We have performed 105 independent simulations of
each of these methods and computed the empirical MSE from the point estimates of each parameter θk, k = 1, . . . , 4, as
MSEk = (θ̂k−θk)

2. For the NPMCmethod, we have obtained the point estimate as the approximate posterior mean obtained
at the last iteration L = 10, i.e., θ̂k = µL,k (ignoring the variance of the estimator), and thus the curves slightly differ from
those shown in Fig. 5. In the case of theNPMC techniquewehave considered 5000 simulation runswith the prior distribution
p1(θ). The simulation setup regarding the generation of the observed data fits the one described in Section 3.1.

In Fig. 6, the finalMSEobtainedby the variousmethods for eachparameter and averagedover 105 independent simulation
runs is represented versus the true value of α. The LAM technique only provides estimates for α and γ . Regarding the
estimation of the α parameter, the QT1, ECF and MLE methods are unable to estimate values of α < 0.4. On the contrary,
the NPMC, the QT2 and the LAM methods succeed to estimate low values of α. The NPMC method outperforms the other
methods for all values of α, except for α ≈ 2, which corresponds to a Gaussian distribution. We have observed that the
posterior mean can yield an underestimation of α = 2, and that the posterior mode can be more appropriate in this case.
For the estimation of β the NPMC method also provides the best results, followed by the MLE and the QT1 methods. Given
the low amount of observations, all of themethods fail to accurately estimate the true values of γ and δ for α < 0.5, yielding
the NPMC method the best (yet modest) results.
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Table 1
Failure rate and execution time of each algorithm.

QT1 QT2 ECF MLE LAM NPMC MH PMC–ABC

Failure rate (%) 0.37 5.05 0.37 21.1 7.89 0.35 0.5 27
Execution time <1 s <1 s <1 s <1 s <1 s 5 min 5 min 15 min

3.6. Remarks

The results provided in Sections 3.4 and 3.5 show that the NPMC method outperforms all the other methods we have
studied (both Bayesian and frequentist) in terms ofMSE for allα. Additionally, theNPMCmethod ismore robust to numerical
issues, occurring mainly with low values of α. In Table 1 the failure rate of each method is shown, together with the
corresponding execution times. The failure rate is defined as the percentage of simulation runs that end with a numerical
error or warning indicating that the provided results are inaccurate. The QT1, ECF, NPMC and MH methods are very robust
to the α parameter value and only fail in around 0.35% of the simulations, when α < 0.01. However, the MH algorithm
performs poorly with the broader prior p2(θ), yielding a high failure rate. The MLE method provides an error rate over 20%
because the likelihood approximation routine implemented in STABLE does not work for α < 0.4. The LAMmethod fails in
8% of the simulations, probably due to the low amount of observations considered, especially for heavy-tailed distributions.
Finally, for the PMC–ABC method the failure rate is expressed in terms of the number of simulations that did not reach
iteration ℓ = 50 by the time limit of 15 min.

Regarding the execution times, Bayesian methods are significantly slower than the classical frequentist techniques. The
NPMC and MH methods have similar computational complexity, while the ABC method is much slower. We have used the
R version of Nolan’s STABLE 4.0 (Nolan, 0000) to run the non-Bayesian techniques included in the comparison. All Bayesian
methods have been implemented in Matlab R2007b on a 3-GHz Intel Core 2 Duo CPU E8400, with 2 GB of RAM. Contrary
to the MH algorithm, in the case of NPMC and PMC–ABC, the processing of each sample in a given iteration can be easily
parallelized to reduce the running time. Any of the Bayesian methods can incorporate additional information in the prior
pdf based on point estimates such as MLE or QT2, in order to reduce the number of required iterations. Also note that the
NPMC algorithm only requires around 5 or 6 iterations for convergence on average, which can reduce the execution time by
one half with a very slight loss of performance.

The execution time of both NPMC and MCMC algorithms is almost exclusively dedicated to evaluating the likelihood
function (99% of the simulation time). The computational effort dedicated to generating samples, computing the IWs or the
acceptance rates is negligible compared to the likelihood evaluation. If a more accurate or faster pdf evaluation becomes
available, the NPMC (and MCMC) algorithm can directly benefit from this performance improvement.

It has to be noted that some of the frequentist methods, especially ECF and MLE, provide reasonable estimates of all 4
parameters with little computational complexity whenever α > 0.3. However, the NPMC algorithm yields more accurate
estimates in general, and performs significantly better for very low α, at the expense of an increase in the execution time.

In comparison with other Bayesianmethods, the NPMC algorithm has clear advantages in terms of simplicity, estimation
error and execution time. The NPMC method is straightforward to implement, and it only requires a coarse selection of the
parameters L,M andMT . We propose to useMT ≈

√
M , according to the theoretical convergence results given in Section 2.3

and Koblents andMíguez (2013). The convergence of theNPMCmay be easily assessed in practice by observing the evolution
of the NESS along the iterations, and stopping the adaptationwhen it reaches a steady value. Additionally, the NPMCmethod
scales better as the complexity of the problem increases (a broader prior or a larger number of observations).

The advantages of the proposed algorithm aremost apparent when estimating the parameters of extremely heavy-tailed
distributions (very low α) from small datasets. When the number of observations is larger, all Bayesian methods become
computationally more demanding. For example, with T = 300 all the methods yield more accurate estimates, but the
running time of the NPMC and MH algorithms scales up to 13 min. However, the MLE estimates barely improve for low
values of α, even with a larger amount of observations, due to the coarse likelihood approximation implemented in the
STABLE toolbox.

4. Simulations with real fish displacement data

In this section we present the numerical results obtained with a set of real data describing longitudinal (i.e., upstream or
downstream) movements of fish in a stream. This dataset was first described in Bélanger and Rodríguez (2001).

4.1. Data description

The data analyzed here derive from measurements of daytime (09:00–17:00 h) position made on N = 21 individuals of
a single fish species, the brook trout (Salvelinus fontinalis). Fish position, determined by reference to fixed marks along the
stream edge, was tracked by radiotelemetry daily between 29 July and 5 September 1998 in Ganelon Creek, Canada. The
available set of observations y corresponds to the univariate daily longitudinal displacement of individual fish, measured
in meters. The tth displacement of the nth fish, yn,t , is defined as the position increment in one dimension between two
consecutive measurements.
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Fig. 7. First plot from the left: histogram of the number of observations Tn available for each fish. Second to fourth plots from the left: real measurements
of fish displacement yn,t , t = 1, . . . , Tn , of three selected individuals n = 11, 20, 18 with different characteristic behaviors.

Fig. 8. Final NESS obtained in each simulation by the NPMC (left) and the MH (right) algorithms, versus the corresponding estimates of α. Note that the
NESS is computed differently in both cases.

The number of observations Tn associated with each individual is very small and its histogram is shown in Fig. 7 (left),
together with the available observations yn,t of three selected individuals, n = 11, 20, 18, at each time instant t . These
three cases describe the typical behaviors present in the whole available dataset. Although displacements were quantified
under similar environmental conditions, individuals were analyzed separately because heterogeneity in individual behavior
generally is of ecological interest. For example, the estimates of β could be used to assess interindividual differences in the
propensity to exhibit directional movements, such as upstream or downstream migration.

Visual inspection of the available data reveals that it has no gaps in its support and presents unimodality, heavy-tails and
asymmetry, and cannot be properly modeled by a Gaussian distribution (Nolan, 1999). Thus, we assume that these samples
are independent and follow an α-stable distribution yn,t ∼ S(y; αn, βn, γn, δn). The individual n = 11 (second plot from the
left in Fig. 7) presents a heavy-tailed and rather symmetric distribution, probably with a low value of α and β . Fish n = 20
(third plot from the left in Fig. 7) presents lighter tails andmore asymmetry than the previous case. Finally, n = 18 (first plot
from the right in Fig. 7) corresponds to a light-tailed and apparently symmetric distribution, similar to aGaussian population.

4.2. Numerical results

We have applied the NPMC, the MH and the described frequentist methods to this problem. For the Bayesian schemes,
we have considered priormarginal distributions p3(γ ) = U(γ ; (0, 50]) and p3(δ) = U(δ; [−10, 10]). The parameters have
been set to L = 10, M = 103 and MT = 30 for the NPMC method. In order to have a similar computational complexity, the
total number of iterations of the MH method has been set to I = 104, yielding a final sample of M = 1000 after removing
the burn-in period and thinning.

Fig. 8 shows the final NESS obtained by the NPMC (left) and the MH (right) methods, versus the corresponding values
of α estimated by each algorithm, similarly to Fig. 2 (left) and Fig. 3 (left) in the computer simulations of Section 3. It is
important to note that more than 50% of the individuals are identified as having values of α < 0.5, both with NPMC andMH
algorithms, which is also confirmed by theMLEmethod. The particular cases n = 11, 20, 18, whose observations are shown
in Fig. 7, are depicted with big markers. It can be observed that similar results are obtained in the real data case, where low
α values yield low final NESS. Since the NESS has proved to be a good indicator of the convergence of the NPMC method,
and is related to the MSE evolution, it can be expected that in this real data problem the algorithm performs similarly to the
example with synthetic data.

In Fig. 9 the point estimates of the α, β , γ and δ parameters provided by the QT1, QT2, ECF, MLE, LAM, NPMC and MH
methods are represented for the selected individuals n = 11, 20, 18. Additionally, a Gaussian kernel approximation of the
posterior distribution of each parameter is shown for the NPMC and MHmethods, and the 5% and 95% confidence intervals
for the MLE (except for n = 11). As expected from the data inspection, the NPMC method identifies the case n = 11 as
having a heavy-tailed distribution, with α̂ around 0.3, which is coherent with the LAM results, the other reliable method for
estimating low α. The MLE method returns a final estimate of α̂ = 0.4 and suggests via a warning message that the true
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Fig. 9. Point estimates of the α-stable parameters provided by the QT1, QT2, ECF, MLE, LAM, NPMC and MH methods, for n = 11, 20, 18. The 5% and 95%
confidence intervals of MLE and the kernel posterior approximations provided by the NPMC andMHmethods are also shown. For n = 11 the MLE method
does not yield confidence intervals.

value is actually lower. In the estimation of β , the NPMC and theMLEmethods provide very similar results. The MHmethod
yields similar α and β estimates but with a larger variance. The estimate of γ is inaccurate in this case, but again the NPMC,
LAM and MLE methods agree in their estimates. The NPMC and the MLE methods provide δ estimates close to 0. The MH
method obtains very inaccurate estimates of γ and δ. In the case n = 20, all methods agree to identify α as close to 0.8,
except for the LAM method, which has shown to be less accurate when α > 0.5 in the simulation study of Section 3. The
estimates of the rest of parameters by the different methods are also similar. Finally, the last case n = 18 is identified as a
light-tailed and symmetric distribution, close to a non-standard Gaussian. Table 2 summarizes these results.

The consistency among the compared methods confirms that the available real data can be properly described by an α-
stable distribution, as suggested by the visual data inspection. The numerical results are coherent with those obtained with
synthetic data, both in terms of theNESS of NPMC andMHmethods, and in terms of the comparison of the solutions provided
by different techniques. The NPMC method provides consistent estimates (comparing different runs) of all parameters for
all values of α, with an extremely low amount of observations. On the contrary, the MH algorithm fails to identify the
parameters when α is low, as can be seen in Fig. 5, and is very sensitive to the prior selection.

5. Conclusions

We have addressed the estimation of the parameters of α-stable distributions in a Bayesian framework. We have
combined the nonlinear population Monte Carlo (NPMC) scheme of Koblents and Míguez (2013) with a classical numerical
approximation of the α-stable pdf (Nolan, 1997) and studied, analytically, the impact of this approximation on the
convergence of the nonlinear importance sampler. Then, we have provided computer simulations with synthetic data
comparing the NPMC method with the main methods proposed in the literature for this problem. The NPMC algorithm
clearly outperforms the traditional frequentist methods in terms of MSE, at the expense of a higher computation cost. It also
yields better results than other Bayesian methods, such as MH or PMC–ABC methods, providing a lower estimation error
with a lower computational effort. Additionally, we have applied the studied methods to a fish displacement real dataset,
and obtained coherent and satisfactory results. We have shown, by means of computer experiments, that the proposed
technique attains a good performance even for small values of α and with an extremely low number of observed data,
where many of the existing techniques usually fail to perform adequately.
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Table 2
Point estimates of the parameters obtained by each of the methods, for the selected datasets n = 11, 20, 18. 95% confidence intervals are given in
parentheses for MLE, NPMC and MH.

n Tn param QT1 QT2 ECF MLE LAM NPMC MH

11 35

α̂ 0.908 0.896 0.927 0.400 (0) 0.366 0.293 (0.112) 0.345 (0.419)
β̂ −0.300 −0.447 −0.022 −0.177 (0) 0 −0.289 (0.228) −0.344 (0.519)
γ̂ 10.647 9.739 13.856 5.323 (0) 1.136 3.496 (4.326) 20.138 (28.565)
δ̂ 1.306 2.003 −2.216 −0.636 (0) 0 −0.445 (0.667) −4.185 (6.942)

20 25

α̂ 0.768 0.752 0.570 0.826 (0.444) 0.394 0.855 (0.351) 0.849 (0.408)
β̂ 0.325 0.526 0.233 0.385 (0.540) 0 0.297 (0.533) 0.260 (0.557)
γ̂ 6.761 5.610 4.697 6.736 (4.295) 1.076 8.082 (4.720) 8.828 (6.218)
δ̂ −0.914 −1.563 −0.819 −0.838 (3.621) 0 −0.339 (3.768) −0.288 (3.898)

18 27

α̂ 1.186 1.179 1.549 1.303 (0.570) 0.490 1.483 (0.556) 1.507 (0.596)
β̂ 0.045 0.059 0.540 0.200 (0.858) 0 0.050 (0.801) 0.005 (0.869)
γ̂ 10.161 10.149 12.356 11.184 (5.011) 2.617 14.187 (6.673) 14.479 (7.232)
δ̂ −5.164 −5.213 −5.263 −4.698 (7.102) 0 −3.315 (7.307) −2.663 (8.081)
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Appendix A. Simulation of univariate α-stable random variables (Chambers et al., 1976)

Let U and V be independent random variables, U uniformly distributed in the interval (−π
2 , π

2 ) and V exponentially
distributed with mean 1. For any 0 < α ≤ 2 and −1 ≤ β ≤ 1, when α ≠ 1, defineW =

1
α
arctan


β


πα
2


. Then

Z =


sin(α(W + U))

[cos(αW ) cos(U)]1/α


cos(αW + (α − 1)U)

V

(1−α)/α

, if α ≠ 1

2
π

π

2
+ βU


tan(U) − β log

 π
2 V cosU
π
2 + βU


, if α = 1

has α-stable distribution S(z; α, β, 1, 0) (Nolan, 2015). To simulate stable random variables S(x; α, β, γ , δ) with arbitrary
scale and location parameters, the following transformation can be applied (Nolan, 2015)

X =


γ


Z − β tan

πα

2


+ δ α ≠ 1

γ Z + δ α = 1.

Appendix B. Metropolis–Hastings algorithm (Hastings, 1970)

Algorithm 2 displays the MH algorithm used in the computer simulations of Section 3.2.

Algorithm 2Metropolis–Hastings algorithm [33] with a likelihood approximation [7].
Initialization (i = 1):

1. Draw the starting point from the prior distribution θ(1)
∼ p(θ).

Iteration (i = 2, . . . , I):

1. Draw a proposed sample θ⋆
∼ q(θ|θ(i−1)) = T N (θ; θ(i−1), 6) from a truncated Gaussian distribution.

2.With probability

min

1,

p̂(y|θ⋆)p(θ⋆)

p̂(y|θ(i−1))p(θ(i−1))


accept the move setting θ(i)

= θ⋆. Otherwise store the current value θ(i)
= θ(i−1). The likelihood approximation p̂(y|θ)

is computed as in [7].
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Appendix C. PMC–ABC algorithm (Beaumont et al., 2009)

Algorithm 3 shows an outline of the PMC–ABC method of Beaumont et al. (2009), which is used in the simulations of
Section 3.3.

Algorithm 3 PMC–ABC algorithm [20].
Iteration (ℓ = 1, . . . , L):

1. Select a proposal distribution qℓ(θ):

• at iteration ℓ = 1, let q1(θ) = p(θ),
• at iterations ℓ = 2, . . . , L, select the proposal pdf as a truncated Gaussian pdf qℓ(θ) = T N (θ; µℓ−1, 6ℓ−1), with

parameters computed as in equation (1) but using standard weights w
(i)
ℓ−1.

2. For i = 1, . . . ,M , simulate θ
(i)
ℓ ∼ qℓ(θ) and y(i)

ℓ ∼ p(y|θ(i)
ℓ ) until ρ(y, y(i)

ℓ ) ≤ ϵℓ, where ρ denotes the Euclidean
distance between the summary statistics of the observations y and the samples y(i)

ℓ .
3. Compute normalized IWs as w

(i)
ℓ ∝ p(θ(i)

ℓ )/qℓ(θ
(i)
ℓ ).

Appendix D. Proof of Theorem 1

We consider the approximate integral (f , πM,ϵ) first. Since

(f , π) =
(fg, q)
(g, q)

and (f , πM,ϵ) =
(fgϵ, qM)

(gϵ, qM)
, (D.1)

where qM =
1
M

M
i=1 δθ(i) , it is simple to show that

(f , πM,ϵ) − (f , π) =
(fgϵ, qM) − (fg, q)

(g, q)
+ (f , πM,ϵ)

(g, q) − (gϵ, qM)

(g, q)
. (D.2)

However, since (g, q) = (1, h) =

IS(θ)h(θ)dθ and (f , πM,ϵ) ≤ ∥f ∥∞, Eq. (D.2) readily yields

|(f , πM,ϵ) − (f , π)| ≤
1

(1, h)

(fgϵ, qM) − (fg, q)
 +

∥f ∥∞

(1, h)

(g, q) − (gϵ, qM)
 , (D.3)

and, therefore, the problem reduces to computing bounds for errors of the form |(bgϵ, qM) − (bg, q)|, where b ∈ B(S).
Choose any b ∈ B(S). A simple triangle inequality yields

|(bgϵ, qM) − (bg, q)| ≤ |(bgϵ, qM) − (bg, qM)| + |(bg, qM) − (bg, q)|. (D.4)

Since qM =
1
M

M
i=1 δθ(i) , for the second term on the right hand side of (D.4) we can write

E

|(bg, qM) − (bg, q)|p


= E

 1M
M
i=1

Z (i)


p

, (D.5)

where the random variables
Z (i)

= b(θ(i))g(θ(i)) − (bg, q), i = 1, . . . ,M,

are i.i.d. with zero mean (recall the θ(i)’s are i.i.d. draws from q). Therefore, it is straightforward to show that

E

 1M
M
i=1

Z (i)


p

≤
c̃pap∥b∥p

∞

M
p
2

, (D.6)

where c̃ is a constant independent ofM and q, and a is the uniform upper bound for the weight function g provided by A.2,
also independent ofM . Combining (D.6) with (D.5) readily yields

∥(bg, qM) − (bg, q)∥p ≤
c̃a∥b∥∞

√
M

. (D.7)

The inequality (D.7) implies that there exists an a.s. finite random variable Uυ,b > 0 such that

|(bg, qM) − (bg, q)| ≤
Uυ,b

M
1
2 −υ

, (D.8)

where 0 < υ < 1
2 is an arbitrarily small constant independent ofM (see Crisan and Míguez, 2014, Lemma 4.1).
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If we expand the first term on the right hand side of (D.4) we arrive at(bgϵ, qM) − (bg, qM)
 =

 1M
M
i=1

b(θ(i))

gϵ(θ(i)) − g(θ(i))


≤

∥b∥∞

M

M
i=1

gϵ(θ(i)) − g(θ(i))
 . (D.9)

However, using assumption A.1 in the inequality (D.9) above, we readily obtain(bgϵ, qM) − (bg, qM)
 ≤ ∥b∥∞ϵ. (D.10)

Taking together (D.4), (D.8) and (D.10) we arrive at

|(bgϵ, qM) − (bg, q)| ≤ ∥b∥∞ϵ +
Uυ,b

M
1
2 −υ

(D.11)

and it is immediate to combine the inequality (D.3) with the bound in (D.11). If we choose b = f in order to control the first
term on the right hand side of (D.3), and b = 1 in order to control the second term, we readily find that

|(f , πM,ϵ) − (f , π)| ≤
Wf ,υ

M
1
2 −υ

+
2∥f ∥∞

(1, h)
ϵ, (D.12)

where

Wf ,υ =
Uυ,f + Uυ,1

(1, h)
> 0

is an a.s. finite random variable independent ofM and ϵ. This yields the inequality (2) in the statement of the Theorem, with
C = 2∥f ∥∞/(1, h) < ∞.

The proof for inequality (3) is simpler. A triangle inequality yields

|(f , π̄M,ϵ) − (f , π)| ≤ |(f , π̄M,ϵ) − (f , πM,ϵ)| + |(f , πM,ϵ) − (f , π)| (D.13)

and (D.12) yields a bound for the second term on the right hand side of (D.13). For the first term, we note that

(f , π̄M,ϵ) =
(f [ϕM

◦ gϵ
], qM)

(ϕM ◦ gϵ, qM)
, (D.14)

where ◦ denotes composition, hence (ϕM
◦ gϵ)(θ) = ϕM(gϵ(θ)). If we combine (D.14) and the expression for (f , πM,ϵ) in

(D.1) we obtain, by the same argument leading to (D.3), that

|(f , π̄M,ϵ) − (f , πM,ϵ)| ≤
|(f [ϕM

◦ gϵ
], qM) − (fgϵ, qM)|

(ϕM ◦ gϵ, qM)
+

∥f ∥∞|(ϕM
◦ gϵ, qM) − (gϵ, qM)|

(ϕM ◦ gϵ, qM)

≤ a|(f [ϕM
◦ gϵ

], qM) − (fgϵ, qM)| + a∥f ∥∞|(ϕM
◦ gϵ, qM) − (gϵ, qM)|, (D.15)

where the second inequality follows from the definition of the clipping transformation ϕM and the bound gϵ
≥ a−1 in A.3.

In order to use (D.15), we look into errors of the form |(b[ϕM
◦ gϵ

], qM) − (bgϵ, qM)| for arbitrary b ∈ B(S). This turns
out relatively straightforward since, from the construction of ϕM ,

|(b[ϕM
◦ gϵ

], qM) − (bgϵ, qM)| =

 1M
MT
r=1

b(θ(ir ))

gϵ(θ(iMT )) − gϵ(θ(ir ))

 ≤ 2a∥b∥∞

MT

M
, (D.16)

where the inequality follows from the bound gϵ
≤ a in A.3. We can plug (D.16) into (D.15) twice, first choosing b = f and

then b = 1, in order to control the two terms in the triangle inequality. As a result, we arrive at the deterministic bound

|(f , π̄M,ϵ) − (f , πM,ϵ)| ≤
2a2∥f ∥∞MT

M
≤

2a2∥f ∥∞
√
M

, (D.17)

where the second inequality follows from the assumptionMT ≤
√
M in the statement of the theorem.

Plugging (D.17) and (D.12) into (D.13) yields

|(f , π̄M,ϵ) − (f , π)| ≤
Wf ,υ + 2a2∥f ∥∞

M
1
2 −υ

+
2∥f ∥∞

(1, h)
ϵ, (D.18)

which reduces to the inequality (3) in the statement of the Theorem, with W̄f ,υ = Wf ,υ +2a2∥f ∥∞ > 0 an a.s. finite random
variable and C = 2∥f ∥∞/(1, h) < ∞ a constant, both independent ofM and ϵ. �

17



Appendix E. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2015.09.007.
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