
Resolving infeasibilities in railway timetabling instances

Gert-Jaap Polinder1, Leo Kroon1,2, Karen Aardal3, Marie Schmidt1 and Marco
Molinaro4

1Rotterdam School of Management, Erasmus University Rotterdam
2Process Quality and Innovation, Netherlands Railways, Utrecht, The Netherlands

3Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands
4Computer Science Department, PUC-Rio, Brasil

Abstract

One of the key assumptions of timetabling algorithms is that a solution exists that meets the
pre-specified constraints, like driving times, transfer constraints and headway constraints. If this
assumption is satisfied, in most cases a timetable can be found rapidly. Nowadays, railways are
being used more intensively, which leads to a higher utilization of the network. Due to this increased
utilisation, capacity conflicts occur, so that no feasible solution to the timetabling models can be
found, without making subtle but non-trivial changes to the initial input. Resolving these conflicts
is essential for railway companies with high utilization of infrastructure. In this paper, we consider
infeasible timetabling instances together with a list of allowed modifications of the constraints.
We iteratively identify local conflicts in these instances and resolve them by adapting some of the
constraints, until there are no more conflicts. The adaptations of the constraints are changes in
the right-hand sides that we try to make as small as possible but that resolve the infeasibility. We
empirically show that our method can be improved by enriching the initial minimal conflicts found
with more constraints. In order to keep the problems tractable, an iterative procedure is used to
find solutions to subproblems corresponding to conflicts in the complete timetabling instance. In
a case study on instances from the Dutch railway network, we show that these instances can be
made feasible within a few minutes.
† In memoriam of Leo G. Kroon who passed away on September 14th, 2016.

1 Introduction

In Europe, many public transportation railway companies operate a cyclic timetable. This means
that the timetable is repeated every time period, usually every hour. For example, in the Nether-
lands during daytime, every hour at .05, an intercity leaves Rotterdam heading for Utrecht [NS,
2017]. A timetable is also generally referred to as a schedule, which we use throughout this paper.

A mathematical model that is commonly used for finding such a cyclic (also called periodic)
schedule is the Periodic Event Scheduling Problem (PESP) as introduced in Serafini and Ukovich
[1989]. This problem can be stated as follows:

Definition 1.1 (PESP). Given an instance I, consisting of a set V of events, a set A ⊆ V ×V of
constraints, intervals [lij , uij] for all (i, j) ∈ A and a period length T , the Periodic Event Scheduling
Problem is to find a feasible periodic schedule, that is, event times π : V → [0, T) satisfying

πj − πi modulo T ∈ [lij , uij] ∀ (i, j) ∈ A. (1)

If such a periodic schedule exists, we call the instance I feasible. Else, we call it infeasible.
Note that any PESP instance can be scaled in such a way that 0 ≤ lij < T (cf. Peeters [2003]).
Next to this, we may assume that uij − lij < T , otherwise the constraint would be redundant.

In the railway timetabling context, the events V correspond to departures or arrivals at some
location in the rail network. The constraints A state relations in time between pairs of events,
that is, the difference in time between two events i and j should be within a T -periodic interval
[lij , uij]. The constraints model bounds on trip times, stopping times, safety distances between
pairs of trains and desired connection times. To show what a PESP instance can look like in a
railway context, consider the following example.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Erasmus University Digital Repository

https://core.ac.uk/display/154417799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Example 1.1. The situation in this example is that trains 1 and 2 somewhere in their journey
drive from station s to station s′, while sharing the same track. To determine a schedule for this
situation, we need to plan the departure times from station s and s′ and the arrival times at station
s′ of these trains. This leads to determining values for πs1,d, π

s
2,d, π

s′
1,a, πs

′
2,a, πs

′
1,d and πs

′
2,d. Here,

π denotes the event time, the superscript shows the station of the event. The subscript shows the
train number and the event type: a departure (d) or arrival (a).

The trip time of train 1 is at least 6 and at most 7 minutes, so it is in the interval [6, 7]. The
trip time of train 2 resides in the interval [7, 8]. Since trip times are allowed to vary in the specified
intervals, we refer to this as variable trip times. The trains stop for exactly one minute at station
s′.

Next, we have an ‘ABS’ event, which is a dummy event that does not correspond to a specific
train. We use this event to ensure that certain events will happen within a given time interval, if
this is desired. For example, if train 1 has to leave station s in the interval [18, 22], we add the
constraint πs1,d − πABS modulo T ∈ [18, 22]. Note that once a feasible schedule is obtained for I,
every event time can be shifted by δ < T minutes, resulting in a new timetable, with the same
time differences on the constraints, but with different event times. By doing so, we can find δ such
that πABS = 0 and hence the desired times for the events that have to happen at a specific time
are ensured.

Next to the given events, we consider the following constraints:

πs
′

1,a − πs1,d ∈ [6, 7]60 (2a)

πs
′

2,a − πs2,d ∈ [7, 8]60 (2b)

πs
′

1,d − πs
′

1,a ∈ [1, 1]60 (2c)

πs
′

2,d − πs
′

2,a ∈ [1, 1]60 (2d)

πs2,d − πs1,d ∈ [30, 30]60 (2e)

πs1,d − πABS ∈ [18, 22]60 (2f)

πs2,d − πABS ∈ [48, 52]60 (2g)

πs2,d − πs1,d ∈ [h, 60− h]60 (2h)

πs
′

2,a − πs
′

1,a ∈ [h, 60− h]60 (2i)

πs
′

2,d − πs
′

1,d ∈ [h, 60− h]60. (2j)

Note that in this example we use T = 60.
In this example, Constraints (2a) and (2b) correspond to trip time constraints, forcing the trip

time between the departures at two stations to be within some interval. Although both trains use
the same track, it is possible that their trip times are different, for example when different types of
trains are used. Constraints (2c) and (2d) correspond to dwell time constraints, forcing the dwell
time in station s′ to equal one minute.

Next, these two trains have to drive in a ‘nice’ pattern, i.e., they have to depart at the first
stations 30 minutes apart from each other, giving constraint (2e). Next to this, suppose regulations
require train 1 (train 2 resp.) to leave station s in the interval [18, 22] ([48, 52] resp.), which is
modelled by (2f) and (2g). In order to guarantee safety, a minimum time span of h minutes is
to be respected between the departure and arrival of the trains at the station (generally h = 3).
This leads to constraints (2h) and (2j), to guarantee safety upon departure, and (2i) to guarantee
safety upon arrival.

Note that a schedule for this example can be found easily, for example πs1,d = 20, πs
′

1,a = 26,

πs2,d = 50 and πs
′

2,a = 57, where we used h = 3.

The example stated above uses both departure and arrival times. When travel times are
assumed to be fixed, it is possible to merge pairs of trip time and dwell time constraints and
state PESP instances solely in departure events: When trip times are fixed, the width of the
intervals in (2a) and (2b) is zero. Then, knowing the time of a departure event, the time for
the corresponding arrival event follows immediately. Planning only departure events has the
advantage that fewer event times have to be determined, thus reducing the complexity of the
problem. However, assuming fixed travel times implicitly leaves less flexibility in the constraint
set, since there is no freedom in choosing a travel time. Liebchen and Möhring [2007] describe
under which circumstances this flexibility loss can be overcome. Note that when modelling single

2

tracks, fixed travel times are needed to model safety constraints correctly. Furthermore, fixed trip
time reduce the solution space and can thus decrease running time of solution methods.

Transforming Example 1.1 to a situation with fixed travel times, can for example lead to the
following:

Example 1.2. We now assume that train 1 uses 6 minutes to travel from s to s′, while train
2 needs 7 minutes. When stating the constraints solely in departure events, we can omit the
departure/arrival notation. Furthermore, we use h = 3 and thus arrive at the following set of
constraints:

πs
′

1 − πs1 ∈ [7, 7]60 (3a)

πs
′

2 − πs2 ∈ [8, 8]60 (3b)

πs2 − πs1 ∈ [30, 30]60 (3c)

πs
′

2 − πs
′

1 ∈ [30, 30]60 (3d)

πs1 − πABS ∈ [18, 22]60 (3e)

πs2 − πABS ∈ [48, 52]60 (3f)

πs2 − πs1 ∈ [3, 57]60 (3g)

πs2 − πs1 ∈ [2, 56]60 (3h)

πs
′

2 − πs
′

1 ∈ [3, 57]60. (3i)

Constraints (3a) and (3b) arose by merging a trip time constraint with a dwell time constraint.
The constraints that include a trip time part and a positive dwell time, are referred to as ‘trip-dwell
constraints’. If the dwell time is zero, i.e., the train does not stop at this station, these constraints
are referred to as trip constraints. Constraints (3c) and (3d) impose the synchronisation between
two departure at the same station. Constraints (3e) and (3f) require the trains to depart within
a given interval. Finally, we have constraints guaranteeing safety upon departure ((3g) and (3i))
and upon arrival (3h). The reason that the interval in (2i) is not [3, 57] is because of the trip time
difference between the two trains.

Note that, because of the size of this instance, there is no freedom in finding a schedule,
everything is already determined. In real-life instances, which are too large to be considered here
in an example, this is not the case.

We can represent PESP instances as a graph G = (V,A), where nodes model events V and
arcs model constraints A. A PESP-graph representation for the instance in Example 1.2 is shown
in Figure 1.

ABS

1

2

3

4

[7, 7]

[8, 8]

[18, 2
2]

[48, 52]

[30,30]

[30, 30][3, 57][3, 57] [2, 56]

Figure 1: PESP graph for Example 1.2

There is a one-to-one correspondence between a node/arc and a PESP event/constraint. There-
fore, when it fits better into the context, we sometimes refer to ‘nodes’ (resp. ‘arcs’) when talking
about PESP events (resp. constraints).

In Example 1.2 and the corresponding constraint graph in Figure 1, we see that there is no
solution π to the given set of constraints, because constraints (3a) - (3d) can never be satisfied
simultaneously. We say they form a conflict.

3

1.1 Problem statement

In this paper, we deal with PESP instances from railway timetabling for which no feasible schedule
exists. That means, the instances contain sets of constraints that together form a conflict, these
sets together prohibit the existence of a feasible solution. The focus of this paper is not to solve
PESP but to resolve the infeasibilities in infeasible PESP instances. This ‘resolving’ is done by
changing bounds of the PESP-constraints as little as possible where this is needed.

Formally, we define the problem that we resolve in this paper as follows.

Definition 1.2 (Infeas-PESP). Let I be an infeasible PESP instance, with constraint graph G =
(V,A). For each a ∈ A, let la (ua) denote lower (upper) bounds of the constraints and τ la (τua)
the given maximum allowed deviations of these bounds. The task is to find new constraint bounds
l′a = la − sla (u′a = ua + sua), where sla ∈ [0, τ la] (sua ∈ [0, τua]), such that, with respect to these new
bounds, a feasible schedule π : V → [0, T) exists, or to decide that no such change exists.

Note that it might not always be possible to find changes to the constraints satisfying the given
bounds τ . In that case, no resolution of a conflict is possible.

If a resolution of the conflicts exists, we aim at finding one that violates the original constraints
as little as possible. Since PESP constraints model different real-life constraints, like driving and
dwell times, transfer times, or safety distances, violation of one constraint may be more undesirable
than of another. For this reason, we introduce weights on the constraint violations, which we try
to minimize heuristically.

The remainder of this paper is structured as follows. In Section 2 we review the literature on
PESP and conflict solving and state our contribution. In Section 3, we describe the above outlined
procedure in more detail. First, the notion of a conflict is formally defined. Next, several models
are formulated to resolve a conflict in Section 3.2. Methods to add more relevant constraints
to conflicts are shown in Section 3.2.4. The iterative algorithm to subsequently resolve conflicts
is proposed in Section 3.3. Computational results are presented in Section 4. We end with a
conclusion and discussion in Section 5.

2 Literature review and contribution

2.1 Periodic event scheduling

As was mentioned in the introduction, many of the approaches for finding a feasible cyclic railway
schedule are based on the Periodic Event Scheduling Problem [Serafini and Ukovich, 1989], see
Definition 1.1. That this model is very well suitable to model requirements for periodic timetabling
is shown for example in Peeters [2003], Liebchen and Möhring [2007]. In Peeters [2003], an extensive
overview is given on how to model practical requirements to a periodic schedule using PESP. It
further contains an overview of relevant literature concerning PESP.

Caimi et al. [2017] provide a clear overview of the different models that can be used for (mainly
periodic) scheduling, and how these are applied in practice. They claim that PESP is the most
widely used model, many of the other models for periodic timetabling are variants of this model.
The PESP framework can be used to model a lot of requirements, but not everything can be
modelled in purely PESP constraints, as is shown in Liebchen and Möhring [2007], where it is
shown which kind of requirements can be incorporated in the PESP framework and which cannot.

Since the introduction of PESP, much research has been devoted to the model and how to find
solutions to it.

PESP constraints can easily be translated to mixed integer programming (MIP) constraints by
introducing an integer variable pij for each (i, j) ∈ A to reformulate the modulo operator in (1).
We obtain the PESP-IP as (cf. Peeters [2003]):

Definition 2.1 (PESP-IP). Given a set V of events, a set A ⊆ V × V of PESP-constraints, find
a feasible solution to

lij ≤ πj − πi + Tpij ≤ uij , ∀ (i, j) ∈ A (4a)

πi ∈ [0, T − 1] ∀ i ∈ V (4b)

p ∈ Zm≥0. (4c)

Then, these MIP models can be solved using state-of-the-art solvers like IBM ILOG CPLEX
or Gurobi. This approach allows to find feasible schedules that are optimal according to some

4

objective function. However, for real life instances, this approach often does not find solutions
within reasonable time. Several other solution methods exist which are often able to solve real-life
instances within reasonable time (cf. Schrijver and Steenbeek [1993], Großmann et al. [2012], Odijk
et al. [2002]). These solution methods are not aimed at finding the best schedule, but at finding
a feasible schedule or detecting that the underlying PESP instance is infeasible.

In Odijk [1996], a cutting plane approach to solve PESP is proposed and applied on a small
part of the Dutch railway network. It starts with (PESP-IP) and a set of vectors for all possible
values for the p-variables in (4a). Based on cycles in the constraint graph, restrictions can be
added on the possible values that the p-values can take. Eventually, the algorithm ends up with a
feasible p-vector (and hence a schedule) or proves that the model is infeasible.

Nachtigall [1999] further formalized this concept and introduced a reformulation of PESP as
a MIP, known as the Cycle Periodicity Formulation (CPF). We restate this formulation in the
Appendix C (see Definition C.1). An advantage of (CPF) over (PESP-IP) is that it uses fewer
integer variables and equality constraints instead of inequality constraints which has advantages in
a branch-and-bound procedure when solving the models. For a further discussion and comparison
of different PESP formulations, see for example Liebchen et al. [2008].

2.2 PESP conflicts

The problem of running into infeasibilities when solving PESP has been mentioned before. Kroon
and Peeters [2003] noted that this problem can be caused by assuming fixed trip times which is an
assumption that is often made in railway timetabling (cf. Kroon and Peeters [2003], Kümmling
et al. [2015a]). In order to incorporate more flexibility into the mathematical models that are
used, the authors state under which necessary and sufficient conditions trip times can be allowed
to vary. This provides a bit more flexibility in the planning processes, but in practice conflicts still
arise in busy railway networks. Recently, also Kümmling et al. [2015a] considered the problem of
infeasible PESP instances. More technical details on their approach are given inGroßmann et al.
[2015]. The authors try to make the PESP instance feasible by applying a binary search heuristic
and a MaxSAT approach. This method finds changes to upper bounds of constraints, and in some
cases lower bounds as well, in order to determine if a feasible schedule exists. The authors use
a function that assigns a weight to each constraint, indicating how expensive it is to change this
constraint. The weight is set to infinity if a constraint cannot be changed. In their paper, no
specific weight function is given. The authors, however, claim that in railway instances typically
only dwell time constraints and connection constraints can be relaxed. This is due to the fact that
PESP does not allow for dependencies between constraints (see also Kümmling et al. [2015b]),
which is the case when trip times are not assumed to be fixed. They test their model on several
instances, among which the largest one contains all the high speed lines and some of the most
important regional train lines in Germany.

2.3 Our contribution

In this paper, we propose a methodology to resolve infeasible PESP instances by altering PESP
constraints.

Our method is applicable both to PESP instances with variable trip times, and to PESP
instances with fixed trip times. In the former case, the altering of the bounds corresponds to a
widening of the interval which bounds the time difference between two events. For PESP with
fixed trip times, we relax all but the fixed trip time constraints in the above-described way. For
the trip time constraints, we do not consider relaxation of the corresponding interval, but instead
a change of the trip time. To take implicit interdependencies in the constraint set into account,
we introduce relations between the PESP constraints.

We propose a mixed-integer program (MIP) that is able to alter PESP constraints in both
ways described above, and can hence solve conflicts both in PESP instances with variable and
with fixed trip times. While in theory, our MIP model could be used to resolve all conflicts in the
PESP instance at the same time, infeasible PESP instances encountered in (timetabling) practice
are too large to be resolved in one go.

To be able to resolve large PESP instances, we propose a methodology that iteratively detects
minimal conflicts (that is, a minimal set of constraints that cannot be satisfied simultaneously),
enriches them in a heuristic way, and solve them using the MIP. This procedure is repeated until
all conflicts are resolved.

5

In our computational experiments, we systematically analyse and compare which methods of
enriching a conflict work well. We test our approach on timetabling instances from Netherlands
Railways (NS), which is one of the most intensively used railway networks in the world, with over
75,000 constraints in the PESP model. Our method is able to resolve conflicts, even in such a
large and highly utilized network, within minutes.

We ran our computational experiments based on weights defined after communication with
planners from NS. However, the short computation times of our method would even allow to use
our method in an interactive way: Planners could set weights based on a first judgement of the
importance of constraints, and then adjust them based on the result found, to guide the solution
into the desired direction.

3 Conflict resolving

PESP instances that arise in practice can be infeasible. This means they contain a set of constraints
that cannot be satisfied simultaneously. The aim is to make such instances feasible and in this
section we describe our approach to achieve this goal. (See Section 1.1 for a formal definition of
the problem).

We propose an iterative procedure, as follows:

• Identify a local conflict (an exact definition is given in Section 3.1).

• Resolve the conflict using a MIP that minimizes a weighted sum of the changes in the network
constraints (Section 3.2).

• Carefully select additional constraints and events to be added to this local conflict, in order
to find a better resolution of this conflict (discussed in Section 3.2.4)

• Modify the constraints based on the solution provided by the MIP and search for a new
conflict (go back to the first step)

• As soon as we do not encounter a conflict anymore, we try to further optimize the changes
that are made (described in Section 3.3.4).

This is detailed in the following sections.

3.1 Conflicts in PESP

In order to be unambiguous in the terms we are using, we give a definition of what we mean by
the term ‘conflict’:

Definition 3.1 (Conflict). A conflict is a set of events and PESP constraints such that no schedule
exists satisfying all the constraints.

In line with the definition of a conflict, we have the following definition of a minimal conflict:

Definition 3.2 (Minimal conflict). A minimal conflict is a conflict that has the additional property
that no single constraint can be removed without creating a feasible set of constraints.

Note that minimal conflict does not mean it is of minimum size. In fact, minimal conflicts can
arbitrarily differ in size, as the next example shows.

Example 3.1. In Figure 2 a conflict graph is shown with events V = {0, 1, . . . , N}. For each i =
1, 2, . . . , N we have the constraint πi − πi−1 ∈ [1/N, 1/N]T . Furthermore, we have the constraints
πN − π0 ∈ [1, 1]T and πN − π0 ∈ [2, 2]T .

Clearly, the latter two constraints form a conflict, which is denoted by C1. However, the
constraints πN − π0 ∈ [2, 2] together with the set of constraints πi − πi−1 ∈ [1/N, 1/N] for all
i = 1, . . . , N form a conflict, too. Denote this conflict by C2. Both conflicts are minimal: removing
any constraint from the conflicts would resolve these conflicts. However, the number of constraints
in each conflict is different.

So by definition, any infeasible PESP instance contains at least one conflict. There exist
different methods on how to identify conflicts, see, e.g., Kümmling et al. [2015b]. In this paper,
we describe a methodology to make the PESP instance feasible by resolving the conflicts through
a change in constraint bounds, as defined in Definition 1.2.

When modelling railway scheduling instances as PESP problems, PESP constraints describe
different types of real-life railway timetabling constraints, like trip time constraints, dwell times

6

0 1 N − 1· · · N
[1/N, 1/N] [1/N, 1/N]

[1, 1]

[2, 2]

Figure 2: Minimal conflicts

constraints (or trip-dwell times constraints in the condensed model with fixed trip times), safety
constraints, or so-called market requirements. Market requirements refer to transfer constraints,
which state the arrivals and departures of different trains at the station need to be matched to
allow for convenient transfers, and synchronization constraints, which lead to an equal spacing in
time of trains of the same line.

By how much one is allowed to deviate from these constraints and how much a deviation is
penalized depends on the instance, and should in practice be decided based on discussion with the
train operator.

3.2 Resolving a single conflict

In order to find a model to resolve conflicts in PESP, note that each PESP constraint states that
the difference in time between pairs of events should be within a given periodic interval. In case
of a conflict, these intervals are too small, thus preventing the existence of a solution to PESP.
Therefore, the bounds have to be changed in order to obtain a feasible solution. The goal of this
section is the following: given a specific conflict in G (represented by a subgraph GC of G), find a
change of constraint bounds, such that the conflict is removed. More specifically, we are given an
instance I = (G,w, τ) being a triple of:

1. a PESP instance represented by its constraint graph G = (V,A);

2. a weight vector w ∈ R2m: for each bound of each constraint a weight is given;

3. a vector τ ∈ R2m denoting by how much each bound of each constraint can be changed;

Among all possible constraint bound changes, we aim to find the one that minimizes a weighted
sum of the deviations from the original constraint set (to be defined more specifically in the next
paragraph).

In the following paragraphs, we present our approach for solving conflicts in PESP. We present
our approach based on (PESP-IP), since this is the most intuitive MIP formulation for PESP.
However, the cycle periodicity formulation (CPF) can be extended analogously, and we use an
extension of this formulation, (19), for our experiments in Section 4 to speed-up computation
times. Details can be found in the Appendix C.

The methods we describe in this Section can be applied to conflicts of any size. In particular,
by choosing GC := G we could consider the whole network as one conflict to be resolved.

However, there is a trade-off between computation time for solving individual conflicts: the
smaller the conflict, the shorter the time to solve it, and the more constraints contained in each
conflict, the less conflicts we have to solve. In particular, in realistic instances as the ones we
consider in our experiments in Section 4, G is too big to be resolved at once, which is why we
follow the proposed iterative approach of detecting and resolving conflicts one by one. The trade-
off between time needed to resolve one conflict and total number of conflicts to be resolved is
further discussed in Section 3.2.3. In Section 3.2.4 we propose several ways of enriching conflicts.
The described trade-off is illustrated in our experiments in Section 4.

3.2.1 Basic models.

A conflict can be represented by a conflict graph GC = (NC , AC) ⊆ G where NC and AC are the
nodes (events) and arcs (constraints) in the conflict. Let ha and ta be the ‘head’ and ‘tail’ of arc

7

a respectively, i.e. for a = (i, j) ∈ A we have ha = j and ta = i. In order to resolve a conflict,
bounds have to be changed. To be able to decrease lower bounds and to increase upper bounds,
we introduce two new sets of (slack) variables: sla ∈ [0, τ la] indicates by how much the lower bound
is decreased for a constraint a, and sua ∈ [0, τua] gives by how much its upper bound is increased.
Then, for a general graph G = (V,A), and thus specifically for the conflict graph GC , we obtain
the model

(PESP-IP-Ext) min
∑
a∈A

wlas
l
a + wuas

u
a (5a)

s.t. la − sla ≤ πha − πta + Tpa ≤ ua + sua , ∀ a ∈ A (5b)

sla ∈ [0, τ la], sua ∈ [0, τua]. ∀ a ∈ A (5c)

π ∈ [0, T)n, p ∈ Zm+ , (5d)

where wla and wua are the weights corresponding to the lower and upper bound of constraint a
respectively. The choice of weights in such a model depends heavily on the specific application
and what kind of solutions are sought [Großmann et al., 2015].

An equivalent formulation based on the cycle periodicity formulation for PESP can be found
in Appendix C, see the model in (18).

3.2.2 Fixed trip times.

We now discuss an extension of the described model which includes adjustments to bounds related
to fixed trip times.

One advantage of assuming fixed trip times is that the problem size is reduced, only half of
the event times need to be determined. Furthermore, in order to model safety constraints on
single tracks, a known and fixed trip time is necessary. For more details on how railway-specific
requirements can be modeled as PESP constraints, see Appendix A.

Having fixed trip times implies that trip-dwell and trip time constraints are stated between
two departure events and incorporates both a trip period and a dwelling period at a station. This
dwell time interval is denoted by [d, d]. If the trip time for this part of the network equals r, the
trip-dwell constraint is of the form

r + d ≤ πha − πta + Tpa ≤ r + d. (6)

In the case that dwell time is fixed (i.e. d = d), or that a train does not stop at a station, we have
that la = ua = r + d for this constraint.

When adjusting constraints involving fixed trip times, we do not relax constraint bounds as in
Section 3.2.1, but allow the trip time r itself to change. That means that, when the trip time is
changed by ε, constraint (6) is rewritten to

r + ε+ d ≤ πha − πta + Tpa ≤ r + ε+ d, (7)

rather than widening the span of the constraint.
Trip time changes can imply changes to bounds of safety constraints depending on this trip

time, as is illustrated in the following example, and detailed in Appendix A.

Example 3.2. Consider the headway time between trains 1 and 2 entering a station, i.e., the
time difference required between the arrival times of the trains in order to safely enter the station.
For a headway time of h, the constraint of type (5b) modelling this requirement reads

h ≤ πa2 − πa1 + Tp ≤ T − h, (8)

where ai denotes the arrival event of train i. However, since we state constraints in departure
events when assuming fixed trip times we use the fact that we have πai = πdi + ri (arrival time is
departure time plus trip time for train i) to reformulate (8) as

h ≤ πd2 + r2 − πd1 − r1 + Tp ≤ T − h,

or
h+ r1 − r2 ≤ πd2 − πd1 + Tp ≤ T − h+ r1 − r2.

Note that we used this reformulation already in (3h). When the trip times r1 or r2 change, this
safety constraint should change accordingly.

8

In order to model these dependencies among constraints, we introduce variables cla and cua to
denote the total change made to a constraint a ∈ A. Changes can be made to a constraint because
either the constraint itself is relaxed, for example by relaxing market requirements, or because of
trip time changes in related constraints. So the introduced change-variables consist of two parts:
a slack component sa ∈ [0, τa], as was introduced in the previous model, accounting for changes in
its own constraint bound, and an implied change component cimpa , accounting for changes to this
constraint based on changes in other constraints. This leads to the definition:

cla = sla + cl,impa

cua = sua + cu,impa

∀ a ∈ A.

Here, the implied changes can be defined as cl,impa =
(
λla
)′
s

cu,impa = (λua)′ s

with λla, λ
u
a ∈ {0,±1}2m ∀ a ∈ A,

where s ∈ R2m is the vector of all slack variables for each constraint and each bound. Here, λ is a
vector and the accent denotes it is transposed.

For a detailed explanation of how we model the dependencies of constraints in railway timetabling,
see Appendix A.

Summarizing the constraints stated above leads to the mixed integer programming model:

(PESP-IP-Dep) min
∑
a∈A

wlas
l
a + wuas

u
a (9a)

s.t. la − cla ≤ πha − πta + Tpa ≤ ua + cua , ∀ a ∈ A (9b)

cla = sla + cl,impa , cua = sua + cu,impa ∀ a ∈ A, (9c)

cl,impa =
(
λla

)′
s, cu,impa = (λua)′ s ∀ a ∈ A, λla, λua ∈ {0,±1}2m

(9d)

sla ∈ [0, τ la], sua ∈ [0, τua] ∀ a ∈ A, (9e)

π ∈ [0, T)n, p ∈ Zm+ , c ∈ R2m. (9f)

The model presented above is an extension of the model in Section 3.2.1 in the sense that it can
deal with changes in (fixed) trip times in the way that is shown in Equation (7) in addition to
relaxations. If we take λla = λua = 0 for each a ∈ A, we have cl,impa = cu,impa = 0, and we arrive at
the (PESP-IP-Ext) model again.

An equivalent formulation based on the cycle periodicity formulation for PESP can be found
in Appendix C, specifically in (19).

Redistribute time supplements. As described in the previous sections, the choice of the
weights in the objective is very important to find good solutions to PESP instances arising in
timetabling problems. Another method that can help to guide the solution towards a specific
direction is to redistribute time supplements that are added when designing a timetable. The
constraints for this are presented in Appendix B, since it is very railway specific.

3.2.3 Resolving only minimal conflicts.

In this section, we give an example to illustrate why identifying and resolving minimal conflicts
within our iterative approach can lead to bad performance. Subsequently, in Section 3.2.4 we
describe how to enrich conflicts to overcome this issue.

A minimal conflict in the sense of Definition 3.2 does not necessarily grasp the real-life conflict
in full detail. There might be more constraints that are relevant to this conflict, but do not appear
in the minimal conflict. In Example 1.2, we can observe that constraints that are not included in
the minimal conflict considered, can be relevant for making the PESP instance feasible, which is
detailed further in Example 3.3.

9

Example 3.3. Suppose that there are requirements that require the departure of train 1 at station
s to be at .20, and the departure of train 2 at the same station to be at .50. That means constraints
(3e) and (3f) change to

πs1 − πABS ∈ [20, 20]60 (10a)

πs2 − πABS ∈ [50, 50]60. (10b)

The model in (3) contains a conflict, which is formed by constraints (3a) - (3d). These constraints
form a cycle in the constraint graph as well, as can be seen in Figure 1. Considering this cycle C,
the bounds on the multiples of T that have to be in this cycle (qC) can be calculated as in (17),
leading to

aC =

⌈
7 + 30− 8− 30

60

⌉
= 0,

bC =

⌊
7 + 30− 8− 30

60

⌋
= −1.

Note that aC > bC , which shows that this cycle forms a conflict.
The following changes to the constraint bounds would resolve the conflict formed by (3a) -

(3d):

1. Change (3a) from [7, 7]60 to [8, 8]60.

2. Or change (3b) from [8, 8]60 to [7, 7]60.

3. Or change (3c) from [30, 30]60 to [29, 31]60.

4. Or change (3d) from [30, 30]60 to [29, 31]60.

However, option 3 does not lead to a feasible model when constraints (10a) and (10b) are taken
into account as well, since there is still no solution satisfying all the constraints. This clearly shows
that resolving a minimal conflict might not lead to a feasible solution and more constraint must
be taken into account.

As is shown by the previous examples, considering only a minimal conflict might not lead to
a feasible solution, which is why we add constraints to minimal conflicts in order to capture the
real-life conflict better.

Enriching conflicts increases the probability of finding good solutions, since we might have
captured the actual conflict better. There are several ways to add more arcs to the conflicts,
which is explained in the next subsection.

3.2.4 Methods to enrich a conflict.

In the remainder of the section we call a subgraph of the total timetabling graph containing some
conflict a conflict graph. If the problem represented by this graph is a minimal conflict, we call it
a minimal conflict graph. When enriching a conflict, we always start with a minimal conflict.

The models described in the previous section aim at resolving a part of the full PESP network,
representing the railway timetabling problem.

In this session we describe various methods to enrich minimal conflicts. First of all, for all trip
time and trip-dwell time constraints that are involved in the conflict, we add all constraints that
depend on these trip times. For details, see Appendix A.

In the following, we describe how a conflict can be enriched further.
An event in a PESP instance specifies a departure or arrival at some location in the railway

network. A conflict, or more generally, a set of events, corresponds to some physical location. This
property is used in defining several of the methods listed below.

1. Use n1 previous conflicts
If hardly any constraints are added to a conflict, it might imply that there still is a conflict
around the same location in the PESP network, but now represented by a different set of
constraints. Hence, it may happen that in the next step of our iterative approach we find
a conflict that is related to the previously found conflict. Therefore, it might be beneficial
to resolve these conflicts simultaneously. Also previous conflicts can be taken into account,
possibly up to a maximum of n1 iterations back, where n1 is a parameter to be chosen.

In order to define this method, let Vi and Vi−j be the set of nodes in the current conflict
and the conflict j iterations ago respectively. This method can be executed as follows. Start

10

with j = 1 and as long as j ≤ n1, check if Vi ∩ Vi−j 6= ∅. If this is true, set Vi = Vi ∪ Vi−j ,
else we stop.

2. Add neighbouring constraints (depth n2)
As seen in Example 3.3, it can be useful to add more events to a conflict. Therefore, in this
method we take all events in the conflict graph and add all incoming and outgoing arcs of
the corresponding nodes to the conflict graph, including the corresponding events.

After having done this addition, it can be repeated several times. The number of times we
perform this operation is called the depth and is denoted by n2.

A practical interpretation of adding neighbouring constraints is that in this way more events
of the same train or more events of trains using the same tracks are added.

3. Add all interrelated constraints:
One way to add more useful constraints to a conflict, without including new events, is to add
all constraints for which both corresponding events are already involved in the conflict. This
rule for enriching a conflict is called add all interrelated constraints. This does not enlarge
the conflict in the number of events, or in its geographical interpretation, it only adds more
constraints.

If the conflict shown in Example 1.2 were to be enriched by only adding interrelated con-
straints, no new useful relations would be added. If the incoming and outgoing constraints
were added (already for n2 = 1), the conflict would be fully captured and a good solution
would be proposed.

4. Add single track
Many conflicts in the rail network arise when single track legs are involved. The best way to
resolve conflicts here is to consider all trains sharing this part of infrastructure. Otherwise,
there is a high risk of not resolving the conflict in the right way, thus postponing the problem.
If we add single track, we add all constraints and events that involve trains on this single
track leg of the infrastructure.

5. Add n3 trips
In some cases, it is useful to look at the trains involved in the conflict, and where they travel
on the physical rail network. Then the conflict can be enriched by adding n3 more trips of
the trains involved in the conflict (corresponding to n3 trip(-dwell) constraints). This means
the conflict is extended geographically for all involved trains.

For each train, we add, if possible, n3 trips before and n3 trips after the part that is involved
in the conflict, if this is possible. This method of adding additional trips is called add n3

trips.

All of these methods can be used on their own to enrich minimal conflicts, or be combined.
They are evaluated experimentally in Section 4.

We now describe how we encode the methods we use for enriching conflicts. Note that also the
order in which the methods are executed influences the final conflict graph. For ease of notation,
we encode a combination of the methods as follows. Each encoding is made in the following way:
n1n2b1b2n3b3, where ni corresponds to an integer number and bi to a boolean value (i ∈ {1, 2, 3}).
All these correspond to the rules described before and are defined as follows:

n1 This refers to the method add previous conflicts, with parameter n1 (option 1).

n2 This value denotes the neighbourhood depth for adding neighbouring constraints (option 2).

b1 If this is true, we add all interrelated constraints (option 3).

b2 If this is true, we add single track (option 4).

n3 We apply the rule ‘add n3-trips’, i.e., for each train in the conflict, we add n3 trips before and
after the trips involved in the conflict (option 5).

When enriching a conflict, all these methods are executed in the order they appear in the
encoding. As an example of an encoding, the code 00ff0f refers to the method that always resolves
a minimal conflict without adding further constraints.

3.3 An iterative algorithm to resolve feasible PESP instances

We now combine what is described in the previous subsections. In Section 3.3.1, we describe the
individual iterations of the algorithm. In Section 3.3.2, we use this as a subroutine to describe the
final algorithm to resolve all conflicts in a PESP instance.

11

3.3.1 Resolve a single conflict.

In this section we state Algorithm 3.3 to enrich, and resolve conflicts. A key observation for
understanding the design of Algorithm 3.3 is the observation that the computation time for a
model like (PESP-IP-Dep) in (9) can increase rapidly as the model size increases, since PESP is
NP-complete [Serafini and Ukovich, 1989]. So we have to be careful not to increase computation
time too much when adding additional constraints, while still taking care of the solution quality.
Adding neighbouring constraints and events is a possibility that can provide useful constraints.
However, in dense constraint graphs, this might lead to a large model.

Now suppose a minimal conflict graph is given. Adding more constraints to this graph might
make it very large such that it is hard to solve to optimality in reasonable time. Consequently,
in Algorithm 3.3, if we cannot resolve the enriched conflict in a certain time limit, we resolve
the minimal conflict graph instead, and then successively add constraints. In doing so, we can
use the objective value found in the previous step as a lower bound, supported by the following
proposition:

Proposition 3.1. Suppose two graphs G1 ⊆ G2 are given, and the optimal objective values
according to the corresponding MIP model (9) are z∗1 and z∗2 . Then z∗1 ≤ z∗2 .

Proof. Since G2 contains at least all constraints of G1, the corresponding model corresponding to
G1 is a relaxation of the model of G2 and hence z∗1 ≤ z∗2 .

Algorithm 3.3 is parametrized by the encoding as described in Section 3.2.4 which defines the
maximum level of additional constraints. We solve conflicts by solving the corresponding MIP
model based on the cycles (19). The subgraph corresponding to the ‘maximum level of additional
constraints’ is denoted by C+, and its corresponding encoding is denoted by enc∗. Let S be a
list, containing the subgraphs for C+ that are generated by the encodings from Section 3.2.4 in
the following order (where the variable with the asterisk denote the value they have in encoding
enc∗):
For n2 ∈ {0, . . . , n∗2}: for b2 ∈ {false, b∗2}: for n3 ∈ {0, . . . , n∗3}: for b1 ∈ {false, b∗1}: generate
the subgraph corresponding to the encoding n∗1n2b1b2n3b

∗
3 and name them S1, . . . , Sκ in the order

they are generated. So Si ∈ S (i = 1, . . . , κ) and κ = |S|. Furthermore, S1 is the minimal
conflict, and Sκ = C+. The MIP models, (19) or (9), corresponding to these subproblems can be
solved consecutively. Each MIP model corresponding to Si provides a lower bound for the model
corresponding to Si+1, if it is a subgraph, according to Proposition 3.1.

Algorithm 3.3.

12

Data: Conflict C, time limits t1, t2, t3, weight vector w ∈ R2m, bound vector τ ∈ R2m.
Result: One of the following: 1. Values for cla and cua (for each a ∈ AC) such that changing the

constraint bounds by these values leads to a feasible resolution of conflict C; 2. Proof that no
resolution exists; 3. Time-limit exceeded;

1 Enrich conflict C, giving enriched conflict C+;
2 Build conflict graph for C+;
3 Solve (CPF-Dep) model for C+ in t1 minutes (dynamic time limit);
4 if optimal solution found to (CPF-Dep) then
5 Process solution found to C+ by changing constraints;
6 else
7 Find sub-problems S1, . . . , Sκ;
8 Set S ← S1;
9 Solve (CPF-Dep) model for S in at most t2 minutes (dynamic time limit);

10 for i = 2, . . . , κ do
11 Solve Si in t3 minutes (dynamic time limit). If b3 is set to true, use solution to Si−j as a

warm start and lower bound, with j ∈ N>0 as small as possible such that Si−j ⊆ Si;
12 if optimal solution found for Si then
13 Set S ← Si;
14 else
15 Go to line 17;
16 end

17 end
18 Process the solution found to S by changing constraints, by setting:

19 la ← la − cla
20 ua ← ua + cua ;

21 end

In this algorithm, we take as input a conflict C. Next, we enrich this conflict (line 1). We
then try to resolve the conflict in the resulting constraint graph by the (CPF-Dep) model (line
3). We allow t1 minutes for this. The time limits in the algorithm are dynamic. That means
the following: If the time limit is ρ minutes, we allow at least ρ minutes to solve the model. If
in the last ρ/4 minutes of this allowed time improvements are found, either in the lower bound
or the upper bound of the model, we continue optimization for another ρ/4 minutes, until no
improvements are found any more.

If in these t1 minutes the model is solved to optimality, we use the found solution as a solution
to the conflict (line 5). If not, we start by the smallest subproblem, and solve it (line 9). The time
limit t2 is usually set high in order to ensure that an optimal solution to the minimal conflict is
found. This solution is then used as a lower bound for resolving the next conflict graph for which
we impose a time limit of t3 minutes (line 11). If a time limit is exceeded or all subproblems are
solved, the last best found solution is used to resolve the conflict (line 17).

If we cannot solve C+ directly and start solving subgraphs iteratively, these subgraphs are
subproblems of each other. Therefore, the objective value of the smaller problem provides a lower
bound to the larger subproblem. As soon as we solve such a larger subproblem to resolve a conflict
and we know such a lower bound, we provide a constraint to the model stating that the objective
should be larger or equal to this lower bound, to help the optimization process. Furthermore, the
solution found to a smaller problem can be feasible to the larger problem, thus providing a ‘warm
start’ in the optimization. Whether we supply this solution as a warm start or not is encoded in
a Boolean parameter b3.

3.3.2 Resolve a full PESP instance.

Until now, we have seen how one could resolve a single conflict. Now we describe the final algorithm
that, given a PESP instance, iteratively searches for conflicts, resolves them by Algorithm 3.3 (or
notifies us that no feasible solution exists) and, if it terminates, provides a conflict-free PESP-
instance and a schedule.

Algorithm 3.4.

13

Data: PESP instance I, time limits t1, t2, t3, TL, iteration limit IL, weight vector w ∈ R2m, bound
vector τ ∈ R2m.

Result: One of the following: 1. List of adapted PESP constraints such that conflict is resolved
together with a schedule; 2. Proof that no resolution exists; 3. Time-limit or iteration-limit
exceeded;

1 Set it count = 0;
2 Search for a conflict C.;
3 while A conflict C is found and it count < IL and elapsed time < TL do
4 Run Algorithm 3.3 on conflict C;
5 if C cannot be resolved then
6 Stop algorithm: it is not possible to modify PESP parameters within the prespecified bounds to

obtain a feasible solution to PESP;

7 else
8 Search for a new conflict C in I.;
9 end

10 end

This algorithm finds a conflict in the PESP instance or certifies that no such conflict exists.
Next, it resolves the conflict. Afterwards, the search for more conflicts is continued until no

conflict exist any more. If there are no more conflicts, we find a schedule and post-optimize it see
Section 3.3.4.

Note that if Algorithm 3.3 determines that a certain conflict cannot be resolved, this means
that there is no feasible solution to PESP, even with the allowed modifications of the constraint
bounds.

Due to the time limits set in line 3, Algorithm 3.4 will terminate after a pre-specified time,
even if the conflicts in the network are not resolved up to that point in time and no unresolved
conflict is found.

Note that for fixed values of the modulo parameters p, (PESP-IP-Ext) is totally unimodular.
Hence when all constraint bounds la and ua and all entries of τ are integer, every time we run
Algorithm 3.3 we widen at least one constraint interval by at least one unit. Since we do not allow
to undo the changes in step 9, the algorithm terminates at the latest when all PESP constraint
bounds are maximally relaxed, that is after

∑
a∈A(τ la + τua) iterations.

That implies that if we ran the algorithm without time limits on an an instance of type (PESP-
IP-Ext), it would terminate in finite time (under the assumption that RAM and memory of our
computer are enough to resolve the occurring conflicts as specified in Algorithm3.3).

For instances of type (PESP-IP-Dep), that is, in particular, when we model changes in the trip
times as adjustments of trip times instead of a relaxation of the constraint interval, we can give
no such guarantee since a trip time that is changed once from value r to r′ may be changed back
in a later iteration, if the corresponding constraint occurs in a second conflict. So-induced cycles
can be prevented to a certain extent by enlarging conflict graphs as described in Section 3.2.4. A
second approach to avoid the repeated changing of trip times is described in the following section.

3.3.3 Tabu search.

In Algorithm 3.4, conflicts are resolved iteratively. If one conflict is resolved, we search for the
next one and resolve it. One thing that might happen is that the resolution of one conflict in some
iteration, creates a new conflict. If we undo the first change, it might resolve the second conflict
but again generate the first one.

There are several possibilities to avoid this going back-and-forth. Note that this situation
would have been avoided if more constraints would have been taken into account in resolving the
first conflict. However, as this increases the size of the problems to be solved, we use a different
approach in addition. For each a ∈ A, we define κa as the number of times the slack variables
for this constraint have been changed. Then the objective coefficient, penalizing changes to this
constraint, is multiplied by gκa (g > 1) to make changes to this constraint more expensive and
at the same time avoiding models to become infeasible if this constraint has to be changed back
again. Throughout the experiments, we use g = 2.

14

3.3.4 Finding a schedule & post-optimisation.

If the iteration limit or time limit in Algorithm 3.4 is not exceeded, the algorithm terminates with
a conflict-free PESP instance. A dedicated PESP-solver can be used to solve such an instance (cf.
Schrijver and Steenbeek [1993], Kümmling et al. [2015a]). Once we have this schedule, together
with the original PESP instance, we can build the (PESP-IP-Dep) model (9) and restrict the event
times to be in an interval, given by the event time from the schedule plus or minus a deviation
η ∈ [0, T/2], where η = 0 corresponds to no freedom and η = T/2 to full freedom. So suppose
event π is scheduled to be at .27, we then add the restriction that π ∈ [27 − η, 27 + η]. We call
this model PESP-IP-Dep(η). The reason to use a model based on PESP-IP rather than CPF, is
that the event times are explicitly included in this model.

If we first solve the model with η = 0, we find the changes to the constraints that are needed to
make the found schedule feasible and we can determine the objective value that is achieved when
making this PESP instance feasible. In a next step, we increase η to a positive value and resolve
the model. Since the schedule was feasible for PESP-IP-Dep(0), it surely is for PESP-IP-Dep(η)
where η > 0. Hence, better solutions might be found since the feasible space of this model increases
in η. So reoptimizing leads to a new change in the constraint bounds and a new objective value
that is not higher than the objective value obtained with η = 0.

4 Experiments

In order to test our methodology described in Algorithm 3.4 in practice, and to analyze the impact
of different methods to enrich conflicts, we have tested it on several instances that are provided
by Netherlands Railways and are based on the Dutch railway network. They vary between a tiny
instance (Section 4.1) and the complete Dutch network (Section 4.3). We present a description of
the instances, together with the computational results in this section. Computations are performed
on a 64-bit PC with an Intel(R) Core(TM) i7-4700MQ processor with 3.40 GHz and 16.00 GB
of RAM installed, operating under Windows 7 Professional. The implementation is done using
JAVA 1.8, and IBM ILOG CPLEX 12.6.2 is used to solve the MIP models, allowing for 4 parallel
threads.

In Section 3.2.4, several methods are shown to enrich conflicts. Different ways of enriching
conflicts can result in different solutions to the model on how to change some of the PESP-
constraints. This in turn can influence the number of conflicts found in total. If a solution to
some conflict is found that is not only feasible with respect to this specific conflict, but also in
the larger context of the total PESP instance, the number of conflicts that have to be resolved is
likely to be small, but the computation time might be large. On the other hand, resolving many
small conflicts might lead to a lot of iterations of the algorithm, but probably to a relatively short
computation time. Therefore, in the experiments we tested many different methods of enriching
conflicts, to determine a pattern in which methods work well and which do not.

For finding a conflict or a schedule, the CADANS solver [Schrijver and Steenbeek, 1993, Odijk
et al., 2002] is used. This solver finds a minimal conflict or a schedule based on Constraint Pro-
gramming. For an instance of the size of the Dutch railway network, most of the times computation
time is only a few minutes (cf. Caimi et al. [2017, sec. 6.1]) However, our methodology does not
depend on the algorithm used for conflict detection and any other algorithm for conflict detection
could be used instead.

To solve the conflicts, we used the approach described in Section 3.2.2 since the considered
instances contain fixed trip time constraints. Instead of solving (9) however, we used an equivalent
formulation based on the cycle periodicity formulation, stated as (19) in Appendix C, which has
been proven to be faster in practice. Details on how this formulation is derived can be found in
the appendix. To solve (19), a minimum weight spanning tree is found where the weights of the
arcs are the number of possibilities for the corresponding process time, i.e., wa = ua − la + 1 for
constraint a ∈ A. Based on this tree, an integral cycle basis is generated.

Throughout the post-optimization, we first solve the PESP-IP-Dep(η) model with η = 0, to
determine the initial objective value. Next, we relax the model to η = 5 and reoptimize, to find
the objective value for this model with more freedom.

15

4.1 Den Helder - Schagen (Hdr-Sgn)

The first instance we consider is a small single-track network between the Dutch cities Den Helder
and Schagen.

4.1.1 Instance description.

Physical network. The network consists of four stations as is shown in Figure 3, where the
layout of this instance is displayed. Between Anna Paulowna and Den Helder Zuid is a bridge that
can be opened during some time of the day and hence no trains can pass during that time. This
means that the passing times of trains at this bridge have to be known in order to know when
the bridge can be opened. Note that trains can pass each other only at the stations, since the
intermediate tracks are all single track.

Figure 3: Den Helder - Schagen network. Green parts denote platforms.
Source: www.sporenplan.nl (May 1, 2017).

Train services. On this network, two train lines are operated. Line 1 is an intercity line,
stopping only at Den Helder and Schagen and running in both directions, twice per hour. Line 2
is the so-called sprinter line, that runs once per hour and stops at all stations.

Constraints. For service reasons, line 1 is required to drive in a 30-minute pattern, i.e. the
trains leave the first station of their journey 30 minutes apart from each other. Furthermore, they
should leave Den Helder at .29 or .59, because of connection times to other modes of transport.

In Table 1, an overview is given of the different PESP-constraints that are present in this
instance. A trip time constraint refers to a situation where a train does not stop at some station,
a trip-dwell constraint refers to the situation where a train drives to a station and dwells there for
some time. A synchronisation constraint requires trains to drive in a given pattern (for example,
30 minutes apart). A fixation constraint specifies a specific departure time. Safety constraints all
deal with headways.

Objective coefficients and algorithmic limits. A trip(-dwell) constraint involves a given
planned trip time r, including a dwell time in case of trip-dwell constraints. This trip time is used
to define the maximum allowed changes to the constraint bounds as shown in column 3 and 4.
The objective coefficients for the changes are shown in the last two columns. A linear objective is
used in this model.

In this instance, we do not allow to change safety constraints, all other constraints can be
adjusted. The parameters set were chosen together with NS planners and can be found in Table
1.

As time limits, we used one hour, and the iteration limit was set to 500. Because this instance
is small, these limits are actually never met.

4.1.2 Results of the methodology.

When running the algorithm, a minimal conflict was found involving the intercity lines in both
directions and the sprinter line in one direction. In total 25 nodes and 38 constraints were involved.

16

http://www.sporenplan.nl

Constraint type # constraints
Maximum allowed slack Objective coefficient

Lower bound Upper bound Lower bound Upper bound
Trip time 20 min{1, r} 2 max{20− 2r, 10} max{7− r, 2}
Trip-dwell 4 min{1, r} 2 max{18− 2r, 8} max{6− r, 2}

Synchronisation 2 10 10 5 5
Fixation 2 5 5 5 5
Safety 156 0 0 0 0

Table 1: Bounds and coefficients for changes

Using 00ff0f as the maximum level of additional constraints, a feasible schedule is found in two
iterations.

The proposed solution is to decrease the trip time on one of the trips, i.e., to accelerate the
train, and to change the frequency of the intercity line to 29/31 instead of 30/30. The fixations
are relaxed by one minute. The total computation time is 0.9 seconds, while finding a solution for
the models to resolve a conflict took 0.2 seconds.

The most prominent reason why the resolution of the first conflict caused another conflict,
is that the sprinter train was involved in one direction only. If both directions were taken into
account, which can be achieved by enriching a conflict by the method 00ft0f for example, the
solution was found in one iteration. On single track networks, every train that uses this track
provides a large limitation on the changes that are feasible. The solution in this case is identical to
the solution that was found in the case with the two iterations. Computation times are comparable
as the total computation time now is 0.7 seconds and 0.2 seconds are used to resolve the conflict.

4.2 Rotterdam - Utrecht (Rtd-Ut)

4.2.1 Instance description.

Physical network. The underlying network for this instance are the tracks between Gouda
and Zwolle. From Gouda, there are also tracks both to Rotterdam and The Hague, and from Zwolle
there are tracks both to Groningen and Leeuwarden. The majority of this network is double track,
except for the part between Gouda and Utrecht, which has four tracks. The interested reader is
referred to www.sporenplan.nl for more details about this network.

Train services. The basis for the instance are the intercity trains that share tracks between
Rotterdam and Utrecht. Next to this, we added some additional trains. In total, the instance
consists of the following trains (the numbers are added for references later on):

500 Intercity between Rotterdam and Groningen (1 time per hour).

12500 Intercity between Rotterdam and Leeuwarden (1 time per hour).

2000 Intercity between Rotterdam and Utrecht (2 times per hour).

2800 Intercity between The Hague and Utrecht (2 times per hour).

4000 Sprinter train between Rotterdam and Uitgeest (2 times per hour). This train shares in-
frastructure with the intercity trains between Rotterdam and Gouda. Next, it has to cross
the intercity paths halfway between Gouda and Utrecht.

5600 Sprinter train between Utrecht and Zwolle.

Constraints. Lines 2000 and 2800 are synchronized to drive exactly 30 minutes apart from
each other. Furthermore, lines 500, 12500 and 2800 are synchronised at Utrecht and Rotterdam
to drive 15 minutes apart from each other.

Objective coefficients and algorithmic limits. In Table 2 the maximum allowed changes
and the objective coefficients are shown, which were chosen based on expertise from NS planners.
Furthermore, the number of constraints of each type is shown.

The PESP instance contains 699 events and 3061 constraints. This instance contains a lot of
intercity trains, sharing the same infrastructure. However, all these trains might have different
driving characteristics as they use different train types. Therefore, the corresponding trip times

17

http://www.sporenplan.nl

Constraint type # constraints
Maximum allowed slack Objective coefficient

Lower bound Upper bound Lower bound Upper bound
Trip time 512 min{1, t} 2 max{20− 2t, 10} max{7− t, 2}
Trip-dwell 167 min{1, t} 2 max{18− 2t, 8} max{6− t, 2}
Frequency 93 10 10 30 30
Fixation 18 5 5 20 20

Connection 14 1 5 30 25
Safety 2257 0 0 0 0

Table 2: Bounds and coefficients for changes in Rtd-Ut

can be different, which is undesirable because it consumes more capacity on these tracks and it
easily gives rise to conflicts. Hence, solutions that redistribute buffer times (see Appendix B) are
desired. In order to find these, the corresponding constraints are added and the corresponding
objective term gets a coefficient of value 10 (the γ in (16)).

For the algorithm, we set an iteration limit of 500 iterations and a time limit of 2 hours.

4.2.2 Results of the methodology.

Using the encoding stated in Section 3.2.4, we tested all possible combinations of the following
ways to enrichting a conflict:

• n1 ∈ {0, 1, 2}, the number of previously found conflict that are added.

• n2 ∈ {0, 1, 2}, the neighbourhood depth.

• n3 ∈ {0, 2, 4, 6, 8, 10}, the number of additional trips of the train lines that are involved.

Furthermore, the true/false parameters could take both values, which correspond to adding the
interrelated constraints or not, adding all trains in single track parts or not and fixing the process
times of constraints when generating lower bounds.

This led to 432 possible methods of adding additional constraints. Out of these 432 methods, 48
have led to the algorithm exceeding the iteration limit. All of these 48 methods had neighbourhood
depth equal to zero and no interrelated arcs were added.

For the remaining methods, results are shown in Figures 4 and 5. The legend shows which
method is used to enrich conflicts. For example, .1t... shows that first all constraints are added
that have a relation with the conflict, and next all interrelated constraints are added. The dots
indicate that the parameter for this method is left open, so in the figure, there are several dots
corresponding to .1t..., all indicating a different setting where the parameter on the dots is varied.

100 101 102
101

102

103

104

Number of iterations

O
b

je
ct

iv
e

va
lu

e

.0f... .0t... .1f... .1t... .2f... .2t...

(a) Initial objective

100 101 102
101

102

103

104

Number of iterations

O
b

je
ct

iv
e

va
lu

e

.0f... .0t... .1f... .1t... .2f... .2t...

(b) Improved objective

Figure 4: Number of iterations versus objective

18

In Figure 4, a plot is shown of the number of iterations that are performed versus the total
objective value (Figure 4(a)) and the objective value obtained after post-optimization (Figure
4(b)) as is introduced in Section 3.3.4.

By using the three different colors, we distinguish between the results for adding neighbouring
constraints or not. Also, we distinguished between adding interrelated constraints or not (option 3
in Section 3.2.4) by using different symbols. As is clear from these figures, adding more constraints
leads to a smaller number of iterations and a better initial objective. Also, for the objective
obtained after post-optimization, the same observation can be made. For neighbourhood depth 1
and 2, a solution with objective value 97 was obtained in nearly all methods. Also, a difference
can be seen between the methods that add interrelated constraints or not. In general, doing so
leads to fewer iterations to find a feasible schedule.

0 20 40 60 80 100 120 140
101

102

103

104

Total time (sec)

O
b

je
ct

iv
e

va
lu

e

.0f... .0t... .1f... .1t... .2f... .2t...

(a) Initial objective

0 20 40 60 80 100 120 140
101

102

103

104

Total time (sec)

O
b

je
ct

iv
e

va
lu

e

.0f... .0t... .1f... .1t... .2f... .2t...

(b) Improved objective

Figure 5: Total time versus objective

In Figure 5, plots are shown for the total time in seconds versus the objective. The same color
schemes are used here as in the previous figure. As is clear, in general the red dots (neighbour-
hood depth 0) correspond to methods that lead to solutions being found rapidly, however, with
a high objective value in general. Also, if these solutions are improved, they are still worse than
the solutions corresponding to methods with a different neighbourhood depth. There are a few
exceptions, having a really long computation time and a high objective value.

In general we can observe that resolving only the minimal conflicts does not work well. All
the methods that have led to exceeding the iteration limit, hardly added any constraints to the
minimal conflict. Furthermore, we saw a tendency that increasing the neighbourhood depth leads
to better solutions. However, this may come at the cost of an increase in computation time. A
trade-off has to be made, where to stop adding additional constraints. Adding too many leads to
an increased problem size, without providing additional relevant information.

4.3 Dutch network 2013 (NL2013)

4.3.1 Instance description.

This instance was used as a basis to generate the full Dutch schedule of 2013, including transfer
and synchronisation requirements. The timetabling instance is initially infeasible. In order to
obtain the actual schedule in 2013 in the Netherlands, trip time and synchronisation requirements
were changed manually.

The Dutch railway network is one of the most heavily used railway networks in Europe [Boston
Consulting Group, 2015]. There are many trains operated on this network, many of them sharing
a piece of infrastructure in the network, thus generating many interdependencies in the network.
Therefore, finding a feasible schedule for this instance is a challenging task. This is why we ran
experiments on this network, to test the performance of our algorithmic framework.

The only expected changes are on trip times and synchronisation requirements.

19

Objective coefficients and algorithmic limits. The allowed changes, the corresponding
coefficients and the number of PESP-constraints for each type are shown in Table 3. They are
similar to the previous case. Here, the constraints to redistribute buffer times between stations
are not added to the IP. We have set a maximum of 500 iterations and 3 hours of computation
time. The network consists of 9085 nodes and 75309 constraints with 448 trains in total.

Constraint type # constraints
Maximum allowed slack Objective coefficient

Lower bound Upper bound Lower bound Upper bound
Trip time 5670 min{1, t} 2 max{20− 2t, 10} max{7− t, 2}
Trip-dwell 2966 min{1, t} 2 max{18− 2t, 8} max{6− t, 2}
Frequency 291 10 10 30 30
Fixation 18 5 5 20 20

Connection 0 1 5 30 25
Other 66212 0 0 0 0

Table 3: Bounds and coefficients for changes in NL2013

4.3.2 Results of the methodology.

For this instance again several methods are tested to enrich a conflict. We varied the parameters
of the methods as follows:

• n1 ∈ {0, 1, 2}, the number of previously found conflict that are added.

• n2 ∈ {0, 1, 2}, the neighbourhood depth.

• n3 ∈ {0, 2, 4}, the number of additional trips of the train lines that are involved.

Furthermore, the true/false parameters could take both values, which correspond to adding the
interrelated constraints or not, adding all trains in single track parts or not, and fixing the process
times of constraints when generating lower bounds.

This led to 216 possible methods of adding additional constraints. Out of these 216 methods,
1.8% exceeded the iteration limit, which are methods that had neighbourhood depth 0 and no
interrelated constraints added. 49.5% exceeded the overall time limit and 20.37% exceeded the
time limit allowed for finding conflicts or a schedule in one of the iterations. We do not recognize a
clear pattern in which combination of parameteres causes violation of the time limit. The results
for the remaining methods are shown in Figures 6 and 7.

101 101.1 101.2 101.3 101.4 101.5 101.6 101.7
102.3

102.35

102.4

102.45

102.5

102.55

102.6

102.65

Number of iterations

O
b

je
ct

iv
e

va
lu

e

.0f... .0t... .1f... .1t... .2f... .2t...

(a) Initial objective

101 101.1 101.2 101.3 101.4 101.5 101.6 101.7

102.35

102.4

102.45

102.5

102.55

Number of iterations

O
b

je
ct

iv
e

va
lu

e

.0f... .0t... .1f... .1t... .2f... .2t...

(b) Improved objective

Figure 6: Number of iterations versus objective

Although the results are less clear than in the previous case, again we see that the methods
that have neighbourhood depth 0 tend to lead to a higher number of iterations. Although the

20

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

102.3

102.35

102.4

102.45

102.5

102.55

102.6

102.65

Total time (sec)

O
b

je
ct

iv
e

va
lu

e

.0f... .0t... .1f... .1t... .2f... .2t...

(a) Initial objective

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

102.3

102.35

102.4

102.45

102.5

102.55

Total time (sec)

O
b

je
ct

iv
e

va
lu

e

.0f... .0t... .1f... .1t... .2f... .2t...

(b) Improved objective

Figure 7: Total time versus objective

computation time in general is low, again the objective value is very high. For neighbourhood
depth 1 and 2 the results are identical.

Another observation here is that almost all methods that have neighbourhood depth 0 and no
addition of interrelated arcs, did not lead to a feasible result within the given time and iteration
limits.

5 Conclusion and discussion

We developed a methodology to relax PESP constraints to resolve infeasible PESP instances. This
approach supplements current timetabling algorithms, which suffer from the fact that increased
demand for capacity usage as well as quality requirements often lead to (on first sight) infeasible
timetabling instances. We resolve conflicts in a PESP model with as few deviations as possible,
based on predefined constraint weights and bounds. Our approach is iterative in the sense that we
find a conflict in the existing PESP instance, solve this conflict using a MIP model, and then search
for the next conflict. In contrast to existing approaches on resolving infeasible PESP instances,
our approach can deal with fixed trip times, an assumption that is often made in PESP instances
arising from railway timetabling.

We find that in our iterative approach of finding and resolving conflicts it is important not to
resolve only minimal conflicts, but to carefully add more constraints from the timetabling instance
to these minimal conflicts, in order to find good solutions as well as to improve computation times.
We proposed several methods to enrich the minimal conflicts. From our computational results, we
have seen that adding neighbouring constraints in the constraint graph in general leads to better
results.

In our experiments based on parts of or the whole the Dutch railway network, feasible timetables
are found in reasonable time in most cases.

Our approach requires the choice of many parameters, namely the allowed deviations of the
original bounds and the weights in the objective function, which will steer the algorithm towards
a solution. In practice, these parameters would need to be chosen based on the expertise and
preferences of the railway operator - and could be adjusted based on the feedback of the operator
when seeing the generated solution. It would even be possible to incorporate expert feedback (in
the sense of resetting and fine-tuning parameters) after the resolution of each conflict.

Acknowledgements We wish to thank Netherlands Railways for providing the data and access
to software systems to carry out this research.

21

A Several types of PESP constraints

In this appendix, we describe several constraints that arise when modeling railway timetabling
instance with known and fixed trip times as PESP. We show that the bounds of many of the safety
constraints, depend on some trip time of a train on a part of the railway infrastructure. This is
important for the models (19) and (9). More specifically, these dependencies specify the relations
in constraints (9d) and (19f). An overview on how to derive the constraints is shown in Peeters
[2003].

When two trains share the same piece of infrastructure, we introduce constraints to prevent
them from using it simultaneously. Trains can be driving in the same direction or in opposite
directions on that infrastructure. The model that is proposed in this paper is a macroscopic model
and hence does not focus on block section levels. Instead, headway constraints are used to separate
pairs of trains in time.

For notational convenience, let ha and ta be the ‘head’ and ‘tail’ of an arc in the PESP-graph
respectively. Since trip times are assumed to be fixed, one could think of the nodes in a PESP
instance as a combination of a departure event, a trip time and an arrival event, aggregated into
one contracted node. In this context, trip time constraints link consecutive departures of a train
line to each other. The bounds in these constraints consist of the trip time from a departure to
the next arrival, and some possible dwell time at the arrival station. If this dwell time should be
between d and d and the trip time is denoted by r, the trip/dwell time constraints are of the form

r + d ≤ πj − πi + Tpij ≤ r + d.

Other constraints that arise in timetabling are synchronisation constraints ((3c) and (3d) as
shown in Example 1.2), or fixations (see (3e) and (3f) in the same example). The majority of the
constraints however are on safety, as becomes clear from Tables 1, 2 and 3. In the remainder of
this section, the safety constraints are explained, as well as the way they depend on trip times.
Also the relationship of connection constraints and trip times is described.

Since trip times are assumed to be fixed, a node in a PESP constraint graph corresponds to a
departure from some station, inclusing the trip to the next station. For almost every node, unless
it is the last node of a train, there exists an outgoing trip arc. For notational ease, let e : V → A
be the mapping from a node to its outgoing trip arc.

A.1 Trains running in the same direction

When multiple trains use the same infrastructure, safety headways are imposed, that is, to separate
the usage of the infrastructure in time and thus prevent conflicts in infrastructure utilization. In
reality, such headways are imposed at stations as well as in between stations at any point where
a conflict could occur, e.g., at points where train paths cross or merge. For the sake of simplicity,
we only refer to stations in the description here. Suppose two trains share the same track between
stations 1 and 2 in the network. Furthermore, assume the trains have to be separated in time
upon arrival and departure by at least κ minutes. The departure and arrival times of train i at
station s are denoted by πsdi and πsai respectively. The travel time between station s and s′ for
train i is denoted by ri. If one train departs, the other cannot depart in the κ minutes before or
after this departure. This leads to

πsd2 − π
s
d1 /∈ (−κ, κ).

Since the schedule is cyclic, we can use this to model the above as a PESP constraint:

πsd2 − π
s
d1 ∈ [κ, T − κ]T ,

or equivalently by introducing the integer variable p:

κ ≤ πsd2 − π
s
d1 + pT ≤ T − κ.

This constraint is required for each pair of trains departing from a station s.
For safety upon arrival at station s′, a similar constraint holds. If arrival events would be used,

the constraint would look like
κ ≤ πs

′
a2 − π

s′
a1 ≤ T − κ. (11)

22

In order to state this constraint solely in departure events, note that πsdi + ri = πs
′
di

, i.e., arrival
time equals the departure time plus trip time. Substituting this into (11) leads to

κ ≤ πsd2 + r2 − πsd1 − r1 ≤ T − κ.

Rewriting this by moving the trip times to the constraints bounds gives

κ+ r1 − r2 ≤ πsd1 − π
s
d2 ≤ T − κ+ r1 − r2. (12)

Clearly, if the trip time constraints for which the trip times are involved in (12) change, the
bounds of this constraint change. If r1 or r2 is changed, it is because e(ta) or e(ha) has changed
respectively. Note that the increase in r1 is given by sue(ta) − s

l
e(ta)

, and the increase in r2 is given

by sue(ha)
− sle(ha)

. So the increase in the lower bound for a safety constraint like (12) is given by(
sue(ta) − s

l
e(ta)

)
−
(
sue(ha) − s

l
e(ha)

)
,

and for the upper bound it is the same. Since the sign of the change variables cla in (9b) and (19d)
is negative and for cua it is positive, this leads to

cl,impa = −
(
sue(ta) − s

l
e(ta)

)
+
(
sue(ha) − s

l
e(ha)

)
and

cu,impa =
(
sue(ta) − s

l
e(ta)

)
−
(
sue(ha) − s

l
e(ha)

)
.

Note that this defines the λ-vectors in equations (9d) and (19f). Here, the s-variables are the slack
variables of a (trip time) constraint that e(ha) and e(ta) refer to.

A.2 Single track headways

On some part of the rail network, trains use a part of a track in different directions. A train in
some direction can only start once the track is unoccupied and the train in the opposite direction
has left. There are several constraints that guarantee safety here. These are also used if the train
paths of one incoming and one outgoing train cross around a station.

Suppose stations s and s′ are given with a single track in between. Trains can only pass at the
stations. Train 1 drives from s to s′ in r1 minutes, train 2 drives the other way in r2 minutes. In
Figure 8 a sketch is given in a time space diagram, with time on the horizontal axis and space on
the vertical axis. Train 1 is shown twice, the second one means the same train in the next cycle
period. Trains have to be separated in time. How much this headway time κ is, can be different
if it concerns the time between an incoming train and the next outgoing train (an in-out relation,
indicated by ‘io’), or the other way round (an out-in relation, indicated by ‘oi’). They can also be
station-dependent.

s

s′

r1 r1r2

κs
′

io

κsioκsoi

κs
′

oi

πs
d1

πs
d1

+ Tπs
a2

πs′

a1
πs′

d2
πs′

a1
+ T

Figure 8: Single track time-space diagram

The constraint to avoid a collision on such a single track is given by

κs
′
io + r1 ≤ πs

′
d2 − π

s
d1 + Tp ≤ T − κsio − r2. (13)

The lower bound comes from the fact that πs
′
d2
− πs

′
a1 ≥ κ

s′
io, which implies

κs
′
io + r1 ≤ πs

′
d2 − π

s
d1 . (14)

23

The upper bound comes from the fact that πsd1 − π
s
a2 ≥ κ

s
io, which implies

πsd1 − π
s′
d2 ≥ κ

s
io + r2 =⇒ π.s

′
d2 − π

s
d1 ≤ −κ

s
io − r2.

This, by combining with (14) and using cyclicity, leads to (13).
Clearly, trip times are involved in the bounds. Similar to what is shown above, the implied

changes to this constraint can be found, due to changes in the trip times. The lower bound depends
positively on r1, hence we have

cl,impa = −
(
sue(ta) − s

l
e(ta)

)
.

The lower bound depends negatively on r2, which leads to

cu,impa = −
(
sue(ha) − s

l
e(ha)

)
.

A.3 Crossing train paths

In constraint (13) it is assumed that both trains share the whole single track part. It is possible
that trains only use the same infrastructure close to a station and then go different ways. This
basically means that no train can leave around the time an incoming train enters the station.
The constraint does not have to be as strict as the single-track constraint that prevents the trains
meeting on the whole single track part.

A.3.1 In-out relations.

The constraint dealing with the time between an incoming train (train 1) and the next outgoing
train (train 2) at station s′ is (see also Figure 8)

κs
′
io ≤ πs

′
d2 − π

s′
a1 + pT ≤ T − κs

′
oi,

which becomes (using the fixed trip times)

κs
′
io + r1 ≤ πs

′
d2 − π

s
d1 + pT ≤ T − κs

′
oi + r1.

The implied changes for the lower bound are (similar to the cases above) given by

cl,impa = −
(
sue(ta) − s

l
e(ta)

)
, (15)

and for the upper bound given by

cu,impa =
(
sue(ta) − s

l
e(ta)

)
.

A.3.2 Out-in relations.

The previous constraint considers an in-out relation. The out-in relation leads to the constraint

κs
′
oi ≤ πs

′
a1 − π

s′
d2 + pT ≤ T − κs

′
io,

which is the same as
κs
′
oi − r1 ≤ πsd1 − π

s′
d2 + pT ≤ T − κs

′
io − r1.

Hence, the implied change now are

cl,impa =
(
sue(ha) − s

l
e(ha)

)
and

cu,impa = −
(
sue(ha) − s

l
e(ha)

)
.

24

A.4 Connections

A general connection constraint states that the arrival event of an incoming train and the departure
of another train should be within a certain (small) interval. Suppose that train 1 is the incoming
train (trip time r1) and train 2 is outgoing. This leads to (omitting the irrelevant station index
here)

c ≤ πd2 − πa1 + pT ≤ c.
This is equivalent to

c+ r1 ≤ πd2 − πd1 + pT ≤ c+ r1.

In this case the implied changes are given by (see also (15)):

cl,impa = −
(
sue(ta) − s

l
e(ta)

)
and

cu,impa =
(
sue(ta) − s

l
e(ta)

)
.

B Redistribution of time supplements

In this appendix, we describe one more set of constraints which can help to guide the solution
towards a specific direction.

When designing a schedule, planners take into account that in a daily practice operations do
not go as planned. Especially in train scheduling, this is very important, since the vehicles are
bound to the tracks, and hence disturbances can easily influence the daily operations, leading to
trains being delayed. In order to avoid the disruption of the daily operations as much as possible,
schedulers add time supplements to the travel time on some parts of the train journey. That
means, they plan that the train uses more time than actually needed, in general between 5% and
7% on the total journey. These additional minutes that are added are called time supplements.
Within a journey, the schedules add these supplements are added to parts of the journey rather
arbitrarily. In this paragraph, we propose a method that finds solutions that redistribute these
supplements to different trips, in order to obtain a feasible schedule. This does not change the
total journey time of a train, but only redistributes the supplements.

Guiding the search for a solution towards these solutions is modelled by defining a variable
za = sua − sla for each constraint a ∈ Atrip, accounting for the change in trip time. Here, Atrip ⊆ A
is the set of trip time constraints. Let Ta ⊆ Atrip be the set of trip time constraints between the
two main stations closest to the part that is involved by constraint a. Then the total change Ca
on this part of the train series is calculated as

Ca =
∑
e∈Ta

ze.

If nothing is changed in the trip time between these two main stations, we have Ca = 0. Also if
the time supplements are redistributed between the stations, this value will be zero as well, since
the changes to individual constraints cancel out.

In order to find solutions that redistribute time supplements, we penalize solutions in the
objective functions, that do not do this. In order to do so, note that Ta consists of a set of
consecutive trip time constraints. Let a∗ ∈ Ta be the first of these consecutive constraints. Next,
we introduce a variable ta ≥ 0 for each a ∈ Atrip and add

γ ·
∑

a∈Atrip

ta (16)

to the objective, where γ is an objective coefficient to be chosen. Furthermore, we add the
constraints

−ta∗ ≤ Ca and Ca ≤ ta
∗

∀ a ∈ Atrip,

to the model, where a∗ ∈ Ta is as defined before. By doing this, we penalize the changes only
once. By adding the above objective term and constraints, changes in trip times that are not
compensated for in other trip time constraints, get an additional penalty.

25

C Solving conflicts by extending the cycle periodicity
formulation

Analogously to the described extension of (PESP-IP), we can extend the cycle periodicity formu-
lation for PESP to to resolve conflicts.

C.1 The Cycle Periodicity Formulation of PESP.

We now describe a second formulation of (PESP) as integer program [Nachtigall, 1999]. We
introduce the notion of a ‘process time’ of a constraint, which is the difference between the event
times, i.e., for constraint a = (i, j) ∈ A, the process time xa is defined as

xa = πj − πi + Tpij .

For connection constraints for example, the process time specifies how many minutes of transfer
time are available. It is easy to see that the sum of all process times in a cycle in the constraint
graph representation of the PESP instance should be an integer multiple of T . If we denote a
cycle in the constraint graph by C, the sum of the process times in this cycle equals qCT , i.e., qC
denotes the number of multiples of T this cycle. Next, if we choose a direction in the cycle C in
which the cycle is traversed, and denote the set of forward and backward arcs of this cycle by C+
and C− respectively, the Cycle Periodicity Formulation is given as follows:

Definition C.1 (CPF). Given a constraint graph G = (V,A) as defined before, find xa for all
a ∈ A such that ∑

a∈C+
xa −

∑
a∈C−

xa = TqC ∀ C ∈ G

la ≤ xa ≤ ua ∀ a ∈ A
aC ≤ qC ≤ bC ∀ C ∈ G

x ∈ Rm, q ∈ Zk,

where k is the number of cycles in the graph and

aC =

 1

T

∑
a∈C+

la −
∑
a∈C−

ua

 , bC =

 1

T

∑
a∈C+

ua −
∑
a∈C−

la

 . (17)

Although there is an exponential number of cycles in the graph, it is sufficient to require the
cycle constraints only for cycles in an integral cycle basis B, i.e., a set B such that every non-basis
cycle is an integer linear combination of the cycles in B [Peeters, 2003, Liebchen, 2003]. Such a
cycle basis can for example be found by first finding a spanning tree in the graph. All the arcs
that are not in the tree provide a cycle in the graph, all of them together lead to an integral cycle
basis of size k = m−n+ 1, hence we need only a limited amount of cycles and therefore a limited
number of integer variables [Liebchen, 2003].

An overview of the theory concerning cycle bases is given in Liebchen and Peeters [2009].
An advantage of this model is that it uses fewer integer variables and equality constraints

instead of inequality constraints. This has advantages in a branch-and-bound procedure when
solving the models. For a further discussion and comparison of different PESP formulations, see
for example Liebchen et al. [2008].

C.2 Equivalent for (PESP-IP-Ext)

We can extend (CPF) in the same way as described in Section 3.2.1 for (PESP-IP) to resolve
conflicts.

26

We assume a cycle basis B is given. The Cycle Periodicity Formulation equivalent to (PESP-
IP-Ext) can be stated as follows:

(CPF-Ext) min
∑
a∈A

wlas
l
a + wuas

u
a (18a)

s.t.
∑
a∈C+

xa −
∑
x∈C−

xa = TqC ∀ C ∈ B (18b)

la − sla ≤ xa ≤ ua + sua , ∀ a ∈ A (18c)

aC ≤ qC ≤ bC ∀ C ∈ B (18d)

sla ∈ [0, τ la], sua ∈ [0, τua]. ∀ a ∈ A (18e)

x ∈ Rm, q ∈ Z|B|. (18f)

The objective function should be the same and the constraint bounds are altered in the same way,
by adding and subtracting the right slack variables, which are the same as well, so Constraint
(18a), (18c), (18e) and (18f) are essentially the same. The sum of all process times should still
be equal to a multiple of T as in Constraint (18b). Finally, the number of multiples of T in each
cycle C can be bounded by

aC =

 1

T

∑
a∈C+

(la − τ la)−
∑
a∈C−

(ua + τua)

 , bC =

 1

T

∑
a∈C+

(ua − τua)−
∑
a∈C−

(la − τ la)

 ,
where we assume worst case situations, i.e., we calculate the lowest and highest possible values,
based on the maximum allow changes, in order to have a model that is not too restrictive. This
clearly shows that the (PESP-IP-Ext) and (CPF-Ext) models are equivalent.

C.3 Equivalent for (PESP-IP-Dep)

In order to get the CPF equivalent for (PESP-IP-Dep), we use a similar approach. The model is
stated as

(CPF-Dep) min
∑
a∈A

wlas
l
a + wuas

u
a (19a)

s.t.
∑
a∈C+

xa −
∑
a∈C−

xa = TqC , ∀ C ∈ B (19b)

aC ≤ qC ≤ bC ∀ C ∈ B (19c)

la − cla ≤ xa ≤ ua + cua ∀ a ∈ A (19d)

cla = sla + cl,impa , cua = sua + cu,impa ∀ a ∈ A, (19e)

cl,impa =
(
λla

)′
s, cu,impa = (λua)′ s ∀ a ∈ A, λla, λua ∈ {0,±1}2m (19f)

La = la − τ la −max{cl,impa } ∀ a ∈ A (19g)

Ua = ua + τua + max{cu,impla } ∀ a ∈ A (19h)

aC =

 1

T

∑
a∈C+

La −
∑
a∈C−

Ua

 ∀ C ∈ B (19i)

bC =

 1

T

∑
a∈C+

Ua −
∑
a∈C−

La

 ∀ C ∈ B (19j)

sla ∈ [0, τ la], sua ∈ [0, τua] ∀ a ∈ A, (19k)

x ∈ Rm, q ∈ Zm−n+1, c ∈ R2m. (19l)

Here, constraints (19b) relates the processes in a cycle to an integer multiple of T . Constraints
(19d) give bounds on the allowed process times and correspond to the bounds of a PESP constraint.
Constraints (19c) bound the integer variable for each cycle, denoting how many multiples of T can
possibly occur in a cycle. Bounds on these variables are calculated by (19i) and (19j). It makes

27

use of the smallest and largest possible bounds for each constraint, which are calculated by (19g)
and (19h), in order to avoid having a model that is too restrictive.

Note that again (PESP-IP-Dep) (9) and (CPF-Dep) (19) are equivalent models.

References

Boston Consulting Group. The 2015 European railway performance index, exploring the link
between performance and public cost, May 2015.

Gabrio Caimi, Leo Kroon, and Christian Liebchen. Models for railway timetable optimization:
Applicability and applications in practice. Journal of Rail Transport Planning & Management,
6(4):285 – 312, 2017. ISSN 2210-9706. doi: http://dx.doi.org/10.1016/j.jrtpm.2016.11.002.

Peter Großmann, Steffen Hölldobler, Norbert Manthey, Karl Nachtigall, Jens Opitz, and Peter
Steinke. Solving periodic event scheduling problems with SAT. In He Jiang, Wei Ding, Moonis
Ali, and Xindong Wu, editors, Advanced Research in Applied Artificial Intelligence, volume 7345
of Lecture Notes in Computer Science, pages 166–175. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-31086-7.

Peter Großmann, Jens Opitz, Reyk Weiß, and Michael Kümmling. On resolving infeasible periodic
event networks. In Conference on Advanced Systems in Public Transport, 2015.

Leo Kroon and Leon Peeters. A variable trip time model for cyclic railway timetabling. Trans-
portation Science, 37(2):198–212, 2003. doi: 10.1287/trsc.37.2.198.15247.

Michael Kümmling, Peter Großmann, Karl Nachtigall, Jens Opitz, and Reyk Weiß. A state-of-the-
art realization of cyclic railway timetable computation. Public Transport, 7(3):281–293, 2015a.
ISSN 1613-7159. doi: 10.1007/s12469-015-0108-5.

Michael Kümmling, Peter Großmann, Jens Opitz, Reyk Weiß, and Karl Nachtigall. Extraction of
significant conflicts in periodic timetabling. In Conference on Advanced Systems in Public Trans-
port, 2015b. URL https://www.researchgate.net/publication/299409010_Extraction_of_

Significant_Conflicts_in_Periodic_Timetabling.

Christian Liebchen. Finding short integral cycle bases for cyclic timetabling. In Giuseppe Di Bat-
tista and Uri Zwick, editors, Algorithms - ESA 2003, volume 2832 of Lecture Notes in Com-
puter Science, pages 715–726. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-20064-2. doi:
10.1007/978-3-540-39658-1 64.

Christian Liebchen and Rolf H. Möhring. The modeling power of the periodic event scheduling
problem: Railway timetables and beyond. In Frank Geraets, Leo Kroon, Anita Schoebel,
Dorothea Wagner, and ChristosD. Zaroliagis, editors, Algorithmic Methods for Railway Op-
timization, volume 4359 of Lecture Notes in Computer Science, pages 3–40. Springer Berlin
Heidelberg, 2007. ISBN 978-3-540-74245-6. doi: 10.1007/978-3-540-74247-0 1.

Christian Liebchen and Leon Peeters. Integral cycle bases for cyclic timetabling. Discrete Optimiza-
tion, 6(1):98 – 109, 2009. ISSN 1572-5286. doi: http://dx.doi.org/10.1016/j.disopt.2008.09.003.

Christian Liebchen, Mark Proksch, and Frank H. Wagner. Performance of Algorithms for Periodic
Timetable Optimization, pages 151–180. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
ISBN 978-3-540-73312-6. doi: 10.1007/978-3-540-73312-6 8. URL https://doi.org/10.1007/

978-3-540-73312-6_8.

Karl Nachtigall. Periodic network optimization and fixed interval timetables. Habilitation thesis,
Universität Hildesheim, 1999.

NS. Website nederlandse spoorwegen. http://www.ns.nl, 2017. Accessed: 2017-11-03.

Michiel Adriaan Odijk. A constraint generation algorithm for the construction of periodic railway
timetables. Transportation Research Part B: Methodological, 30(6):455 – 464, 1996. ISSN 0191-
2615. doi: http://dx.doi.org/10.1016/0191-2615(96)00005-7.

28

https://www.researchgate.net/publication/299409010_Extraction_of_Significant_Conflicts_in_Periodic_Timetabling
https://www.researchgate.net/publication/299409010_Extraction_of_Significant_Conflicts_in_Periodic_Timetabling
https://doi.org/10.1007/978-3-540-73312-6_8
https://doi.org/10.1007/978-3-540-73312-6_8
http://www.ns.nl

Michiel Adriaan Odijk, Ramon Lentink, and Adri Steenbeek. CADANS/Conflex: Functionele
beschrijving van het onderdeel Conflex. Technical report, ORTEC Consultants BV, CWI,
Gouda, Amsterdam, 2002.

Leon Peeters. Cyclic Railway Timetable Optimization. Phd thesis, Erasmus University Rotterdam,
jun 2003.

Alexander Schrijver and Adri Steenbeek. Spoorwegdienstregelingontwikkeling. Technical report,
CWI, Amsterdam, 1993. In Dutch.

Paolo Serafini and Walter Ukovich. A mathematical model for periodic scheduling problems. SIAM
Journal on Discrete Mathematics, 2(4):550–581, 1989. doi: 10.1137/0402049.

29

	Introduction
	Problem statement

	Literature review and contribution
	Periodic event scheduling
	PESP conflicts
	Our contribution

	Conflict resolving
	Conflicts in PESP
	Resolving a single conflict
	Basic models.
	Fixed trip times.
	Resolving only minimal conflicts.
	Methods to enrich a conflict.

	An iterative algorithm to resolve feasible PESP instances
	Resolve a single conflict.
	Resolve a full PESP instance.
	Tabu search.
	Finding a schedule & post-optimisation.

	Experiments
	Den Helder - Schagen (Hdr-Sgn)
	Instance description.
	Results of the methodology.

	Rotterdam - Utrecht (Rtd-Ut)
	Instance description.
	Results of the methodology.

	Dutch network 2013 (NL2013)
	Instance description.
	Results of the methodology.

	Conclusion and discussion
	Appendices
	Several types of PESP constraints
	Trains running in the same direction
	Single track headways
	Crossing train paths
	In-out relations.
	Out-in relations.

	Connections

	Redistribution of time supplements
	Solving conflicts by extending the cycle periodicity formulation
	The Cycle Periodicity Formulation of PESP.
	Equivalent for (PESP-IP-Ext)
	Equivalent for (PESP-IP-Dep)

