831 research outputs found

    Effects of Low-Frequency Anthropogenic Noise on the St. Lawrence Beluga Hearing and Communication Processes: a Model

    Get PDF

    Noise levels and sources in the Stellwagen Bank National Marine Sanctuary and the St. Lawrence River Estuary

    Get PDF
    Although ambient (background) noise in the ocean is a topic that has been widely studied since pre-World War II, the effects of noise on marine organisms has only been a focus of concern for the last 25 years. The main point of concern has been the potential of noise to affect the health and behavior of marine mammals. The Stellwagen Bank National Marine Sanctuary (SBNMS) is a site where the degradation of habitat due to increasing noise levels is a concern because it is a feeding ground and summer haven for numerous species of marine mammals. Ambient noise in the ocean is defined as “the part of the total noise background observed with an omnidirectional hydrophone.” It is an inherent characteristic of the medium having no specific point source. Ambient noise is comprised of a number of components that contribute to the “noise level” in varying degrees depending on where the noise is being measured. This report describes the current understanding of ambient noise and existing levels in the Stellwagen Bank National Marine Sanctuary. (PDF contains 32 pages.

    Investigation of highly efficient satellite solution methods

    Get PDF
    Methods for analyzing the stability of satellites are discussed. The subjects considered are: (1) time elements, (2) stabilization by external energy corrections, and (3) long term global solutions for the synchronous satellite. A set of canonical two-body elements referred to as Delaunay-similar elements is presented. In contrast to the classical Delaunay theory which has time as the independent variable, the D-S theory uses an independent variable which is a generalized true anomaly. The numerical integration of the canonical perturbation equations of these elements is developed

    Wie verhält sich Pflanzenkohle in Ackerböden?

    Get PDF
    Pflanzenkohle ist einer der Hauptbestandteile der Terra preta do indio, der Schwarzerde Amazoniens. Die Tatsache, dass diese Schwarzerde, höchstwahrscheinlich menschlichen Ursprungs, auch nach jahrhundertelanger Witterung im Regenwaldklima noch immer sehr fruchtbar ist, erstaunt. Die Ursachen, die zu dieser langanhaltenden Fruchtbarkeit führen, werden hauptsächlich der physikalischen und chemischen Beeinflussung des Bodens durch die Pflanzenkohle und deren Beständigkeit zugeschrieben

    A singularity free analytical solution of artificial satellite motion with drag

    Get PDF
    The connection between the existing Delaunay-Similar and Poincare-Similar satellite theories in the true anomaly version is outlined for the J(2) perturbation and the new drag approach. An overall description of the concept of the approach is given while the necessary expansions and the procedure to arrive at the computer program for the canonical forces is delineated. The procedure for the analytical integration of these developed equations is described. In addition, some numerical results are given. The computer program for the algebraic multiplication of the Fourier series which creates the FORTRAN coding in an automatic manner is described and documented

    Timing-Constrained Global Routing with RC-Aware Steiner Trees and Routing Based Optimization

    Get PDF
    In this thesis we consider the global routing problem, which arises as one of the major subproblems in the physical design step in VLSI design. In global routing, we are given a three-dimensional grid graph G with edge capacities representing available routing space, and we have to connect a set of nets in G without overusing any edge capacities. Here, each net consists of a set of pins corresponding to vertices of G, where one pin is the sender of signals, while all other pins are receivers. Traditionally, next to obeying all edge capacity constraints, the objective has been to minimize wire length and possibly via (edges in z-direction) count, and timing constraints on the chip were only modeled indirectly. We present a new approach, where timing constraints are modeled directly during global routing: In joint work with Stephan Held, Dirk Mueller, Daniel Rotter, Vera Traub and Jens Vygen, we extend the modeling of global routing as a Min-Max Resource Sharing Problem to also incorporate timing constraints. For measuring signal delays we use the well-established Elmore delay model. One of the key subproblems here is the computation of Steiner trees minimizing a weighted sum of routing space usages and signal delays. For k pins, this problem is NP-hard to approximate within o(log k), and even the special case k = 2 is NP-hard, as was shown by Haehnle and Rotter. We present a fast approximation algorithm with strong approximation bounds for the case k = 2. For k > 2 we use a multi-stage approach based on modifying the topology of a short Steiner tree and using our algorithm for the two-pin case for computing new connections. Moreover, we present a layer assignment algorithm that assigns z-coordinates to the edges of a given two-dimensional tree. We also discuss the topic of routing based optimization. Here, the starting point is a complete routing, and timing optimization tools make changes that require incremental adaptations of the underlying routing. We investigate several aspects of this problem and derive a new routing flow that includes our timing-aware global router and routing based optimization steps. We evaluate our results from this thesis in practice on industrial 14nm microprocessor designs from IBM. Our theoretical results are validated in practice by a strong performance of our timing-aware global routing framework and our new routing flow, yielding significant improvements over the traditional global routing method and the previously used routing flow. Therefore, we conclude that our approaches and results from this thesis are not only theoretically sound but also give compelling results in practice

    GSFC magnetic field experiment Explorer 43

    Get PDF
    The magnetic field experiment flown on Explorer 43 is described. The detecting instrument is a triaxial fluxgate magnetometer which is mounted on a boom with a flipping mechanism for reorienting the sensor in flight. An on-board data processor takes successive magnetometer samples and transmits differences to the telemetry system. By examining these differences in conjunction with an untruncated sample transmitted periodically, the original data may be uniquely reconstructed on the ground

    Vocal Classification of Vocalizations of a Pair of Asian Small-Clawed Otters to Determine Stress

    Get PDF
    Asian Small-Clawed Otters (Aonyx cinerea) are a small, protected but threatened species living in freshwater. They are gregarious and live in monogamous pairs for their lifetimes, communicating via scent and acoustic vocalizations. This study utilized a hidden Markov model (HMM) to classify stress versus non-stress calls from a sibling pair under professional care. Vocalizations were expertly annotated by keepers into seven contextual categories. Four of these—aggression, separation anxiety, pain, and prefeeding—were identified as stressful contexts, and three of them—feeding, training, and play—were identified as non-stressful contexts. The vocalizations were segmented, manually categorized into broad vocal type call types, and analyzed to determine signal to noise ratios. From this information, vocalizations from the most common contextual categories were used to implement HMM-based automatic classification experiments, which included individual identification, stress vs non-stress, and individual context classification. Results indicate that both individual identity and stress vs non-stress were distinguishable, with accuracies above 90%, but that individual contexts within the stress category were not easily separable

    The MAGSAT vector magnetometer: A precision fluxgate magnetometer for the measurement of the geomagnetic field

    Get PDF
    A description of the precision triaxial fluxgate magnetometer to be flown aboard the MAGSAT spacecraft is presented. The instrument covers the range of + or - 64,000 nT with a resolution of + or - 0.5 nT, an intrinsic accuracy of + or - 0.001% of full scale and an angular alignment stability of the order of 2 seconds of arc. It was developed at NASA's Goddard Space Flight Center and represents the state-of-the-art in precision vector magnetometers developed for spaceflight use
    • …
    corecore