Timing-Constrained Global Routing
with RC-Aware Steiner Trees and
Routing Based Optimization

DISSERTATION

ZUR

ERLANGUNG DES DOKTORGRADES (DR. RER. NAT.)

DER

MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTAT

DER

RHEINISCHEN FRIEDRICH-WILHELMS- UNIVERSITAT BONN

VORGELEGT VON
Rudolf Scheifele
AUS

DRESDEN

BonNN, MARz 2019

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultdt der
Rheinischen Friedrich-Wilhelms-Universitédt Bonn

1. Gutachter: Prof. Dr. Jens Vygen
2. Gutachter: Prof. Dr. Stephan Held

Tag der Promotion: 7. Juni 2019
Erscheinungsjahr: 2019

Acknowledgements

At this point I want to express my gratitude to my supervisor Professor Dr. Jens Vygen
for his excellent guidance and valuable feedback. I also want to thank Professor Dr. Dr.
h.c. Bernhard Korte for providing great working conditions at the Research Institute for

Discrete Mathematics in Bonn.

Also, my thanks goes to my present and former colleagues for the friendly working at-
mosphere and productive collaboration in the past few years. In particular, I want to
thank Dr. Dirk Miiller for introducing me to BonnRouteGlobal and its implementation,
Tilmann Bihler and Pietro Saccardi for the close collaboration on BonnRouteGlobal and
for dealing with most of the matters concerning BonnRouteGlobal during the final peri-
ods of writing this thesis, and Markus Ahrens, Dr. Michael Gester and Niko Klewinghaus
for their great work on BonnRouteDetailed. Furthermore, I am thankful to Siad Daboul,
Professor Dr. Stephan Held, Anna Hermann, Daniel Rotter and Ulrike Schorr from the

timing optimization team for their collaboration and help on timing related topics.

Further thanks goes to a number of people at IBM, especially Karsten Muuss, Dr. Sven
Peyer and Dr. Christian Schulte from the routing team for the successful collaboration on
BonnRoute in the last years, and Michael Kazda and Alexander Suess for the productive

teamwork on the BonnRoute based optimization flow presented in this thesis.

Finally, my personal thanks goes to my parents Erika and Gustav, my sisters Anna and
Edith, and my grandparents Christian and Pauline for all the support and encouragement

they have given me throughout my whole life.

Contents

Acknowledgements

Chapter 1. Introduction
1.1. Specification and Logic Design
1.2. Physical Design
1.3. Routing

1.4. Thesis Overview

Chapter 2. Global Routing Basics
2.1. Basic Concepts and Definitions
2.2. The Traditional Global Routing Problem
2.3. The Minimum Steiner Tree Problem

Chapter 3. VLSI Timing Basics
3.1. Signals
3.2. The Timing Graph
3.3. Timing Constraints
3.4. The Elmore Delay Model

3.5. Slew and Capacitance Limits

Chapter 4. Global Routing with Timing Constraints
4.1. Previous Work
4.2. Global Routing as Min-Max Resource Sharing Problem

4.3. Incorporating Timing Constraints

Chapter 5. The RC-Aware Routing Oracle
5.1. Problem Formulation
5.2. Previous Work
5.3. RC-Aware Paths
5.4. RC-Aware Steiner Trees
5.5. Experimental Results

10
13
25

27
27
32
35

39
39
39
40
42
46

47
47
48
o1

63
63
64
65
76
86

6 CONTENTS

Chapter 6. Connecting to Exact Shapes 91
6.1. From Projected to Exact Shapes 93
6.2. Optimizing x- and y-Coordinates 94
6.3. Assigning Layers 96
6.4. Implementation in BonnRouteGlobal 114

Chapter 7. Routing Based Optimization 115
7.1. GRBO and DRBO 116
7.2. The Incremental Routing Framework 120
7.3. Minimal Reroutes 123
7.4. Copy Routes 143
7.5. Multi-Threaded Incremental Routing 161
7.6. Routing Flow Results 175

Appendix A. Experimental Results 181
A.1. Our Testbed 181
A.2. Our Platform 181
A.3. Metric Evaluation 181
A.4. Metrics 181

Appendix. Summary 185

Appendix. Bibliography 187

CHAPTER 1

Introduction

In today’s world, computer chips are omnipresent and indispensable. They can be found
in traditional computers, phones, cars and many other devices that are essential to mod-
ern living. Naturally, this need for computer chips creates a highly competitive market,
and the usual objectives include making chips faster, smaller, less power consuming
and less expensive to produce. As a result, modern computer chips are highly complex
structures consisting of up to billions of interconnected transistors. Therefore, the VLSI
design process used to create these modern computer chips is very sophisticated and
requires contributions from many research areas.

In this thesis we are concerned with global routing, which is part of the VLSI routing
step, whose task is to compute the layout of the wires on the chip. We present new the-
oretical results that are implemented and evaluated in practice. The underlying routing
tool for implementing our results is BonnRoute [41], the routing tool of the BonnTools
program suite [73] developed at the Research Institute for Discrete Mathematics in
Bonn. BonnRoute is the main routing tool used by IBM during the design of processor
chips that are among the fastest and most complex in the world and can therefore be
considered as successful state-of-the-art router.

To introduce some VLSI design concepts and terminologies and to get a better un-
derstanding of the context in which global routing takes place, we outline a strongly
simplified VLSI design flow in this introductory chapter. This flow is depicted in Fig-
ure 1.1 and explained in more detail in the remainder of this chapter. As it is not
an essential part of this thesis, we omit any description of the manufacturing step. A
more extensive introduction to VLSI design is given by Uyemura [115] and many other
textbooks.

Throughout this thesis we assume that the reader is acquainted with basic concepts and
terminologies in mathematics and computer science, in particular in the field of com-
binatorial optimization. For an introduction to combinatorial optimization, the reader
is referred to the textbook by Korte and Vygen [75] or other textbooks on that topic.
For examples of combinatorial optimization problems arising in VLSI design see Held et
al. [52] and Korte and Vygen [74].

8 1. INTRODUCTION

’ Specification ‘

!

’ High-Level Design ‘

!

’ Logic Synthesis ‘

!

’ Placement ‘

!

’ Timing Optimization ‘

1

’ Routing ‘

1

’ Manufacturing ‘

FicUre 1.1. A strongly simplified VLSI design flow. The steps colored
in blue constitute the physical design step.

In Section 1.1 we give a brief overview on logic design, in particular the output of this
step that serves as input for physical design. We then turn towards physical design in
Section 1.2, but only describe placement and timing optimization in this section. The
last step, routing, is covered in Section 1.3, as it is the most important one for this thesis.
At last, Section 1.4 contains a preview of the contents of this thesis.

1.1. Specification and Logic Design

The starting point of the VLSI design process is a system specification, where the func-
tionality of the product and design goals are defined. These specifications are then
encoded during high-level design in a hardware description language (HDL), which is
a computer language similar to a programming language that is used to describe the
structure of an electronic circuit. The most commonly used HDLs at this point in time
are VHDL and Verilog. This abstract description of the circuit is then translated by a
logic synthesis tool into a netlist, which contains the set of circuits of the chip and the
logical connectivity information that controls the signal flow. As logic synthesis is not
the focus of this thesis, we leave it at that very brief description and refer the reader
to [30, 33, 48] for more on this topic.

Instead, we focus our attention on the output of logic synthesis for the remainder of this
section, as the output of logic synthesis constitutes (part of) the input for physical design.
We introduce circuits and books in Section 1.1.1, pins in Section 1.1.2 and the netlist
in Section 1.1.3. These are logical concepts in the sense that they are used to describe

1.1. SPECIFICATION AND LOGIC DESIGN 9

the logic of the chip, but as these logical concepts must be implemented physically later,

they are of course also central to physical design.

1.1.1. Circuits and Books. A circuit consists of multiple interconnected transis-

tors and either represents a boolean function, in which case it is called a gate, or is
a memory element, also called a register. Most gates compute an elementary boolean
function like NAND and NOR, but also more complex boolean functions are possi-
ble. Memory elements are controlled by periodic clock signals and are used to store
information at one point in time and release it later.
Although it would be theoretically possible to design chips on a transistor level, this
is usually not done on a large scale due to the complexity involved. Instead, there is a
predefined library containing books, which are blueprints for the physical implementation
of specific circuits. When a circuit with a given functionality is required, a book imple-
menting this functionality can just be taken from the library. As there are often multiple
books with different physical properties available for implementing the same logic, pick-
ing the right books is a difficult optimization problem. However, this problem is not
tackled during logic design, but later during timing optimization (cf. Section 1.2.2). For
more on transistor-level layout and library design we refer to Cremer [31], Hougardy et
al. [58] and Schneider [109].

1.1.2. Pins. The interface between a circuit and the chip it belongs to is given by

the pins of the circuit. Each circuit contains a set of input pins and a set of output pins:
Input signals for gates are received at the input pins, and the results of the boolean
functions computed are present at the output pins. Likewise, signals to be stored in
registers are present at their input pins, and signals to be released by registers are
present at their output pins. Here, at any given point in time we associate each pin with
one of two voltage levels Vs < V4 representing the logical values zero and one. A signal
can then be regarded as a voltage change at a given pin, as it is explained in more detail
later in Section 3.1. Since the input pins of a circuit are receiving signals and the output
pins are distributing signals, we classify the former as sink pins and the latter as source
Pins.
In addition to circuit pins, the chip also contains a set of pins which constitute the
interface to the exterior context in which the chip is used. These are called primary
input and primary output pins, and are classified as source and sink pins, respectively.
Note that while input pins of circuits are sink pins, primary input pins are source pins,
with an analogous statement holding for output pins of circuits and primary output pins.
In fact, the chip itself can be considered as a circuit, and if viewed from the inside, a
primary input pin has the role of distributing input signals, while a primary output pin
has the role of receiving output signals.

10 1. INTRODUCTION

T e T

Ny .\7)3

® U1

E
[

® U1

No
2 @ Z2

Ny

N3 Y2 :>o—>o Y2
T3 l 3 ./115

FIGURE 1.2. Left: A simple netlist with five nets Ny, ..., N5, input sig-
nals x1, x2, r3 and output signals y1, y2. The boolean functions computed
are y; = x1 Axg and y2 = (1 Azg)Vas. Right: The corresponding netlist
graph. We have vertices x1, zo,xs for the primary input pins, y1,y2 for
the primary output pins and vy, ..., vs representing circuit pins. Edges
corresponding to nets are shown in blue while circuit internal edges are
shown in red.

)

1.1.3. The Netlist. Logical connectivity information is encoded by nets: A net
is a set of pins that contains exactly one source pin and at least one sink pin. In this
context, we often call the source pin of the net — and sometimes also the circuit this
source pin belongs to — the driver of the net. Moreover, every pin on the chip belongs
to exactly one net. The set of nets is then called the netlist, and it is often associated
with a netlist graph. The netlist graph is an acyclic digraph G = (V, E) whose edge
directions indicate signal flow: V is the set of pins on the chip, and there is an edge
(v,w) € E(G) if v is the source pin of the net containing w, or if v and w are input and
outpin pins of the same gate. A very simple example of a netlist and its corresponding

netlist graph is shown in Figure 1.2.

1.2. Physical Design

The netlist computed by logic synthesis serves as input for the physical design step,
where a detailed construction plan for physical components like wires and transistors is
computed. In addition to the netlist, the input for the physical design step includes the
rectangular chip area, the number of available chip layers and the locations of primary
input and output pins. We assume the lowest layer to be the placement layer containing
all transistors, while we assume all other layers to be routing layers containing wires
connecting the nets. Our simplified physical design flow from Figure 1.1 consists of
three steps: placement, timing optimization and routing. This is only a very brief and
simplified description of physical design — a more comprehensive overview on physical
design and the algorithms used in it is given by Alpert et al. [5].

1.2. PHYSICAL DESIGN 11

We describe placement in Section 1.2.1 and timing optimization in Section 1.2.2. As the

routing step is central to this thesis, we cover it in its own section, namely Section 1.3.

1.2.1. Placement. During placement, circuits are placed non-overlapping on the

chip area such that objectives like timing and wire length are optimized. There are
different types of placement problems: During floorplanning, a relatively small number
of large circuits is to be placed. These can be smaller chips contained in a top level
chip when hierarchical design is used, or other predesigned structures like intellectual
property blocks designed by another company. On the other hand, during standard cell
placement, all circuits classified as standard cell are placed. Here, a cell is a standard cell
if it has some fixed uniform height. This height is defined by the distance of power supply
stripes, called power rails, which are arranged in a regular pattern across the placement
layer and also some routing layers of the chip. The standard cell height is then the
maximum height that makes it possible to place the cell between two adjacent power
rails. Floorplanning and standard cell placement can be done combined or separately. A
third placement problem is the placement legalization problem, where an infeasible (i.e.
not overlap-free) placement is given and the task is to compute a feasible placement that
is close to the input placement. The placement legalization problem occurs continually
during timing optimization and therefore also during our routing based optimization
flow from Chapter 7.
All circuits (including large units placed during floorplanning) are placed on the place-
ment layer, but they might also occupy space on routing layers. This occupied space is
seen as blockage by the router. Large units might occupy a lot of space even on higher
layers, while standard cells only block a small amount of space on the lowest layers.
Throughout this thesis we assume that a feasible placement is given in the input for
routing and do not examine this problem any further. For a comprehensive overview on
the placement problem the reader is referred to Alpert et al. [5], Brenner et al. [20] and
Struzyna [114].

1.2.2. Timing Optimization. After placement has finished, timing optimization
takes place. The main task in timing optimization is to ensure that all signals arrive
in the correct time window so that the chip can operate at the desired frequencies
— if the result of logic synthesis and placement was to be routed directly, meeting
timing constraints would be impossible for all but the simplest designs. There are
several operations which can be performed during timing optimization, including (but
not limited to) the following:

e Buffering: As will become evident after looking at the Elmore delay model [35,
99] from Section 3.4, long nets and nets with many pins must be subdivided into

1. INTRODUCTION

to
S S

YRVAV,

VAV RV

FIGURE 1.3. The net {s,t1,t2,t3} (left) is subdivided into three nets by
insertion of two buffers (right).

smaller nets in order to avoid excessive signal delays. This is done by inserting
buffers or a suitable number of inverters, which implement the identity and
NOT function, respectively. For simplicity, we only use the term buffer to
cover buffers and inverters for the rest of this thesis.

The buffering problem involves two major subproblems: The first one, buffer
insertion, consists of inserting buffers into the netlist, usually based on the
structure of some routing tree given for a certain net. The second one, buffer
tree generation, consists of computing the routing tree that is used for buffer
insertion. While buffer insertion can be performed on an estimated routing
tree, it is more accurate to combine global routing and buffering, as was done
by Rotter [97]. Further references regarding buffering include Bartoschek [8]
and Hu et al. [60]. A simple illustration of the buffering process is given by
Figure 1.3.

e Gate sizing: The library (cf. Section 1.1.1) usually contains multiple books
implementing the same boolean function, but having largely different electrical
properties. The electrical properties roughly correlate to the size of the book:
Larger books have a lower internal resistance and switch faster on their own,
but consume more area and power and have bigger input pins that slow down
predecessor nets. The task in gate sizing is to pick a suitable book for each gate
(or circuit) in the netlist, as the netlist output by logic synthesis is logically
correct, but not well optimized with respect to gate sizes. An overview on the
gate sizing problem is given by Held and Hu [51] and Schorr [110].

o 1t optimization: The voltage threshold, or Vt level, denotes the voltage at
which a transistor switches. A lower Vt level results in faster switching and

therefore faster signal propagation, but it also increases power consumption.

1.3. ROUTING 13

There are usually a few different Vt levels available for each book, and the task
in Vt optimization is to pick one for each circuit to improve timing without
increasing power consumption too much. For more on Vt optimization see
Daboul et al. [32] and Schorr [110].

e Local placement changes: Although timing is considered as major objective
during placement, one can often improve timing further by deploying additional
local placement changes later in the flow. Here, "local” can refer to moving
only local parts of the netlist, e.g. a single circuit, but can also entail restricting
changes to a local area. A method for improving timing with local placement
changes is given by Bock et al. [14].

e Local logic restructuring: The netlist output by logic synthesis is logically cor-
rect, but may not be optimal with respect to timing behavior. This is partic-
ularly true as the timing of the chip is strongly influenced by placement and
timing optimization, and both these steps are running after logic synthesis in
the flow. Therefore, logic restructuring can be applied to improve timing. As
the problem of deciding whether two netlists are logically equivalent contains
the 3-SAT problem and is therefore N P-hard, very complex changes are usu-
ally avoided. For more on local logic restructuring see Held and Spirkl [55] and
Werber [121].

The above steps are interrelated in the sense that to give meaningful input to one step,
the other steps must already have been performed to a reasonable degree. For this reason,
better results can be obtained if different timing optimization steps are combined and
iterated during the course of the physical design flow. Held [50] covers several aspects
of timing optimization in more detail.

As already indicated by the above description of the individual timing optimization steps,
there is often a trade-off between improving timing and keeping power consumption
in check. Routability also has to be considered during timing optimization. This is
usually done by using various kinds of routability estimates ranging from rather simple
estimates incorporated in the timing optimization tools to more accurate estimates given
by a global router. An accurate method to estimate routability and timing properties of
wires is given in Chapter 7, where we deal with routing based optimization, i.e. a method
to perform timing optimization based on a routing that is incrementally updated by our

global router.

1.3. Routing

The final step in our simplified physical design flow is routing. We start with routing
basics in Section 1.3.1, continue with global routing — the main focus of this thesis — in

14 1. INTRODUCTION

Section 1.3.2 and then introduce track assignment and detailed routing in Sections 1.3.3
and 1.3.4, respectively. Our description of the various routing steps is tailored to Bonn-
Route. Most of it should be generally applicable, but for other routers, individual details
may vary. An improvement of the routing step that is not discussed in this introductory
chapter is routing based (timing) optimization. We discuss this in detail in Chapter 7.

1.3.1. Routing Basics. The basic task in routing is to connect the pins of each net
by metal wires, i.e. realizing the logical connectivity of the netlist by a physical imple-
mentation. These metal wires are always extending in x- or y-direction — they are never
running diagonal. In principle, diagonal wiring could be used to obtain better routing
solutions, but this would complicate manufacturing and physical design considerably.
Wires are arranged in wiring layers, which are located above the placement layer. Differ-
ent wiring layers are separated from each other by insulating material, but metal holes
called vias can be cut into the insulating material to establish electrical connectivity
between different wiring layers. For this reason, the layers between wiring layers are
called via layers.

A central constraint for routing is that wires and vias of different nets have to obey
certain minimum distance rules: If wires or vias of different nets are placed too close to
each other, then this can very likely result in a short after manufacturing, rendering the
chip useless. To allow for a better packing of wires, one uses the concept of preference
directions: FEach wiring layer has a preference direction that is either horizontal or
vertical, and the large majority of the wiring on that layer will extend into that direction.
Depending on the layer and the technology, wires running orthogonal to the preference
direction of the layer (called jogs) may or may not be allowed. However, they should
be used sparingly, as they can be a barrier for many other wires running in preference
direction. For the sake of a simpler description we assume for the rest of this section
that jogs are not allowed. Naturally, adjacent routing layers have different preference
directions in current technologies.

It is natural (but not mandatory) to use a graph model for solving the routing problem.
The underlying graph is called track graph, as it is based upon routing tracks: On each
layer, tracks extending into the preference direction of the layer are spanned over the
chip area. At each point where z- and y-coordinates of two different tracks on adjacent
layers coincide, vertices are added to the track graph on both layers, and both these
vertices are connected by an edge representing a possible via position. Neighboring
vertices on the same track and same layer are also connected by an edge. If some edges
are not usable for the router (e.g. due to routing blockages), then these edges can be
omitted when constructing the track graph. An illustration of the track graph is given
by Figure 1.4.

1.3. ROUTING 15

FiGURE 1.4. Illustration of a track graph with two routing layers. Blue
edges correspond to vias, while black edges correspond to wires.

The distance between neighboring tracks, called track pitch, is naturally chosen as the
minimum distance such that two minimum width wires can be placed on neighboring
tracks without causing a minimum distance rule violation. Here, the track pitch is not
the same on every layer. It is generally larger on higher layers in order to accomodate
thicker wires with better electrical properties. Modeling minimum distance rules through
the construction of the track graph is more or less simple as long as only minimum width
wires with minimum spacing requirements are used, but the router must also be able
to deal with wires of different wire types, which define the exact geometries and spacing
requirements of wires and vias on different layers.

Using the track graph, a simplified version of the routing problem can be formulated
as a Steiner tree packing problem in graphs: FEach pin corresponds to a vertex (or a
set of vertices) in the track graph, and the wiring of a net is represented by a Steiner
tree connecting the pins. Steiner trees of different nets must be vertex-disjoint in order
to avoid violations of minimum distance rules. From a theoretical perspective, vertex-
disjoint packing of Steiner trees in grid graphs is N P-complete [76, 77]. In practice, the
routing problem is complicated further by the following factors:

e Complex minimum distance rules: The construction of the track graph
does not ensue complete adherence to minimum distance rules, e.g. when dif-
ferent wire types are used. There are also specific spacing rules for vias. This

makes compliance to minimum distance rules more difficult.

16 1. INTRODUCTION

e Complex same-net rules: In addition to minimum distance rules, which are
concerned with shapes of different nets or blockage shapes, there are also rules
prescribed for the routing of a single net, called same-net rules. An example
for such a rule is the minimum area rule, which dictates that any connected
component of wiring on a given wiring layer must cover a certain minimum
area. Some same-net rules can be hard or runtime-intensive to incorporate into
an automatic routing tool. For instance, the above mentioned minimum area
rule will in general not be followed when a standard path search algorithm (e.g.
Dijkstra’s algorithm [34]) is run on the track graph to connect two points. As
outlined by Gester [40] (Section 5.4.2), many same-net rules can be incorporated
into a path search algorithm by propagating multiple labels, but this usually
results in a significant running time increase.

e The graph is huge: As the track pitch is very small compared to the size of
the chip, the track graph can become huge. This results in track graphs with
billions of vertices where millions of Steiner trees have to be packed. Therefore,
running time is always a critical factor and naive approaches are most often not

feasible.

The set of rules, called design rules, is primarily given by the foundry with the goal
of preventing manufacturing problems. Usually, the number of design rule violations
should be zero at the end of the physical design phase, but in some cases a few non-
fatal violations might be tolerated, although this can have a negative impact on the
manufacturing yield. For more on design rules in VLSI routing see Schulte [111].

On instances occuring in practice it is usually hard to find any routing solution that
closes all connections while satisfying the given design rules. However, finding any rout-
ing solution is not good enough for the design of high-performance chips. In particular
timing, power consumption and manufacturing yield are strongly influenced by the rout-
ing result and should be optimized accordingly. Incorporating these objectives makes
the routing problem even harder. In this thesis we mainly deal with the optimization of
timing during routing.

Due to the complexity involved, the routing task is usually split into two or even three
major steps. The first of these steps is global routing, and it is the main focus of this
thesis. The second step, track assignment, is optional, and the third step is detailed

routing. We describe these three routing steps in the following sections.

1.3.2. Global Routing. Due to the inherent complexities of the routing problem
outlined in Section 1.3.1, trying to solve it by packing Steiner trees directly in the
track graph without any preparations is most likely futile. To this end, global routing
is performed as the first step in the routing process: During global routing, a rough

1.3. ROUTING 17

layout called global route or global wires is computed for the routing of every net, which
is then used as a guidance for the later routing steps to compute the actual detailed
routing. To make this process feasible, design rules are only modeled indirectly and in a
strongly simplified manner during global routing. Moreover, global routing takes place
on a coarsened and much smaller version of the track graph, called the global routing
graph. This central data structure is introduced in Section 1.3.2.1. In Section 1.3.2.2
we touch the subject of estimating global routing capacities and discuss global routing
objectives in Section 1.3.2.3. Finally, we deal with the consideration of timing during
global routing in Section 1.3.2.4. In this chapter we describe global routing in a rather
descriptive and informal way. Formal definitions are given later in Chapter 2.
Global routing has many different applications during physical design — for example,
it can be used to evaluate routability during placement and timing optimization, and it
can be interwoven with the buffering step. In this thesis, we are only concerned with
global routing as a preparation for track assignment and detailed routing, although part
of the results from this thesis can certainly also be applied in other contexts.

1.3.2.1. The Global Routing Graph. The global routing graph is constructed as de-
picted in Figure 1.5: First, the chip area [Zmin, Tmax] X [Ymin, Ymax] is subdivided into a
grid of rectangular global routing tiles through sequences xpmin = r9g < 1 < ... < Tp =
Tmax aNd Ymin = Yo < Y1 < ... < Ym = Ymax Of z-cuts and y-cuts, which define the
boundaries of the global routing tiles. This divides the chip area into mn rectangular
regions, and all vertices of the track graph that are located in the same region and on
the same layer are contracted into a single vertex. Via edges are then added between
vertices corresponding to the same region on adjacent layers, and wiring edges extend-
ing into the preference direction of the layer are added between vertices corresponding
to neighboring regions on the same layer. Wiring edges orthogonal to the preference
direction of the layer are not added, as jogs should be short and therefore negligible
during global routing. A formal definition of the global routing graph is given later by
Definition 2.8.
The size of the global routing graph is determined by the size of the track graph and the
sets of z- and y-cuts. Therefore, there is a trade-off between running time and precision:
Fewer cuts result in a smaller graph and therefore presumably less running time, but
may also result in a loss of precision. The cuts can be chosen to be equidistant, and
the distance may be increased on large designs to reduce the size of the global routing
graph. However, it can be beneficial to choose non-equidistant cuts, e.g. in order to
align global routing tiles with large blockages, as these can cause inaccuracies in the
global routing model, in particular when running through a tile. Non-equidistant cuts

are used in BonnRoute [42], and they are implemented in such a way that the distance

18 1. INTRODUCTION

L L

e i .

///.4/////:///

o Ao e A LS Ly
T /T TS0 1
AN AAVARV ARV IAv 40P

NT L NT LV

Tf“f”f‘f/

FiGURE 1.5. Construction of the global routing graph from the track
graph from Figure 1.4: Vertices of the track graph (gray) that are located
in the same global routing tile (colored rectangles) and on the same layer
are contracted into a single vertex in the global routing graph (colored as
its tile area). The vertices of the global routing graph are then connected
by via edges and wiring edges in preference direction of the given layer
(blue).

between neighboring cuts does not deviate too much from some predefined value. In our
experiments, we set this value to 70 times the minimum track pitch across all routing
layers. Ome can see that in such a setting the global routing graph is significantly
smaller than the track graph, but on large designs it can still have millions of vertices.
For instance, the global routing graph on our largest design from Figure 1.6 contains
around two million vertices, and we have to route around 1.6 million nets in it. Therefore,
running time is a critical factor for any global routing algorithm.

1.3.2.2. Capacity and Routing Space Usage Estimations. In contrast to the track
graph, an edge of the global routing graph does not represent part of a single routing
track or a single possible via position. Instead, we associate with each edge of the global
routing graph an amount of free routing space, which is called capacity of the edge. If
we regard an edge of the global routing graph as a cut in the track graph, we can just
define the capacity of the edge as the size of the cut. If all wires were very long, this
would possibly be an acceptable model. However, in practice, this is usually not the case:
Vias might connect non-adjacent layers and require only small pieces of metal on the

intermediate wiring layers; pin access, local congestion and design rules might require

1.3. ROUTING 19

F1GURE 1.6. Congestion map of our largest unit US. Every edge of this
two-dimensional projection of the global routing graph is colored accord-
ing to the maximum edge usage over all layers. The widespread yellow
color indicates that congestion is a few percent below our congestion tar-
get of 90% for the most part, but some orange spots at 90% congestion
exist. Around the borders of some large blockages there are a few dark-
colored edges, which indicates routing overflow. Green and white regions
are uncritical with respect to routing congestion.

the detailed router to make local detours; blockages and input wiring might locally block
tracks; and in fact, on most designs many nets are so short that all their pins are in the
same or neighboring global routing tiles.

All these things have to be considered during capacity estimation, making it a rather
intricate problem in practice. Moreover, as the capacity estimation has to be tailored to
the design rules and the detailed router that is used later, a fair amount of experimental
studies and fine-tuning is needed to get good results.

Tightly connected to capacity estimation is the question of how to compute the routing
space usage of a given wiring. In the standard model — the one that we are using

20 1. INTRODUCTION

throughout this thesis — the routing space usage of a wire or via only depends on its
dimensions and wire type, but not on other wires of the same or other nets.
In this thesis, we will not be particularly concerned with capacity estimation or rout-
ing space usage computations. Instead, we assume routing capacities and routing space
usage functions as given. We refer the reader to Wei et al. [120] for an overview on
the modeling of local congestion. They use a method where local congestion effects are
estimated based on pin positions and estimated Steiner trees. On the other hand, an ap-
proach where local effects are estimated based on the local structure of the actual global
routes is currently being implemented in BonnRouteGlobal, relying on the framework
that we present in Chapter 6. At the time of this writing, this approach is in development
for BonnRouteGlobal, but not yet usable for this thesis. An approach to compute global
routing capacities based on maximum flows is given by Miiller [84]. A comprehensive
discussion of routing congestion is given by the book of Saxena et al. [105].
Any edge usage that exceeds its capacity is considered as routing overflow and should
be minimized. In the simplest notion, a global routing solution is considered routable if
there is no routing overflow. However, due to inaccuracies in the global routing model
and capacity estimation and the inherent complexity in the subsequent detailed routing
step, the question whether a given global routing will be sufficiently well routable by
the detailed router is often not easy to answer in practice. Wei et al. [120] study
the problem of routability prediction and establish global routing metrics that can be
evaluated in order to predict the routability of a given global routing. They define the
ACE metric, which basically represents the average congestion of the most congested
edges (cf. Appendix A.4). Throughout this thesis, we use this metric in addition to the
overflow metric to evaluate routability. Figure 1.6 shows a congestion map with a color
scheme that represents edge usages.

1.3.2.3. Global Routing Objectives. The main objective during global routing is to
output a global routing that represents routable input for track assignment and detailed
routing. In that sense, producing a routable global routing, e.g. indicated by having
zero routing overflow, can be regarded as a constraint.! When that need is satisfied, one
usually turns towards the optimization of objectives such as timing, power consumption
and manufacturing yield.
The traditional objective here is to minimize total wire length and possibly via count,
as for example indicated by the evaluation metrics of the ISPD 2007 and 2008 global
routing contests [66, 67]. Minimizing total wire length can be understood as an indirect

attempt to optimize other objectives such as timing and power consumption. It is also

n some applications for global routing, this might not be true. For the global routing preceding detailed
routing, however, this is a reasonable conception.

1.3. ROUTING 21

pragmatical in the sense that minimization of wire length can be achieved by routing nets
as minimum (rectilinear) Steiner trees, and the construction of approximately minimum
Steiner trees is a classical optimization problem that has been studied long-since both
from a theoretical and practical point of view (cf. Section 2.3).
The idea of modeling power minimization via wire length minimization during global
routing stems from the fact that power consumption roughly correlates with total wire
capacitance (assuming a fixed netlist), and this in turn correlates with total wire length.
Here, improvements can be made by making use of the fact that wire capacitances differ
(moderately) across the layer stack and by improving wire spreading. An approach to
optimize power consumption during global routing is given by Vygen [117] and Miiller,
Radke and Vygen [87]. The important objective of satisfying timing constraints during
global routing is covered in the next section.

1.3.2.4. Global Routing and Timing. When it comes to timing, then minimizing wire
length correlates well with minimizing circuit delays, as these scale well with the capac-
itances of the nets that are driven by the output pins of the circuits. However, as the
technology is advancing, wire delays are becoming increasingly important due to rapidly
growing wire resistances [28]. Wire delay minimization, though, is not necessarily a
byproduct of wire length minimization, as we see when discussing the choices of wire
types and routing layers in Section 1.3.2.4.1 and routing topologies in Section 1.3.2.4.2.
Moreover, balancing timing criticalities plays an important role in achieving good tim-
ing results, and, as Section 1.3.2.4.3 explains, it is not always covered well in traditional
global routing frameworks. In this section we only provide a very short preview on the
topic of considering timing during global routing. More details are then given in later
chapters of this thesis that deal extensively with this topic.

1.3.2.4.1. Wire Type and Layer Assignments. In Section 1.3.1 we introduced wire
types, which define the layer-dependent dimensions and spacing requirements of wires.
The main reason to use width and spacing values that are larger than the minimum
width and spacing imposed by manufacturing constraints is timing: Thicker wires have
less resistance and more spacing means less (coupling) capacitance. This way, using wire
types with larger metal widths or spacings can significantly improve signal delays, as will
become evident when looking at the Elmore delay model from Section 3.4. To this end,
the input to routing usually contains a wire type assignment, which assigns a wire type
to every net.
For the same reason as a wire type assignment a so-called layer assignment is done: On
modern metal stacks, the common wire widths, heights and spacings increase from lower
to higher layers [119], which results in significant decreases of wire resistances on higher
layers. Therefore, wire delay decreases when a net is routed on higher layers, unless the

22 1. INTRODUCTION

wire length is too small and via delays outweigh the better electrical properties of the
higher layers.
The task in layer assignment is to assign a contiguous layer range to each net with the
intent that the router will predominantly use that layer range for routing the net, only
deviating from it when it has to, e.g. for accessing pins. As wires on higher layers usually
have better electrical properties, it is common to only specify a minimum allowed layer
and set the maximum allowed layer to the maximum available layer of the chip.
Layer assignments are traditionally done by a timing optimization tool [6, 63, 119].
However, there are several difficulties and disadvantages inherent to this approach:
Firstly, any layer assignment has to be congestion-aware, as assigning too many wires
to the upper layers easily leads to overcongestion. This is usually achieved by having
some sort of congestion estimation during the layer assignment step, but this conges-
tion estimation can never be as accurate as the congestion information that the global
router sees during the actual routing process. Secondly, the layer assignment step can
usually only assign layers to a whole net, while it might actually be sufficient to make
an assignment only for parts of the net (e.g. only wires close to the source, or only the
connection to the critical sink). This can lead to a waste of routing resources. Thirdly,
the layer assignment usually uses delay characteristics of estimated routing trees, and
the actual tree computed by the router might diverge from the estimate.
We deal with this matter in Chapters 5 and 6: Our net router from Chapter 5 can
inherently optimize Elmore delays and make good layer choices on its own. In Chapter 6
we also present a layer assignment algorithm that can assign individual wires of a fixed
two-dimensional routing tree to individual layers, minimizing routing congestion and
Elmore delays. As these approaches are directly integrated into our global routing
algorithm, they do not suffer the disadvantanges of an external layer assignment step
outlined above.
The above considerations also hold true for an externally created wire type assignment —
it faces the same difficulties as an external layer assignment step. In this thesis, we are
able to achieve better results by ignoring the input layer assignment during our net
routing process, but we still adhere to the wire type assignment in the input. General-
izing the results from Chapters 5 and 6 to also include wire type assignments should be
uncomplicated from a theoretical perspective. Working out a well-performing practical
implementation is a possible task for the future.

1.3.2.4.2. Routing Topologies. The routing topology can have a large impact on wire
delays. Here, an intuitive insight is that wire delays depend on the source-sink path
length, which is not necessarily minimized by minimum Steiner trees. However, as

we will see when introducing the Elmore delay model in Section 3.4, source-sink path

1.3. ROUTING 23
S e *—0o—§ S @ L @ S @ @ ®
t
® ® ®
® ® [] ®
® @ L ® [L L] o

(a): A minimum Steiner
tree with presumably bad
delay properties due to
long source-sink paths.
The wire delay to t might
be very large.

(b): Another minimum
Steiner tree where all
source-sink paths are
shortest paths. Wire
delays are better than in
(a), but may still not be
optimal.

(c): Depending on the
instance parameters, this
might be a better tree
than (b) with respect to
the very popular Elmore
delay model. The tree
is longer, but wire delays

may be smaller due to
less capacitance in some
of the subtrees.

FIGURE 1.7. Three Steiner trees for the same net with very different
delay properties. The source pin s is depicted by the red circle, while
black circles depict sink pins.

length is not the only factor influencing wire delays. An illustration of this is given
by Figure 1.7. More details on this topic and an algorithm to compute routing trees
approximately minimizing Elmore delays are given in Chapter 5.

1.3.2.4.3. Timing Criticalities. Another reason why the approach of minimizing total
wire length is not ideal for optimizing timing is that it does not distinguish between
timing-critical and timing-uncritical nets. This can result in detours on timing-critical
nets in favor of timing-uncritical nets. Omne attempt to alleviate this problem is to
minimize the weighted sum of wire lengths over all nets, where more critical nets get
higher weights. Another approach is to put constraints on the wire length of timing-
critical nets, i.e. constraints that require the wire length to be within a certain factor
of the length of an approximately minimum Steiner tree for the given net. Within the
framework of wire length minimization, these measures are certainly useful and required
for attaining good timing results. However, they still address the problem of optimizing
timing during routing rather indirectly, and it is rather difficult to come up with a good
set of such externally imposed constraints in advance. In this thesis, we present a better
approach in Chapter 4, where we map out a global routing framework that can inherently
model timing constraints and balance out timing criticalities during the course of global

routing.

24 1. INTRODUCTION

1.3.3. Track Assignment. Track assignment is an optional intermediate step be-
tween global and detailed routing, where the task is to assign long global wires to routing
tracks. While the primary objective in track assignment is to assign as much wiring as
possible, secondary objectives include optimization of wire length, timing and power
consumption.

The wiring assigned by track assignment should obey most or all minimum distance
rules, but it will probably not satisfy all same-net rules. However, if most of the long
wires have been successfully assigned, the detailed router should subsequently be able
to work mostly locally. This promises reduced detailed routing running times and an
improved quality of results, as the track assignment step has a more global outlook on
the routing problem than the detailed routing step.

In BonnRoute, the track assignment step is currently in development [88] and not in-
cluded in the default routing flow. We therefore run all our experiments without track
assignment. More details on the track assignment problem and heuristics to solve it are
given by Batterywala et al. [9] and Chang and Cong [24].

1.3.4. Detailed Routing. The detailed routing step has to deal with most of the
complexity of the routing step outlined in Section 1.3.1, as in this step the detailed wires
that are later used for manufacturing are computed. However, this is done with the help
of global routing and possibly track assignment: The usual approach here is to route
one net after another and restrict the routing area for every net to an area encompassing
the global routing for the net. This way only a small part of the track graph has to be
considered when routing any given net, making the effective instance size for routing a
single net manageable. At this point it becomes critical that the global router did not
overuse routing capacities, and that the capacity estimation used by the global router
was sound. Otherwise, detailed routing is likely to fail.

If the input from global routing is good, a well implemented ripup-and-reroute heuristic,
i.e. an algorithm that routes nets sequentially with the possibility to rip out parts of
previously routed nets (see e.g. Salowe [101]), is likely sufficient to produce a feasible
detailed routing. If track assignment has successfully been run before detailed routing,
then most long wires might already be in place, and the job of the detailed router might
reduce to resolving local conflicts, accessing pins and fixing design rule violations.

Ripup-and-reroute is also implemented in BonnRouteDetailed, which is the detailed
router that we use for our experiments throughout this thesis. BonnRouteDetailed uses
an efficient implementation of Dijkstra’s algorithm [34] as its path search algorithm and
contains other techniques that improve running time and quality of results. In particular,
BonnRouteDetailed does not only restrict the routing area for a net to a small area
around the global wires, but also sticks to the topology of the global routing with only

1.4. THESIS OVERVIEW 25

local deviations [72]. This is particularly important in the context of timing-aware global
routing, as global topology changes by a timing-unaware (or less timing-aware) detailed
routing algorithm can negatively impact timing. For more on BonnRouteDetailed see
Ahrens et al. [1], Gester et al. [41], Gester [40] and Schulte [111].

1.4. Thesis Overview

After presenting this introductory material, we use this section to give a short overview
on the contents of this thesis. In Chapter 2, we start with basic concepts and definitions
in the context of global routing that are used throughout this thesis. It also presents
the traditional way of formulating the global routing problem, which uses wire length
minimization as objective. Chapter 3 then covers basic concepts of VLSI timing in a
level of detail that is sufficient for the subsequent chapters. In particular, it introduces
the Elmore delay model, which is the delay model that is used throughout this thesis.
Chapter 4 describes our timing-aware global routing framework, i.e. a global routing
framework that improves upon the traditional global routing framework from Chapter 2
by inherently modeling timing constraints. As a subroutine, this framework requires a
timing-aware net router, i.e. in our case a net router that is able to minimize a weighted
sum of congestion prices and Elmore delays. This net router is presented in Chapter 5.
A refinement of the global routing model is then presented in Chapter 6: It outlines a
process to convert a global route that is basically a subgraph of the global routing graph
to a global route that is connecting exact pin and prewire shapes. It can be used for a
more accurate modeling of e.g. timing and routing space usages during global routing.
Moreover, Chapter 6 contains a layer assignment algorithm for minimizing a weighted
sum of congestion prices and Elmore delays and is therefore an extension of the results
from Chapter 5 in that regard. Finally, Chapter 7 presents the aforementioned routing
based optimization step, which allows timing optimization to be performed on a fixed
global or detailed routing that is incrementally updated by our global router in response

to any changes introduced during timing optimization.

CHAPTER 2

Global Routing Basics

In this chapter we describe basic global routing concepts. The contents of this chapter are
closely related to the introductory material from Chapter 1, in particular Section 1.3.2,
which introduces global routing and its purpose in VLSI design. In contrast to Chapter 1,
which presents its contents in a rather informal way, we use this chapter to establish
formal definitions and concepts that are then used in later chapters. We start with a
collection of basic concepts and definitions in Section 2.1, introduce the TRADITIONAL
GLOBAL ROUTING PROBLEM in Section 2.2, and conclude this chapter with a discussion
of the MINIMUM STEINER TREE PROBLEM in Section 2.3.

2.1. Basic Concepts and Definitions

This section provides a collection of basic concepts and definitions that are used through-
out this thesis. It is primarily intended as a reference point when reading later chapters.
We present a number of definitions regarding graphs. As a convention for this thesis,
we usually give these definitions only for directed or undirected graphs. If the definition
is trivially transferable to the other group of graphs, then it is also supposed to hold
for them (unless explicitly stated otherwise). Moreover, we sometimes embed directed
graphs into undirected graphs, or consider subgraphs of undirected graphs as directed
based on some orientation of the edges. In the same manner, we sometimes laxly treat
undirected graphs as if they were directed (also notation-wise), but the meaning should
always be clear in the given context. We start our series of definitions with one regarding

coordinates:

DEFINITION 2.1. For a € R? and d € {z,y, 2} let ag be the coordinate of a in dimension
d.

We shortly introduce our notation to refer to neighbors of vertices in a graph:

DEFINITION 2.2. Let G be a directed graph and v € V(G). Then we define I'g(v) :
I'L(v) UT4(v) to be the neighbors of v, where I'5(v) := {w € V(G) : (v,w) € E(G)}
and I'(v) == {u € V(G) : (u,v) € E(G)}.

27

28 2. GLOBAL ROUTING BASICS

In general, we may leave out the graph subscript if it is clear from the context which
graph is meant. The next definition deals with our notion of graphs and their embedding

into the rectilinear space:

DEFINITION 2.3. Let S C R3. A graph G embedded rectilinearly into S is a graph G
associated with vertex positions p: V(G) — S such that for all (v,w) € E(G) we have
H{d € {z,y,2} : p(v)a # p(w)a}| < 1. Given a graph G, a graph H embedded into G is a
graph H associated with vertex positions p: V(H) — V(G) such that (v,w) € E(H) =
(p(v),p(w)) € E(G) V p(v) = p(w). In that case, we define an extension p: E(H) —
E(G)U{(v,v) : v € V(QG)} by setting p(v,w) := (p(v), p(w)) for (v,w) € E(H). A graph
structure that is not associated with vertex positions is called a topology.

Allowing adjacent vertices of H to be mapped to the same vertex in GG is sometimes
required to enforce a special structure for H. In the sense of Definition 2.3, a graph will
always implicitly be associated with vertex positions p if this makes sense in the given
context. When a graph H is embedded into a graph G, functions on V(G) and E(G)

are extended naturally to H:

DEFINITION 2.4. Let H be a graph that is embedded into another graph G, and let
f:V(G) - X and ¢: E(G) — Y for some sets X,Y be arbitrary functions. If not
explicitly stated otherwise, then we implicitly extend f and g to H by setting f(v) :=
f(p(v)) for v e V(H), and g(v,w) := g(p(v),p(w)) for (v,w) € E(H) with p(v) # p(w)

and g(v,w) := 0 otherwise (assuming Y contains a zero element).
Usually, graphs will be embedded into the layered chip area:

DEFINITION 2.5. The chip area is given by a non-empty rectangle A := (Zmin, Tmax| X
(Ymmin, Ymax] € R2. Given a non-empty set of layers Z := {1,...,n,} for some n, € N,
the layered chip area is defined by S := A x Z.

The chip area in Definition 2.5 is defined half-open as a matter of convenience for sub-
sequent definitions. We categorize the edges of a graph that is embedded rectilinearly

into the chip area into two different classes:

DEFINITION 2.6. Let G be a graph that is embedded rectilinearly into the layered chip
area. Then we partition E(G) := Eyire(G)UEyia(G), where Eyire(G) := {(v,w) € E(G) :
p(v). = p(w).} is the set of wiring edges and Eyia(G) := E(G)\ Eywire(G) is the set of via
edges of G. If H is a graph that is embedded into G, then we set Ewire(H) := {(v,w) €
E(H) : p(v,w) € Eyire(G) Vp(v) = p(w)} and Eyia(H) :={e € E(H) : p(e) € Eyia(G)}.

We continue with pins and nets:

2.1. BASIC CONCEPTS AND DEFINITIONS 29

DEFINITION 2.7. Let S be the layered chip area. The set of pins on the chip is denoted
by II and characterized by a mapping pex: II — S, where pex(7) denotes the ezact shape
of m € II. The netlist N consists of a set of nets such that LiyearN = II. Given a pin

7 € II we let N(m) denote the net containing 7.

The netlist can be organized into a netlist graph as outlined in Section 1.1.3. In prac-
tice, pin shapes are not points, but rectilinear polygons. However, as they are usually
small, modeling them as points as in Definition 2.7 is a reasonable simplification for our
purposes. We now formally define the global routing graph, which has already been
introduced in Section 1.3.2.1:

DEFINITION 2.8. Let S = (Zmin, Tmax) X (Ymin, Ymax) X {1,...,n} be the layered chip
area. Given sequences Tmin = o < 1 < ... < Tp, = Tmax and Ymin = Yo <Y1 < ... <
Yn, = Ymax Of real numbers representing z- and y-cuts for some ng,n, € N, the global
routing tile with tile coordinate (i,j) € {1,...,nz} x {1,...,ny} is defined as A(3, j) :=
(@i—1, 2] % (yj—1,y;], and its tile center is the point p(i, j) := (xl%—m, W) € A(i, j).
The global routing graph is a three-dimensional grid graph G with

o V(G) = {(i,j,k) =1, ng =1,y k= 1n}

o« B(G) = {{(i.5. k), (@, 5", K)} € (VSO) i =i/ 4 15 —) + [k — K| = 1}.
With each vertex (i, j, k) € V(G) we associate a vertex coordinate p(i,j, k) := (p(i,7), k)
and a vertex area A(i,j,k) := A(i,5) x {k}.

The reasoning behind Definition 2.8 is explained in Section 1.3.2. Usually, the global
routing graph is defined to only contain wiring edges expanding into the preference
direction of the given layer. We do not make this distinction in Definition 2.8, but
instead assume that there is no available routing space for wiring edges not expanding
into preference direction of the layer. When not stated differently in the given context,
then G will refer to the global routing graph in this thesis. We note that when a
graph H is embedded into the global routing graph G in the sense of Definition 2.3,
then H may contain many Steiner vertices of degree 2. In practice, one would not
store H in such a way, but allow a single long straight edge in H to correspond to
multiple consecutive edges in G, potentially reducing the number of edges in H by a
large amount. For simplicity of notation and presentation, however, we stick to the
simpler way of embedding H into G given by Definition 2.3.

Traditionally, global routing is considered to output Steiner trees that are subgraphs of
the global routing graph. Here, every pin on the chip is mapped to one vertex of the
global routing graph based on the actual positions of its metal shapes. However, in the
VLSI design flow where our global router is used, the global router must output Steiner
trees that connect to the actual metal shapes of the pins, which are represented in a

30 2. GLOBAL ROUTING BASICS

simplified manner as points by the exact pin shapes from Definition 2.7. Complementary
to exact shapes, we define projected pin shapes that will be used predominantly during

global routing;:

DEFINITION 2.9. Let G be the global routing graph and II be the set of pins. Projected
pin shapes are defined by a mapping pp,: II — V(G). When it is clear from the context,
p(m) for m € II either denotes pex () or ppr(m).

Most of the time pp, () is the vertex whose vertex area contains pex (), but it is generally
also possible to project pins to other vertices, e.g. neighboring vertices in cases where
the capacity estimation is inadequate due to the blockage structure. Analogously to
Definitions 2.7 and 2.9, exact and projected wire shapes can be defined. We refrain from
a technical definition and rather use the term loosely when required. When referring to
nets and pins in this thesis, we will implicitly assume exact and projected pin shapes
to be given through the respective mappings. We can now distinguish between Steiner

trees connecting exact and projected pin shapes:

DEFINITION 2.10. Let S be the layered chip area, G be the global routing graph and
N C N’ for a net N'. A Steiner tree connecting the ezact shapes of N is a Steiner tree
Y with N C V(Y) that is embedded rectilinearly into S such that p(m) = pex(m) for
m € N. A Steiner tree connecting the projected shapes of N is a Steiner tree Y with
N C V(Y) that is embedded into G such that p(7) = py.(7) for 7 € N. When it is clear
or indifferent in a given context, we just refer to a Steiner tree for N to denote a Steiner
tree connecting either the exact or projected shapes of N. Moreover, unless explicitly
stated otherwise, we assume that N is the set of leaves of Y. If applicable, s refers to
the source pin and T' to the set of sink pins of N, and Y is implicitly regarded as an
arborescence rooted at s.

The requirement that N is the set of leaves of Y is not a restriction, but merely a tech-
nicality that eases notation and description at some points — a Steiner tree not fulfilling
this requirement can be transformed into one that does in linear time by introducing
new vertices and edges of length zero and successively removing Steiner vertices of degree
one. Next, we define distances of points in the three-dimensional space or entities that

are embedded into the three-dimensional space:

DEFINITION 2.11. For a,b € R3 we define dist(a,b) := |a; — bz| + |ay — by| to be the
rectilinear distance of the two-dimensional projections of a and b. Let v be either
e a pin with position p(v) € R? (either p(v) = pex(v) or p(v) is the vertex position
of ppr(v)), or
e a vertex of a graph that is embedded onto a position p(v) € R3 (directly or by
a chain of embeddings), or

2.1. BASIC CONCEPTS AND DEFINITIONS 31

e a point in R3, in which case we set p(v) := v.

Let the same hold true for w. Then we set dist(v, w) := dist(p(v), p(w)).

This definition of distances is rooted in our model of having a layered chip area, where
the z-dimension has a different meaning than the z- and y-dimensions and is therefore
treated differently. We also often use the term length in order to refer to distances,
e.g. the length of an edge in a graph is the distance of its endpoints, and the length of
a Steiner tree is the sum of its edge lengths. In the same manner, a shortest Steiner
tree is one minimizing edge lengths. The meaning should be clear in the given context.
Regarding Steiner trees as arborescences allows for the notion of subtrees rooted at

certain vertices:

DEFINITION 2.12. Let Y be a Steiner tree for a net N = {s}UT, where s is the source pin
of N, and assume that Y is directed in such a way that all vertices are reachable from s.
Then Y (v) for v € V(Y') denotes the subtree rooted at v, and T'(Y (v)) :=T NV (Y (v))
denotes the sinks in Y (v). For v,w € V(Y), Py (v,w) denotes the path from v to w in
i_}, where Y is defined by V(l(_/)) =V (Y) and E(i_}) =EY)U{(w,v): (v,w) € E(Y)}.
y) dist(z, y) for v,w € V(Y).

Given that, we set disty (v, w) == 31,) ep(Py (v,

An edge of a graph that is embedded into the chip area corresponds to a line segment:

DEFINITION 2.13. Let S be the layered chip area and a,b € S. Then L(a,b) :=
{pa + (1 — p)b : p € [0,1]} NS denotes the straight line segment between a and b
in S. Additionally, we define L?"(a,b) to be the two-dimensional projection of L(a,b)
(neglecting z-coordinates). If G is a graph that is embedded into S, then we define
L(v,w) := L(p(v), p(w)) and L?P (v, w) := L* (p(v),p(w)) for (v,w) € E(G).

Edges of a graph embedded into the chip area may be subdivided by inserting a new

vertex on the corresponding line segment:

DEFINITION 2.14. Let S be the layered chip area and H be a graph that is embedded
into S. A graph H' is said to originate from H by subdivision of an edge (v,w) € E(H)
if V(H') = V(H)U{x}, BH') = (BH)\{(v,0)}) U{(t,2), (z,)}, and p(x) € L(v,w).
A graph H” is said to be a subdivision of H if H" originates from H through a sequence

of edge subdivisions.
We continue with the bounding boz:

DEFINITION 2.15. Let A C R? or A C R3. Then the bounding box BB(A) C R? of A is
the smallest axis-parallel rectangle containing the two-dimensional projection of A, i.e.

BB(A) := [mingea az, maxae az] X [Minge 4 ay, maxqea ay]. Moreover, if A, A’ ¢ R?

32 2. GLOBAL ROUTING BASICS

and A’ Z R3, is a set associated with positions p: A" — R? or p: A’ — R3, then we set
BB(4’) := BB(p(A')).

We note that similarly to distances we define the bounding box always as two-dimension-
al, even for subsets of R3. The z-dimension will be treated separately in the given
contexts. We conclude this section with a definition that allows for a more convenient
notation:

DEFINITION 2.16. Let X be a set and f: X — R?% d € N, be a function. If applicable
and not explicitly stated otherwise, we define f(X') := > cx/ f(x) for X' C X.

2.2. The Traditional Global Routing Problem

In this section we deal with the traditional way of formulating the global routing problem.
We state the problem definition in Section 2.2.1 and give an overview on previous work
in Section 2.2.2. Background information regarding the global routing problem, which
naturally motivates our formulation of the TRADITIONAL GLOBAL ROUTING PROBLEM,
can be found in Section 1.3.2. This section is only meant to give an overview, but does
not go into much detail. An algorithm by Miiller, Radke and Vygen [87] for solving the
TRADITIONAL GLOBAL ROUTING PROBLEM is described in Section 4.2.

2.2.1. The Problem Formulation. We define the TRADITIONAL GLOBAL ROUT-
ING PROBLEM as follows:

PROBLEM 2.17: TRADITIONAL GLOBAL ROUTING PROBLEM

Input: The global routing graph G, edge lengths I: E(G) — R>g, a netlist N, net
weights w: N — R, routing space usages usg: N’ x E(G) — Rxo.

Task: Find a Steiner tree Yy for all N € N connecting the projected pin shapes of
N such that

Z |{e' € E(Yn) :p(¢') = €}| -usg(N,e) <1 forall e € E(G),
NeN

and
> w(N)-U(E(YN))
Ne~N

is minimized.

For wiring edges (v,w) € E(G) the standard choice is to set [(v,w) := dist(v,w). For
via edges (v, w) € E(G), l(v,w) can be used to express via costs, which can be adjusted
from technology to technology. The edge usages usg(N,e) for (N,e) € N x E(G) are
relative to the routing capacity of e, i.e. we assume unit capacities by adapting the

2.2. THE TRADITIONAL GLOBAL ROUTING PROBLEM 33

usage functions. The seemingly complicated formulation of routing capacity constraints
is owed to the fact that we embed arbitrary Steiner trees into the global routing graph.
In general, this allows for Steiner trees that are using the same edge in the global
routing graph multiple times, which can make sense when computing RC-aware Steiner
trees as in Chapter 5. However, it is easy to see that connecting a net N by a Steiner
tree Yy with |{¢/ € E(Yy) : p(¢/) = e}| > 1 for some e € E(G) is pointless in the
TRADITIONAL GLOBAL ROUTING PROBLEM. In that sense, the TRADITIONAL GLOBAL
RouTING PROBLEM can equivalently be formulated in a model where the Steiner trees
Yyx, N € N, are subgraphs of the global routing graph.

Even simple special cases of the TRADITIONAL GLOBAL ROUTING PROBLEM are N P-
hard: The special case with only one net contains the RECTILINEAR MINIMUM STEINER
TREE PROBLEM [37, 46] (cf. Section 2.3.2), and the special case where usg(N,e) = 1
for all (N,e) € N x E(G) and |N| =2 for all N € N corresponds to the EDGE-DISJOINT
PaTHs PROBLEM IN GRID GRAPHS [112, 118]. The latter example also shows that it
is NP-hard to find any feasible solution, as violating any routing capacity constraint
makes a solution infeasible. In theory, this is reasonable. In practice, however, it is too
rigid — here, one usually wants to minimize routing capacity constraint violations in
cases where no solution obeying all constraints can be found. This is done for example
by the modeling of the TRADITIONAL GLOBAL ROUTING PROBLEM as a MIN-MAX
RESOURCE SHARING PROBLEM by Miiller, Radke and Vygen [87], which we further
examine in Chapter 4.

This formulation of the global routing problem is not inherently timing-aware. To con-
sider timing in an indirect manner, timing-critical nets can be given higher weights.
Moreover, strict adherence to wire type and layer assignments (cf. Section 1.3.2.4.1) can
easily be incorporated by always using the wire type assigned to the net, and setting
usg(N,e) = oo if the layer assignment of N € N forbids the use of e € E(G). An
inherently timing-aware global routing framework is presented in Chapter 4.

2.2.2. Previous Work. Many of the recently published global routing approaches
are based on heuristics which predominantly rely on a method called ripup-and-reroute.
Roughly speaking, this method consists of starting with a reasonable initial solution and
iteratively improving this solution by ripping out and rerouting nets until some abort
criterion is met. The routing techniques used include pattern routing, meaning that only
routes consisting of very simple patterns like L- and Z-shapes may be used, monotonic
routing, meaning that only routes without detours are allowed, and maze routing, which
is the term used for route construction that relies on actual shortest path computations.
The edge costs for the route computations are usually chosen heuristically. Such ripup-
and-reroute techniques are prevalently used among the contestants of the ISPD global

34 2. GLOBAL ROUTING BASICS

routing contests from 2007 and 2008 [66, 67], which we examine in Section 2.2.2.1.
Another method to address global routing is via flow- and LP-based approaches, which
we cover in Section 2.2.2.2. A survey on (early) global routing algorithms is given by
Hu and Sapatnekar [61].

2.2.2.1. The ISPD Global Routing Contests. Noteworthy in the context of devel-
opment of global routing algorithms are the ISPD global routing contests 2007 and
2008 [66, 67], where problem formulation and evaluation metrics result in a global
routing problem that is very similar to the TRADITIONAL GLOBAL ROUTING PROB-
LEM. Here, most top-ranked contestants use techniques that are similar (but not lim-
ited) to the ripup-and-reroute techniques explained above. The contestants include
NTHU-Route [25], FastRoute [124], MaizeRouter [81], FGR [98], BoxRouter [26] and
Archer [89]. A survey is given by Moffitt et al. in [83].
Compared to industrial global routing instances, the benchmarks used for the ISPD
contests are significantly simplified. In particular, each net consumes the same amount
of routing space across all layers, which is usually not given in practice. Moreover, via
usages are ignored. This makes it natural to consider a simplified instance with only
two layers and perform a layer assignment afterwards. An analysis of this matter and
the global routing problem in general is given by Moffitt [82].

2.2.2.2. Flow- and LP-Based Approaches. Theoretically more profound approaches
for solving the TRADITIONAL GLOBAL ROUTING PROBLEM were first obtained through
flow-based and integer linear programming formulations of global routing. An early
work in this category is given by Shragowitz and Keel [113], who deal with a special
case of the TRADITIONAL GLOBAL ROUTING PROBLEM where |N| =2 for all N € N,
which is also a special case of the well known MINIMUM COST MULTI-COMMODITY
Frow PROBLEM. They start with a cost-optimal solution ignoring routing capacities
and reduce overflow afterwards by an iterative method that bears resemblance to the
ripup-and-reroute approaches mentioned earlier. A multi-commodity flow formulation
of the global routing problem is also solved by Carden, Li and Cheng [22]. In contrast
to [113], their formulation can also handle multi-terminal nets. Wu et al. [123] use an
integer linear programming formulation of the global routing problem: They subdivide
the global routing problem into smaller subproblems on rectangular regions on the chip
and solve these subproblems via integer linear programming allowing only a predefined
set of candidate routes.
Raghavan and Thompson [93] give a linear programming formulation of the global rout-
ing problem that is based on multi-commodity flows. They show how to use a randomized
rounding technique [92] to get an integral solution whose deviation from the LP solu-

tion can be bounded. However, they do not outline a method to solve the underlying

2.3. THE MINIMUM STEINER TREE PROBLEM 35

linear program. This is addressed by Albrecht [2], who uses a modified version of the
multi-commodity flow approximation algorithm by Garg and Koénemann [38, 39| to
solve a linear programming formulation of the global routing problem. Follow-ups of
this approach are given by Vygen [117], who also incorporates delay bounds and power
minimization, and Miiller [85], who incorporates optimization of manufacturing yield.
Finally, Miiller, Radke and Vygen [87] formulate global routing as a more general MIN-
MaX RESOURCE SHARING PROBLEM and present an approximation algorithm to solve
it. We examine their approach in more detail in Section 4.2 and extend it in Section 4.3

to incorporate timing constraints.

2.3. The Minimum Steiner Tree Problem

As different variants of the well-known MINIMUM STEINER TREE PROBLEM appear as
subproblems in different parts of this thesis, we shortly introduce them in this section.
Instead of pins that are embedded into the global routing graph or the layered chip area,
we conventionally speak of terminals that are embedded into a general graph or R? in
this section. However, apart from that, the notation from Section 2.1 is used.

2.3.1. The Minimum Steiner Tree Problem in Graphs. We start with the
MINIMUM STEINER TREE PROBLEM IN GRAPHS:

PROBLEM 2.18: MINIMUM STEINER TREE PROBLEM IN GRAPHS
Input: A graph G, edge costs c: E(G) — R, a set of terminals N that are embed-
ded into G.
Task: Find a Steiner tree Y for N minimizing ¢(E(Y)).

This problem is known to be N P-hard [70], but efficient constant-factor approximation
algorithms exist. The best known approximation guarantee of 1.39 is achieved by the
algorithm of Byrka et al. [21]. The running time is polynomial, but for our purposes
presumably too large in practice. A fast running time can be achieved by making use
of the fact that a minimum terminal spanning tree in the metric closure of G yields an
approximation ratio of 2 for the MINIMUM STEINER TREE PROBLEM IN GRAPHS (see
e.g. [75]). In our implementation we use an algorithm that is essentially the Standard
Block Solver described by Miiller [86] (Section 4.7.3), which iteratively connects con-
nected components of wires and pins by shortest path computations until the whole net
is connected. We will not elaborate on this any further in this thesis, but rather point to
the description given in [86]. An overview on the MINIMUM STEINER TREE PROBLEM
IN GRAPHS can be found in the book of Korte and Vygen [75].

36 2. GLOBAL ROUTING BASICS

2.3.2. The Rectilinear Minimum Steiner Tree Problem. The RECTILINEAR
MINIMUM STEINER TREE PROBLEM is of major importance in VLSI design due to the
fact that wires are required to run parallel to the z- or y-axis. It can be formulated as
follows:

PROBLEM 2.19: RECTILINEAR MINIMUM STEINER TREE PROBLEM
Input: A set N of terminals that are embedded into R2.
Task: Find a Steiner tree Y for N minimizing >, ,,yeg(y) dist(v, w).

Here, dist refers to the rectilinear distance as in Definition 2.11. The RECTILINEAR
MINIMUM STEINER TREE PROBLEM can be reduced to the MINIMUM STEINER TREE
PROBLEM IN GRAPHS through the use of the Hanan grid [46], and it is also NP-
complete, as was shown by Garey and Johnson [37].

When it comes to solving the RECTILINEAR MINIMUM STEINER TREE PROBLEM, poly-
nomial time approximation schemes by Arora [7] and Rao and Smith [94] exist. However,
as running time is critical in our scenario, we use a different approach: If the number of
terminals does not exceed 8, then we use the optimal algorithm by Chu and Wong [27],
which is based on a lookup table and runs very fast in practice for small terminal sets. In
our application, this already covers the majority of the cases. For larger terminal sets, we
use different approximation algorithms depending on the size of the terminal set. Here,
one can make use of the fact that a minimum terminal spanning tree already provides a
1.5-approximation for the RECTILINEAR MINIMUM STEINER TREE PROBLEM [65].

2.3.3. The Rectilinear Minimum Steiner Tree with Prewires Problem. We
now describe a variant of the RECTILINEAR MINIMUM STEINER TREE PROBLEM where
we are already given prewires that are free to use. This will be important in Chapter 7,

where we often start with a set of wires that almost connect our terminal set:

PROBLEM 2.20: RECTILINEAR MINIMUM STEINER TREE WITH PREWIRES PROBLEM

Input: A set of terminals N that are embedded into R? and a Steiner forest Y
connecting a subset Ng C N (possibly Ny = 0).

Task: Compute a subgraph Y of a suitable subdivision of Y and a Steiner tree Y for
N with E(Yy) C E(Y) such that 2 (ww)eB()\E(y;) dist(v, w) is minimized.

Here, the Steiner forest Yy may contain Steiner vertices of degree 1. In our application,
Yy will usually be a Steiner tree. Clearly, the problem is N P-hard, as it contains the
RECTILINEAR MINIMUM STEINER TREE PROBLEM. We will therefore use an approxi-
mation algorithm to solve it. This algorithm has been developed and implemented by

2.3. THE MINIMUM STEINER TREE PROBLEM 37

Rodion Permin and works like this: It first computes a minimum spanning tree X on
the complete graph G with cost function c¢: E(G) — R>q, where

o V(G) = N UM, where M is the set of connected components of Yp,
e ¢({v,w}) is the minimum rectilinear distance between any two points in A(v)
and A(w), where A(u) for u € V(G) is defined by A(u) := {(p(w)z, p(u)y)} if
u € N, and A(u) = Ueep(u) L?P(e) if u € M (cf. Definition 2.13).
The algorithm then decomposes X into maximum subgraphs Xi,..., X such that
|0x,(z)| =1 for every x € V(X;)NM,i=1,..., k. Thereafter, every X;, i =1,...,k, is
replaced by an approximately minimum rectilinear Steiner tree, where connection points
at prewire components are chosen to minimize the distance to their neighbor in the re-
spective subgraph X;. The individual rectilinear Steiner trees are computed as outlined
in Section 2.3.2.
This process results in a solution of the RECTILINEAR MINIMUM STEINER TREE WITH
PREWIRES PROBLEM. It can be shown that this algorithm is a 1.5-approximation al-
gorithm for the RECTILINEAR MINIMUM STEINER TREE WITH PREWIRES PROBLEM,
which is basically due to the fact that a rectilinear minimum spanning tree is an 1.5-

approximation for a minimum rectilinear Steiner tree [65].

CHAPTER 3

VLSI Timing Basics

As one of the main focuses of this thesis is to provide a timing-aware global routing
framework, we use this chapter to shortly explain a few basic concepts in the field of
VLSI timing that are necessary for understanding our approach. We start with the
basic notion of a signal and its associated parameters in Section 3.1 and then continue
with our definition of the timing graph in Section 3.2. In Section 3.3 we formulate tim-
ing constraints and show how to check them using static timing analysis. Section 3.4
then introduces the Elmore delay model, which is the central delay model that is used
throughout this thesis. Finally, Section 3.5 explains slew and capacitance limits. Gen-
erally, most of the material presented in this chapter is strongly simplified in order to
match the purpose of this thesis without going into too much detail. A more detailed

description of the topics presented here is given by Sapatnekar [104].

3.1. Signals

The logical state of a digital electronic circuit at any given point in time can be described
by mapping every pin to a finite set of possible values. In our context, this set only
contains the values 0 and 1, which are physically represented by two voltage levels Vg
and Vgyq. Here, Vi, often also called ground, is the reference point with value 0, while
Vaq represents value 1. A signal can then be regarded as a voltage change at a given
pin. However, this voltage change does not occur instantly, but gradually over a period
of time. To deal with this, we identify a signal with the two parameters arrival time
and slew: The arrival time is the point in time when the voltage reaches 0.5Vyq4, while
the slew is the transition time between 0.1Vyq and 0.9Viq.! This concept is illustrated
by Figure 3.1.

3.2. The Timing Graph

As we use a rather simple timing model throughout this thesis, we also use a rather simple
timing graph, which is basically a condensed version of the netlist graph introduced
in Section 1.1.3. Our timing graph D is an acyclic digraph with vertex set V(D) =
Vin U Vout U Vgate, where Vi, comprises the primary input and latch output pins on the

lof course, other voltages might also be chosen for this definition.

39

40 3. VLSI TIMING BASICS

voltage

0.9Vaqa +

0.5Vaq 1+

0.1Vaqa +

arrival time

time

slew

FiGURE 3.1. Illustration of a rising signal changing the voltage from Vg
to Vaq. Arrival time and slew of the signal are marked in blue.

chip, Vout the set of primary outputs and latch inputs and Vgate the set of input pins of
gates. The edges of D correspond to signal propagation: D contains an edge (u,v) if
and only if either u € Vi, and v is a sink pin of the net driven by u, or if u € Vgate and
v is a sink pin of a net driven by an output pin of the circuit that has u as input pin.
This construction is illustrated by Figure 3.2.

If the number of input pins of each gate is bounded by a small constant, which is usually
given in practice, then we have |[E(D)| = O(|V(D)]). In cases where gates with a large
number of input pins exist, additional vertices can be added to the timing graph to

achieve a linear number of edges again.

3.3. Timing Constraints

There are several methods to formulate timing constraints on a chip. In Section 3.3.1 we
give a simple exponential model as an introduction, and then turn towards the better
method of checking timing constraints via static timing analysis in Section 3.3.2. In this
context it is important to note that we only address late mode timing in this thesis. To
obtain a working chip, one must also consider early mode timing, i.e. making sure that
certain signals do not arrive too early. However, as fulfilling late mode timing constraints

is the main challenge during timing optimization, we neglect early mode timing.

3.3. TIMING CONSTRAINTS 41

1 @
\
\)—, ——p-Q@ U1
T2 @
Y2
x3

Ficure 3.2. Illustration of the timing graph D from Section 3.2: The
picture shows the netlist from Figure 1.2. Signals flow from left to right,
which means that we have Vi, = {x1, 22, 23}, Vour = {y1, 92}, and Viate
consists of the input pins of the two gates. This results in the timing
graph drawn in red.

3.3.1. Path-Based Timing Constraints. In this section we give a simple expo-
nential size method to clarify the concept behind timing constraints. Assume we are
given arrival times at: Vi, — R, required arrival times rat: Vo — R and signal delays
d: E(D) — R>¢. Let P contain all paths in D that start in a vertex in Vi, and end in
a vertex in Vou, and for P € P let s(P) and ¢(P) denote the start and end point of P,

respectively. Then timing constraints can be expressed by the inequalities
at(s(P)) + Z d(e) < rat(t(P)) for all P € P. (3.1)
e€E(P)
Of course, |P| can be exponential in the size of D, which makes this method to express

timing constraints impractical. We therefore introduce a better method in Section 3.3.2,
which allows expressing and checking timing constraints in polynomial time.

3.3.2. Static Timing Analysis. As in Section 3.3.1 we assume here that we are
given arrival times at: Viy — R, required arrival times rat: Voyy — R and signal de-
lays d: E(D) — R>p. We extend the arrival times to V(D) by propagating them in
topological order through D: For v € V(D) \ Vi, we set

at(v) := max{at(u) + d(u,v) : (u,v) € d,(v)}.

42 3. VLSI TIMING BASICS

In the same manner, we extend the required arrival times to V(D) by propagating them

in reverse topological order through D: For v € V(D) \ Vout we set
rat(v) := min{rat(w) — d(v,w) : (v,w) € 55 (v)}.
For every v € V(D) we can now define the slack at v as
slack(v) := rat(v) — at(v).

It is now straightforward to check that the inequalities (3.1) from Section 3.3.1 are
fulfilled if and only if slack(v) > 0 holds for all v € V. In that sense, we define the
worst slack (ws) as

ws := min{slack(v) : v € Vou }

and the figure of merit (fom) as
fom := Z min{slack(v) — slacktgt, 0},

vEVout

where the slack target slacktgt is a parameter that is usually in the range of 5 to 10
picoseconds for our test cases. The denotation "figure of merit” is quite generic but
commonly used, and sometimes the more expressive term ”sum of negative slacks” is
used instead. We note that as a result of a positive slack target it might happen that
the figure of merit is strictly negative, although the worst slack is non-negative. The
worst slack and the figure of merit are the quantities that we use to measure the quality
of timing results throughout this thesis. As already stated in the introduction to this
section, this was only a very coarse and simplified overview on static timing analysis. A
detailed description is given by Sapatnekar [104].

3.4. The Elmore Delay Model

In this section we are going to introduce the FElmore delay model, which is the delay
model that we use for our internal delay computations. We start with a short general
introduction to the Elmore delay model in RC trees in Section 3.4.1 and then describe
how to apply it in our global routing context in Section 3.4.2. Major parts of this section

are adopted from our paper [108].

3.4.1. The Elmore Delay Model in RC Trees. The Elmore delay model is a
rather simple method to approximate the signal delay through what is called an RC
tree. It was originally introduced by Elmore [35] in 1948 and later on extended by
Rubinstein, Penfield and Horowitz [99], who also give a simple formula that can be used
for fast computation. Their model works in a tree structured network consisting of a
discrete number of resistors and capacitors, where each resistor has a fixed resistance
and each capacitor has a fixed capacitance. We number the k resistors and n capacitors

3.4. THE ELMORE DELAY MODEL 43

FiGURE 3.3. An RC tree with seven resistors and six capacitors: The
subtree rooted at the green resistor 2 contains the five red capacitors
2,3,4,5 and 6. Therefore, resistor 2 imposes a delay of Ry - OOV =
Ry - (Co+ C3+ Cy+ C5 + Cg). In the same way, the delay imposed by
resistor 6 amounts to Rg - (C5 + Cg). One can see that resistors closer
to the root have a higher downstream capacitance and therefore impose
higher delays per resistance unit.

for some k,n € N consecutively with resistances Ry, ..., R and capacitances C1, ...,Cy,
respectively, and let Cz-down for i € {1,....,k} denote the sum of capacitances of the
capacitors in the subtree rooted at resistor ¢. Rubinstein, Penfield and Horowitz show
in [99] that the Elmore delay at capacitor j is then given by 3, I R; - C’Zdown, where
I; C {1,...,k} denotes the set of resistors on the path from the root to capacitor j.
Figure 3.3 gives an illustration of this.

We omit their definition of an RC tree at this point but rather give a graph theoretical
interpretation with emphasis on our application. In this regard, an RC tree can be
modeled as a directed Steiner tree Y with a source s € V(YY) and sinks 7 C V(Y'), where
s is the origin of the signal and the orientation of the edges corresponds to the direction
in which the signal propagates. Here, the source s is regarded as a resistor with resistance
R(s) > 0 and the sinks are regarded as capacitors with capacitances C(t) > 0,t € T.
Fach edge in the tree corresponds to a metal wire, which is simultaneously a resistor
with resistance R := Ryire - [and a capacitor with capacitance C := Cyjre - I, where [
is the length of the wire and Ryire, Cwire = 0 are given constants. Steiner points do not
have any resistance or capacitance.

To match the previous model, a wire with resistance R and capacitance C is divided into
two capacitors with capacitance C'/ 2 and one resistor with resistance R in between, or
alternatively (and equivalently) into two resistors with resistance R /2 and one capacitor
with capacitance C in between. It can be shown that in terms of Elmore delay, this is

44 3. VLSI TIMING BASICS

) I, W
T T TOTTTT

FIGURE 3.4. A wire with resistance R and capacitance C is modeled as
two capacitors with a resistor in between (left). In terms of Elmore delay,
it is equivalent to modeling it as two resistors with a capacitor in between
(center). It is also the same as modeling it as k alternating resistors and
capacitors and taking the limit for £ — oo (right shows k = 4).

exactly the limit of dividing the wire into k alternating resistors and capacitors with
resistance R / k and C / k, respectively, when k goes to infinity. An illustration is given
by Figure 3.4.

3.4.2. Application in Global Routing. Based on the preparatory work from
Section 3.4.1 we can state a definition of Elmore delay that is geared to VLSI routing.

Here, we use some of the notation from Definitions 2.12 and 2.16:

DEFINITION 3.1. Assume we are given a Steiner tree Y rooted at s € V(Y), a set of
sinks 7' C V(Y'), a source resistance R(s) € Rxg, sink capacitances C: T — R>(and
edge resistances and capacitances R,C: E(Y) — R>q. Then we define the downstream

capacitance of v € V(Y') as
C(Y(v)) = C(EY (v) + C(T(Y (v))),

which allows us to define the Elmore delay from s tot € T in'Y as

C(v,w
dy (t) := R(s) - C(Y(s)) + Z R(v,w) <(2) + C(Y(w))) .
(v,w)EE(Py (s,t))
We call the term R(s) - C(Y(s)) the source delay and the term
2 ()€ B(Py (s,t)) (0, W) (Clow) 4 C(Y(w))) the wire delay from s to ¢ in Y.

A great advantage of the Elmore delay model is that it can be computed in linear time by
first computing the downstream capacitances C'(Y (v)),v € V(Y), in reverse topological
order, and then computing the delay to all vertices in topological order. This way it is
fast to compute while being reasonably accurate in most cases. It has been shown by
Boese et al. [16] that even in cases where it is not very accurate, it is still a high fidelity
estimate, which means that improving Elmore delay will almost certainly improve delay
simulated by very accurate tools that are too computationally expensive to be called
more often than a very few times in the VLSI design flow. For these reasons, the Elmore

3.4. THE ELMORE DELAY MODEL 45

delay model has been the delay model of choice in VLSI design for the last decades. For
more on it, see also Gupta et al. [44], Peyer [90] or the book of Celik et al. [23].

To apply Definition 3.1 in the context of global routing, we need to clarify how the edge
resistances and capacitances used in the definition are obtained:

DEFINITION 3.2. Let S = A x Z with Z = {1,...,n,} be the layered chip area, G be
a graph that is embedded rectilinearly into .S, and assume that we are given functions
Ryire, Cwire, Rvia: Z — R>o. We first define an extension Ryia: Z 2 R>q by setting

max{z1,z2}—1

Rvia(zl, 2’2) = Z Rvia(z)

z=min{z1,22}

for (21,22) € Z2. Then for (v,w) € E(G) and z, := p(v)., 2y := p(w), we define

Rwire(zv) : diSt(U,’w) if zy, = 2y,

R(v,w) := '
Rvia(zva zw) if 2y 7& 2w

Cwire(»%) ~dist(v,w) if zy = 2y,

Cv,w) := '
0 if zy # 2z,

as the resistance and capacitance of (v, w), respectively.

This definition of wire and via RC values is in sync with the modeling of wires in RC
trees from Section 3.4.1. The functions Ryire, Cwire and Ryi, are assumed to be given
as part of the technology parameters. They are also dependent on the wire type that
is used: Thicker wires have less resistance and more capacitance, and the (coupling)
capacitance of a wire decreases as its spacing to neighboring wires increases. However,
as we will always be using one fixed wire type when routing a certain net, we can assume
that the functions Ryire, Cwire and Ryin are applicable to all wires as long as the net is
fixed. Here, the value Ryia(n,) is actually irrelevant, but we still include it for ease of
notation.

We note that when a graph H is embedded into another graph G (e.g. a Steiner tree
into the global routing graph) and resistances and capacitances are defined for E(G),
then these resistances and capacitances are naturally extended to E(H) through Defi-
nition 2.4. One more thing to remark is that we always assume zero via capacitances
throughout this thesis. The reason is that via capacitances are small in current tech-
nologies and are therefore assumed to be zero in our data set. Making use of this will
simplify some of our results. It is also worth mentioning that Definitions 3.1 and 3.2
are well-behaved with respect to insertion of Steiner points of degree 2: If an edge is
subdivided by a Steiner point of degree 2 (in the sense of Definition 2.14), then the
Elmore delay will not change. This can be proven by a straightforward computation.

46 3. VLSI TIMING BASICS

Finally, we assume the source resistance and sink capacitances in Definition 3.1 to be
given in the input. Depending on the timing engine that is used in the VLSI design flow,
these values might not be retrievable in this simple form — for instance, driver delays
are modeled by more complex functions in the IBM design flow where BonnRouteGlobal
is used. In that case, approximations have to be used. We conclude this section with a
simple identity:

LEMMA 3.3. Let Y be a Steiner tree and c¢,d: E(Y) — R. Then we have

Z c(v,w) Z d(z,y) = Z d(z,y) Z c(v,w).

(v,w)eE(Y) (zy)eE(Y (w)) (zy)eB(Y) (v,w)EE(Py (s,z))
PrOOF. For (v,w), (z,y) € E(Y) we have (z,y) € E(Y(w)) < (v,w) € E(Py(s,x)),
so on both sides of the equation the same summands appear. O

Letting ¢ be edge resistances and d be edge capacitances, this lemma implies an alter-
native way of expressing the sum of all wire delays (accumulated over all edges) in the
tree. However, the functions ¢ and d can be arbitrary. Lemma 3.3 will be helpful in
subsequent chapters dealing with Elmore delays.

3.5. Slew and Capacitance Limits

As delay computations are only reliable within certain slew and downstream capacitance
ranges, additional constraints called slew limits and capacitance limits have to be obeyed.
This means that for every sink pin ¢ (i.e. primary output or circuit input pin) on the chip
we are given an interval [slewmin(t), slewmax(t)] C R>p, and the slew of any signal at ¢
must be contained in this interval. Similarly, the capacitance of the net driven by any
source pin s (i.e. primary input or circuit output pin) must be contained in an interval
[capmin(s), capmax(s)] € R>g. These intervals depend on the circuit of the given pin or
are asserted for primay input and output pins. Here, the difficult task is to satisfy the
maximum limits, i.e. letting slews and capacitances not become too large.

We will not be modeling these constraints directly within our framework, although at
least modeling capacitance limits would be straightforward in the resource sharing frame-
work presented in Chapter 4. However, we will often list electrical violations, i.e. the
number of violations of slew and capacitance limits, as a metric in our various experi-
mental results sections. As a rule of thumb, one can say that with respect to routing,
improving slews correlates well with improving RC delays, and satisfying capacitance

limits can be achieved by keeping Steiner trees short.

CHAPTER 4

Global Routing with Timing Constraints

In this chapter we present a global routing framework that directly models timing con-
straints as formulated in Section 3.3. Before diving into this framework, we give an
overview on previous work regarding timing-aware global routing in Section 4.1. Af-
terwards, we outline how to generally model global routing as a MIN-MAX RESOURCE
SHARING PROBLEM in Section 4.2. Lastly, Section 4.3 constitutes the centerpiece of this
chapter, as it describes how to incorporate timing constraints into the global routing
framework from Section 4.2.

The modeling of global routing as a MIN-MAX RESOURCE SHARING PROBLEM and the
algorithm used to solve it are due to Miiller, Radke and Vygen [87]. The incorporation
of timing constraints is joint work with Stephan Held, Dirk Miiller, Daniel Rotter, Vera
Traub and Jens Vygen [53]. The paper [53] is based on the two conference papers [54]
and [107], but also contains extensions and improvements. Here, we present the essential
points of [53], but refer the reader to the paper for some of the proofs. Major parts
of [53] — and therefore also major parts of this chapter — are also already published
in [97].

The framework presented in this chapter will use the RC-aware routing oracle from
Chapter 5 as a central subroutine. We therefore do not present experiment results
in this chapter. Instead, the experimental results presented in Section 5.5 cover our

combined results from this chapter and Chapter 5.

4.1. Previous Work

There have been several approaches to consider timing constraints during global routing.
Huang et al. [64] enforce net-based delay bounds by disregarding Steiner trees violating
these bounds. This approach is extended by Hong et al. [57]: They use path-based delay
bounds and accept subpar delays in individual nets as long as their path-based bounds
are satisfied. Samanta et al. [102] restrict the choices for a tree for a net to a set of
pre-computed timing-driven Steiner trees. They then compute a convex combination of
those pre-computed trees for each net minimizing total quadratic overflow.

Delay bounds are also used by Vygen [117], who describes an approach where delay
bounds can be imposed on certain subsets of nets, e.g. on the critical paths on the

47

48 4. GLOBAL ROUTING WITH TIMING CONSTRAINTS

chip. His approach is closely related to the modeling of global routing as a MIN-MAX
RESOURCE SHARING PROBLEM that we describe in Section 4.2. As such, delay bounds
are not hard constraints, but violations of delay bounds and violations of routing capacity
constraints are minimized simultaneously.

Following a different approach, Hu and Sapatnekar [62], Yan and Lin [126] and Yan
et al. [125] embed timing-driven Steiner trees congestion-aware into the global routing
graph. They use various different techniques for reducing congestion, e.g. making use of
the flexibility that is given by changing the embedding of diagonal edges.

Lastly, Albrecht et al. [3] combine buffering and global routing: For the special case
where all nets have two terminals, they can give a fully polynomial time approximation
scheme for minimizing a weighted sum of buffer and wire area given buffer congestion,
wire congestion, and sink delay constraints.

4.2. Global Routing as Min-Max Resource Sharing Problem

In this section we introduce the MIN-MAX RESOURCE SHARING PROBLEM, present
an algorithm by Miiller, Radke and Vygen [87] to efficiently solve it, and show how the
TRADITIONAL GLOBAL ROUTING PROBLEM can be modeled as a MIN-MAX RESOURCE
SHARING PROBLEM. We start with the formulation of the MIN-MAX RESOURCE SHAR-
ING PROBLEM:

PRrROBLEM 4.1: MIN-MAX RESOURCE SHARING PROBLEM

Input: A finite set R of resources, a finite set C of customers, a convex set B, of
possible solutions for each ¢ € C, convex functions usg,,: B. — Rx¢ for all
(c,7) € C X R, oracle functions f.: R, — B, for all ¢ € C.

Task: Find a solution b(c) € B, for all ¢ € C_approximately attaining

A* = inf { max Zusgcm(b(c)) :b(c) € Be (c e C)}

reR vec

The value usg,.,.(b) for (¢,r) € C x R and b € B. denotes the fraction of resource r that
is used by solution b for customer c. The sets B., ¢ € C, are called blocks, and they are
usually not given as an explicit list. Instead, we assume that we are given oracle functions
that can optimize linear functions over the blocks. To be precise, an oracle for a customer
c € C is a function f.: R7§0 — B, that gets resource prices price(r), r € R, as input, and
computes a solution b € B, approximately minimizing >, . price(r) - usg, ,(b). In our
application, all blocks will be compact. Therefore, the infimum in the objective function
will always be attained.

4.2. GLOBAL ROUTING AS MIN-MAX RESOURCE SHARING PROBLEM 49

If we model the TRADITIONAL GLOBAL ROUTING PROBLEM from Section 2.2 without
the wire length objective function as a MIN-MAX RESOURCE SHARING PROBLEM, then
R equals F(G), C equals N, By for N € N is the convex hull of the set of Steiner trees
connecting N (in some adequate representation), and usgy .(Y’) for a Steiner tree Y for
N equals usg(N,e) if Y uses e, and 0 otherwise. The oracle function for each customer
would be an algorithm for the MINIMUM STEINER TREE PROBLEM IN GRAPHS (cf.
Section 2.3.1). A* then is the best attainable maximum edge usage, and it exceeds 1
if and only if the given instance of the TRADITIONAL GLOBAL ROUTING PROBLEM is
infeasible. Therefore, it follows that the MIN-MAX RESOURCE SHARING PROBLEM is
NP-hard (cf. Section 2.2.1).

Algorithm 1 Resource Sharing Algorithm
Input: An instance of the MIN-MAX RESOURCE SHARING PROBLEM, 7 > 0, pmax € N.

Output: A convex combination) ,cp w.pb for all c € C.
1: Set price(r) :=1 for all » € R.
2: Set X.:=0forallceC and z.; := 0 for all c€ C and b € B..
3: for p =1 to pmax do
4: while there exists ¢ € C with X. < p do

5: Let ¢ € C with X, < p.

6: Set b := f.(price).

7: Set £ := min {p — X, min{1 /usg,.,.(b) : usg.,(b) > 0,7 € R}}
8: Set xep = oy + &, Xe = X+ &

9: for all r € R do
10: price(r) := price(r) - €7€"58e.r(®),

11: Set 2cp = Zcp / Pmax for all c € C and b € B..

In order to solve the MIN-MAX RESOURCE SHARING PROBLEM we can apply the ap-
proximation algorithm of Miiller, Radke and Vygen [87], which is given as Algorithm 1.
This yields the following result:

THEOREM 4.2 (Miiller, Radke, Vygen [87]). One can solve the MIN-MAX RESOURCE
SHARING PROBLEM with approzimation ratio o(1 + w) for any w > 0 in O(O(|C| +
|R|)log |R|(loglog |R| +w™2)) time. Here, ¢ > 1 is a constant bounding the approzima-
tion ratio of the oracle functions and 6 is the time for an oracle call. If% <\ <2, the
running time reduces to O(0(|C| + |R|)w™2log|R]).

The parameters v and pmax are chosen depending on the given instance and the desired
approximation guarantee. The iterations of the outer for-loop from line 3 to 10 are

50 4. GLOBAL ROUTING WITH TIMING CONSTRAINTS

called phases. In each phase of the algorithm the oracle is called at least once for every
customer with the current prices as input (line 6).! If the solution b returned by the
oracle does not overuse any resource, then b is taken with a coefficient of p — X, and the
customer is not processed in the same phase again. If it overuses a resource, then the
coeflicient can be smaller, and it may be necessary to process the customer in the same
phase again (line 7). The prices of used resources are then increased by a multiplicative
update rule (line 10). In that sense, the price of a resource depends exponentially on
its total usage. After the specified number of phases has been executed, the algorithm
returns a convex combination of solutions for every customer (line 11). As the blocks
B, ¢ € C, are convex, this is a feasible solution for the MIN-MAX RESOURCE SHARING
PROBLEM.

However, depending on the application, the convex combination returned by Algorithm 1
might not be a feasible solution for the original problem that was modeled as a MIN-MAX
RESOURCE SHARING PROBLEM. For instance, in the case of the TRADITIONAL GLOBAL
RouTING PROBLEM, Algorithm 1 would return a convex combination of Steiner trees
for every net, which is not a feasible solution for the TRADITIONAL GLOBAL ROUTING
PROBLEM. In that case, randomized rounding can be applied:

THEOREM 4.3 (Miiller, Radke, Vygen [87]). Consider an instance of the MIN-MAX RE-
SOURCE SHARING PROBLEM, and for each ¢ € C let (z.p)pcp, be non-negative numbers
with Y e p, Tep = 1. Let X := max,er Y cec D peB, Tep - USE (D).

Consider a randomly rounded solution that is obtained by picking a solution b € B,
for every ¢ € C with probability x.p. For each ¢ € C let b(c) be the randomly picked
solution and \ 1= max,er Y qcc usg...(b(c)). Forr € R let p, := max{usg.,(b) / A :
c€C,be Be,xey, > 0}, and let 6 > 0. Then A < M1 + 6) with probability at least
1= er e 90/ where g(8) := (14) In(1 +6) — 4.

This result is taken from Miiller, Radke and Vygen [87], and it uses results from Ragha-
van and Thompson [92].

In practice, the rounded result is usually significantly worse than the fractional solution.
To overcome this problem, one can try to restore the quality of the fractional solution
heuristically. In our implementation in the global routing context, this routine is called
Rechoose and Reroute. 1t is called after randomized rounding and can pick other solutions
from the pool of fractional solutions or reroute nets if no adequate solution is available.
Moreover, other approaches for performing the rounding step exist. A comparison of
different rounding techniques is given by Bihler [10].

ITg save running time, we use a mechanism in our implementation to skip the computation of a solution

for a customer if the solution from the previous phase is already ”good enough”. For simplicity, we
neglect that in our description of the algorithm.

4.3. INCORPORATING TIMING CONSTRAINTS 51

Due to its generality, the resource sharing framework can be used to model various
constraints and objectives in the context of global routing. In the TRADITIONAL GLOBAL
ROUTING PROBLEM, the objective of minimizing weighted wire length can be modeled by
adding an additional resource that represents total weighted wire length and is consumed
by every net. Here, one would need to set up a reasonable capacity for this resource
in advance (which is then scaled to 1 by adapting the usage functions). This capacity
could be obtained by using binary search or taking a good guess. It is also possible
to use heuristic methods that adapt the capacity of this resource during the course of
the algorithm, as outlined by Miiller [86] (Section 4.7.1), as running the global router
several times during a binary search is not desirable in practice. Moreover, Miiller [85],
Vygen [117] and Miiller, Radke and Vygen [87] show how to model power consumption
and yield as objectives. A further advancement here is the incorporation of timing

constraints, which is shown in Section 4.3.

4.3. Incorporating Timing Constraints

In this section we show how to incorporate timing constraints into the resource sharing
framework from Section 4.2. This section is built upon the concepts introduced in Chap-
ter 3. In particular, our algorithm is working on the timing graph D from Section 3.2,
and the timing constraints that are modeled here are equivalent to the ones introduced in
Section 3.3. As already mentioned in the introduction of this chapter, the incorporation
of timing constraints into the resource sharing framework is joint work with Stephan
Held, Dirk Miiller, Daniel Rotter, Vera Traub and Jens Vygen [53].

4.3.1. The Timing Model. Our new approach builds on the modeling of the TRA-
DITIONAL GLOBAL ROUTING PROBLEM as a MIN-MAX RESOURCE SHARING PROBLEM
from Section 4.2, but adds new resources and customers to model timing constraints.
Let D be the timing graph from Section 3.2 and b = (b(N))nen be a routing solution,
i.e. b(N) € By for N € N. For (v,w) € E(D) let dy(v, w) denote the signal delay along
(v,w) determined by b. Here, we assume that dp(v,w) only depends on the net N(w),
and therefore also write dy(n(w)) (v, w) := dp(v,w). This is true for our definition of the
Elmore delay model from Section 3.4, which we will use throughout this chapter. How-
ever, the timing model presented here also works for other delay models, e.g. the linear
delay model from [53] that is useful for unbuffered netlists. In more elaborate delay
models, e.g. ones that incorporate slew effects, the delay along an edge (v,w) € E(D)
might depend on the routing of multiple nets. Depending on the model and the desired
accuracy, this could be incorporated more or less easily.

More precisely, in order to fit into our model, every function b +— dp(v,w) must be
positive, separable (i.e. dy(v,w) = Y nyeprgn(b(N)) for some non-negative functions

52 4. GLOBAL ROUTING WITH TIMING CONSTRAINTS

(gn)Nen) and convex. Convexity can be achieved by defining the blocks By, N € N,
appropriately: For N € N, let Yy be the set of all Steiner trees for N, and let By :=
{8 €0,V : Yy ey, By =1}. For (v,w) € E(D) and 3 € By () we can now set

dp(v,w) := Z By dy (w),
YEYVN (w)

where dy (w) is the Elmore delay from the source pin of N(w) to w as in Definition 3.1.
This way, the functions b — dp(v, w) are linear and therefore convex for all (v, w) € E(D).
By the same reasoning, all usage functions usgy, : Bn — Rx¢ for (N, r) € N x R are
convex. We note here that the running time of Algorithm 1 does not depend on the
dimension or the size of the blocks By. Therefore, the above definition of the blocks
does not have a negative impact on the running time of the algorithm.

Given that, it is easy to show that the timing constraints from Section 3.3 are fulfilled
by b if and only if there exists numbers a(v),v € V (D), such that

a(v) = at(v) for all v € Vi, (4.1)
a(v) = rat(v) for all v € Vo, (4.2)
a(v) + dp(v, w) < a(w) for all (v,w) € E(D). (4.3)

Here, the numbers a(v), v € V(D), are interpreted as arrival times and will be variables
throughout our algorithm. We fix them to a(v) = at(v) for v € Vi, but let the resource
sharing algorithm choose a(v) for v € (Vgate U Vour). Choosing a(v) > rat(v) for v € Vouy
constitutes a violation of (4.2), but we still allow it at high costs and call it a timing
relazation. The reason for allowing this is that timing closure is often impossible to
achieve, in particular when the design is in an early stage and timing assertions are
immature. In that case, the goal is usually to produce a feasible global routing (i.e.
one obeying routing capacity constraints) and optimize timing as best as possible. Our
algorithm can achieve that by relaxing timing constraints where necessary.

The rest of this section is structured as follows: In Section 4.3.2 we deal with the
computation of lower and upper bounds for the arrival times a(v),v € V(D), given
delay lower and upper bounds for the edges in E(D). These arrival time bounds are
then used in Section 4.3.3, where we show how the timing constraints (4.1) — (4.3) can be
integrated into the resource sharing framework by adding new resources and customers.
Section 4.3.4 then presents an oracle for our new customers, and we conclude this section
by defining our delay lower and upper bounds on E(D) in Section 4.3.5.

4.3.2. Lower and Upper Bounds on Arrival Times. We start by showing how
to compute reasonable arrival time intervals. As the arrival times are variables in our

algorithm, restricting the choice to a reasonable interval will improve convergence. For

4.3. INCORPORATING TIMING CONSTRAINTS 53

this, we need delay lower and upper bounds dp,: E(D) — R>g and dy,: E(D) — Rxg
such that 0 < dp, (v, w) < dyp(v,w) for all (v,w) € E(D). We will show in Section 4.3.5
how to define these delay lower and upper bounds.

We start by propagating arrival times with respect to dj, in topological order through
D: Let ay, (v) := at(v) for v € Vi, and

ap, (v) := max {alﬁ(u) + dip(u,v) : (u,v) € (55(1))}

for v € Vgate U Vous- As timing closure is often not achievable, we will often not meet
the required arrival times at Vot even when lower bound delays are used. If that is the

case, we compute a maximum timing relaxation value
relax := max {O, max{ay, (v) —rat(v) : v € Vout}}

to allow relaxation of timing constraints at high costs (cf. Section 4.3.3.2). With this we
can propagate relaxed required arrival times with respect to dj, in reverse topological
order through D: We set af; (v) := rat(v) + relax for v € Vo and

ajp, (v) := min {aﬁ(w) —dp(v,w) : (v,w) € (52}(7})}
for v € Vgate U Vin.2 Due to our choice of relax we get the following proposition:
PROPOSITION 4.4. ai (v) < afy, (v) holds for allv € V(D). O

The interval [ay7 (v), aff, (v)] can be large if v is not part of a timing-critical path. In order
to reduce the interval size in such cases, we also propagate arrival times and required
arrival times with respect to our delay upper bounds dyp, through D. Let agj (v) := at(v)
for v € Vi, and

ag,(v) := max {alﬁa(u) + dup(u,v) : (u,v) € 55(11)}
for v € Vgate U Vour. On the other hand, set af (v) := rat(v) for v € Vo and
aip(v) == min {afl_b(w) — dyp(v,w) : (v,w) € 55(1))}

for v € Vgate U Vin. We note here that ajj, and ajy are initialized differently at V5. The

reason will become clear shortly. We can formulate the following proposition:
PROPOSITION 4.5. ay; (v) < agj,(v) and aiy(v) < af, (v) holds for allv e V(D). O

We can make the following statements for any vertex v € V(D):

(i) It is pointless to choose a(v) to be smaller than ay (v), as the signal arrival time
at v cannot be less than ay (v).
2As a memory aid: The arrow notation denotes the propagation order, i.e. the right arrow means

”propagation in topological order of D”; while the left arrow means ”"propagation in reverse topological
order of D”.

54 4. GLOBAL ROUTING WITH TIMING CONSTRAINTS

ii) It is pointless to choose a(v) to be smaller than af; (v), as every signal from v to
ub Yy Sig
Vout will arrive in time if a(v) is set to a, (v).
(iii) It is pointless to choose a(v) to be larger than ayj (v), as the signal arrival time at
v will not exceed ag (v).
(iv) If we have a signal arrival time at v that is larger than ajj; (v), then we will certainly
violate a relaxed required arrival time at some timing endpoint in V, that is

reachable from wv.

Using these observations we can now define our arrival time intervals [amin(v), Gmax(v)]
for v € V(D). First consider the case af} (v) < ayj (v). Then we set

amin(v) 1= max{ay, (v), a;y, (V) }, (4.4)
amax(v) = min{aj, (v), ag, (v)}, (4.5)

where (4.4) is due to statements (i) and (ii) and (4.5) due to statements (iii) and (iv).
Note that with the assumption a’; (v) < ayj (v) and Propositions 4.4 and 4.5 we get that
the interval [amin(v), @max(v)] is non-empty. However, ajj (v) < af},(v) is also possible.
In that case we call v uncritical, as even with upper bound delays the arrival time is
smaller than the required arrival time. In that case we fix a(v) by setting
1
amin(U) = amax(v) = §(au_>b(v) + a&(v))
Figure 4.1 gives an example of our arrival time interval computations. We can show

that inequality (4.3) is fulfilled for any edge (v,w) € E(D) where v or w is uncritical:

PROPOSITION 4.6. amax(v) + dub(v, w) < amin(w) holds for any (v,w) € E(D) where v
or w is uncritical.

PROOF. Case 1: Only v is uncritical. Then amax(v) < ay(v) < afy(w) —dyp (v, w) <
Amin (W) — dyp (v, w).
Case 2: Only w is uncritical. Then amax(v) + dub (v, w) < ag; (v) + dub (v, w) < agy (w) <
Amin (W).
Case 3: v and w are uncritical. Then amax(v) + dup(v,w) = (ag(v) + afp(v)) +
dyp (v, w) < %(a;{)(w) + ay(w)) = amin(w). d

We state another simple proposition that we will later need in Section 4.3.3:
PROPOSITION 4.7. apin(v) < amax(w) holds for any (v,w) € E(D).

PROOF. Let (v,w) € E(D). We note that we assumed 0 < djp(v, w) < dyp(v, w) in
the beginning of this section. If v or w is uncritical, then the claim follows directly from
Proposition 4.6. Otherwise, we have a;; (v) < ay; (v) + dip(v, w) < a (w) and afy (v) <

aty(w) — dyp (v, w) < afp (w), which results in amin(v) < amin(w) < amax(w). O

4.3. INCORPORATING TIMING CONSTRAINTS 55

at(s) =0 1/2 [4, 4] 2/4 rat(t1) = 10
>@ >®
s Cll t1
5/10 [5, 5] rat(tz) = 6
>@
v2 5/10 to
2/4
v & [13,14]
1/2

ts @ rat(ts) = 15

FIGURE 4.1. Illustration of the arrival time interval computations from
Section 4.3.2: We have Vi, = {s} and Vo = {t1,%2,t3}, and the edge
labels denote lower and upper bound delays. wv; is uncritical, and its
arrival time is therefore fixed to 4. w9 on the other hand is located on
the critical path from s to t9 (in red), which will result in a timing viola-
tion even if lower bound delays are assumed: We have ay (t2) = 10 and
rat(t2) = 6, which results in relax = 4 and an arrival time interval of [5, 5]
at vy determined by a;; (v2) and ayj; (v2) in (4.4) and (4.5). Lastly, vs is
not uncritical in the sense of Section 4.3.2, but its arrival time bounds
are still determined by a'; (v3) and ayj (v3).

4.3.3. Modeling Timing Constraints with New Resources and Customers.
In this section we will extend the resource sharing model by adding new resources and
customers that model timing constraints. We introduce delay resources and arrival time
customers in Section 4.3.3.1, refine our timing model through timing relaxation resources
in Section 4.3.3.2 and justify the model by stating a central result in Section 4.3.3.3.

4.3.3.1. Delay Resources and Arrival Time Customers. The timing constraints (4.3)
are incorporated into the resource sharing framework in the following way: For every
edge of D we add a new delay resource to R, which is used to express inequality (4.3).
Moreover, for every v € V(D) we add a new arrival time customer to C with the purpose

of choosing an arrival time a(v). Here, we set
B, = [amin(v)aamax(v)}v

where amin(v) and amax(v) are the arrival time bounds from Section 4.3.2. The arrival
times will be fixed for some vertices in V(D), but for notational purposes we still add

56 4. GLOBAL ROUTING WITH TIMING CONSTRAINTS

usgv,e(a(v)) uSgN,e(b(N)) usgw,e(a(w>)
Apmin (V) a(v) a(w) Amax (W)

F1GURE 4.2. Tllustration of the consumption of timing resources as de-
clared in (4.6): In the upper half of the picture we see a small section
of a timing graph D consisting of a path from s € V;, to t € V, with
two inner vertices v,w € Vgate. The lower half then shows how the delay
capacity of (v,w) € E(D) is used up: v and w consume an amount that
equals the difference between a(v) and apin(v) and a(w) and apax(w),
and N = N(w) consumes an amount of dyn)(v,w). In this case, the
relative usage of (v,w) is 90%. The remaining 10% could be used for
choosing a later arrival time at v, an earlier at w, or allowing a detour
when routing V.

those vertices as customers with degenerate arrival time intervals containing only one
point.

The delay resource e = (v, w) € E(D) is consumed by the customers v, w and N := N (w)
in the following way: Let a(v) € By, a(w) € B, and b(N) € By. Then usages are defined

as

a(v) — amin(v)

usg, .(a(v)) = e (1) — i (0)

 Gmax(w) — a(w)
usgw,e(a(w)) T amax(w) _amin(v)v (46)
st o (b(V)) = — ()

Amax(W) — Amin(v)’
with usg, . being constantly zero for all ¢ € C\ {N,v,w}. One can think of the delay
resource (v, w) as having a delay capacity of amax(w) — amin(v) with the usage functions
normalizing this to a unit capacity. By Proposition 4.7, the denominator in (4.6) is
always positive. An illustration of these usage functions is given by Figure 4.2.

4.3.3.2. Timing Relazation Resources. In Section 4.3.2 we introduced the relaxation
value relax, which is used to relax required arrival times at vertices in V. To control
this relaxation, we introduce a timing relaxation resource r, € R for every v € Vi,

4.3. INCORPORATING TIMING CONSTRAINTS 57

which is only consumed by the customer v. Given v € Vit and a parameter p(v) > 0,
the usage function for r, is then given by
1+ p(v) a(v) — amin(v)
usg, ., = amax(v) - amin(v)
1 otherwise,

if amjn(’l)) 7é amax(v)7

with usg, . being constantly zero for all customers ¢ € C\ {v}.
The interpretation here is as follows: If timing constraints are not relaxed at v, which
corresponds to choosing a(v) = amin(v), then the usage of r, is exactly 1. On the other
hand, choosing arrival times a(v) > amin(v) results in an increased usage of 7, up to
a maximum usage of 1 + p(v) when a(v) = amax(v) is chosen. This way, any timing
relaxation will result in a violation of a resource capacity constraint in the resource
sharing algorithm, and the magnitude of such violations can be directly controlled by p.
We note here that we take amin(v) as a reference point for having no timing relaxation,
which can already be larger than rat(v) if rat(v) cannot even be met with lower bound
delays. However, in that case amin(v) is the best arrival time that we can aim for. In
our implementation we use the global setting p(v) = 1.25 for all v € Vpyut.

4.3.3.3. Justifying the Model. We now state a theorem that forms the foundation of
our approach:

THEOREM 4.8. Let (a(v))yev(p) be an arrival time solution and (b(N))nen be a Touting.
Then (a,b) meets all timing constraints (4.1) — (4.3) if and only if ay (v) < rat(v) and
usg, ., (a(v)) =1 for all v € Vour and

usgv,e(a(v)) + usgw,e(a(w)) + usgN(w),e(b(N(w)) <1
for alle = (v,w) € E(D).

PROOF. (4.1) is trivially fulfilled since arrival times are fixed for all v € Vi,. ay (v) <
rat(v) for all v € Vg is clearly necessary for meeting all required arrival times. If
ay, (v) < rat(v) for v € Vout, then we have amin(v) = rat(v), and hence usg, , (a(v)) =1
is equivalent to a(v) = rat(v), i.e. (4.2). Let e = (v,w) € E(D). Then

IA
—_

usgv,e(a(v)) + usgw,e(a(w)) + uSgN(w),e(b(N(w))
a(v) = amin(v) + amax(w) — a(w) + dy(n(w)) (v,)

Amax (w) — Qmin (U)

<1,

and multiplying both sides by amax(w) — amin(v) shows that this is equivalent to a(v) +
dy(n(wy) (v, w) < a(w), ie. (4.3). 0

58 4. GLOBAL ROUTING WITH TIMING CONSTRAINTS

In particular this means that we can solve the corresponding instance of the MIN-MAX
RESOURCE SHARING PROBLEM, and a solution where all delay and timing relaxation
resources have a usage of at most 1 will fulfill all timing constraints.

4.3.4. The Arrival Time Oracle. As stated in Section 4.2, we need an oracle for
our arrival time customers. For notational convenience, we will only describe the oracle
for the vertices in Vgate. However, it is easy to see that all the results also apply to
vertices in Voyue: Given a vertex v € Vouy with amin(v) # amax(v) and a price price(ry),

we have

a(v) — amin(v)
amax(v) — Qmin (U)>

a(v) — amin(v)
amax(v) - amin(v)

for any a(v) € B,. Therefore, the oracle can treat r, as if it were a delay resource

price(r,) - usg, ., (a(v)) = price(r,) - (14 p(0)

= price(r,) + price(ry) - p(v) -

corresponding to an edge (v, w) with amax(w) := amax(v) and price(v, w) := price(r,) -

p(v).
Providing an optimum oracle for arrival time customers is actually very simple:

LEMMA 4.9. Given v € Vgate and resource prices price: E(D) — R>q, one can compute
an arrival time a(v) € [amin(V), amax(v)] minimizing 3-.c p(p) price(e) - usg, (a(v)) in

O(|dp(v)]) time.

PROOF. For any t € [amin(v), Gmax(v)] we have

S price(e) -usg,o(t) = 3. price(u,v) —omex?) = f

eeB(D) (u0)€05(v) @nax (V) = @min (u)

+ Z price(v, w)

(v,w) 66; (v)

t — amin(v)
amax(w) - amin(v) .

Since this is a linear function, its minimum is attained at one of the interval borders.

As the evaluation of this function takes O(|dp(v)|) time, we get the result. O

This oracle is optimal and fast, but it is not very stable in the sense that the chosen
arrival times may bounce between the interval borders from iteration to iteration. An
easy method to get a better behavior in practice is to call the above oracle multiple
times in each resource sharing phase, which results in Algorithm 2. A deeper look at the
proof from [87] reveals that the performance guarantee of Algorithm 1 still holds when
Algorithm 2 is used as oracle. The following lemma shows that Algorithm 2 converges:

4.3. INCORPORATING TIMING CONSTRAINTS 59

Algorithm 2 Tterated Arrival Time Oracle
Input: v € Vgate, n € N

Output: An arrival time a(v) € B,.
1: fori=1ton do
2: Compute a;(v) € [amin(v), Gmax(v)] minimizing 3 c p(p) price(e) - usg, .(a;(v)).
3. price(e) := price(e) - e(V/M "8u.e(@ (V) for all e € E(D).
4 Ls~n

: return a(v) == > a;(v).

LEMMA 4.10. Let v € Vgate. Then for n — oo the output of Algorithm 2 converges to

min{max{amin(v), t*}, amax(v)}, where t* is the unique root of the function

i t— min()
o) = price(v, w) ' eyamax(g)ianﬁmw

Amax (’U)) — Qmin (U)

(v,w)€5$ (v)

Z price(u, v) y—omax(v)—t

-e amax (V) —@min (v) .
(u0) €37 (v) amax(v) - amin(u)

For the proof the reader is referred to [53]. Basically, t* represents the arrival time with
the property that the prices per time unit of incoming and outgoing edges are balanced
at v after the price update in line 10 of Algorithm 1.

We can now avoid running Algorithm 2 explicitly and instead approximate t* by New-
ton’s method, which has a global quadratic convergence rate in our scenario:

THEOREM 4.11. We can approxzimate the limit of the output of Algorithm 2 for n — oo

amax ('U) gamin (U))

up to accuracy § > 0 in running time O(|6p(v)|-loglog for any v € Vgate-

Again, the proof can be found in [53]. In practice, we perform a small constant number
of Newton steps, which usually gives good results.

4.3.5. Lower and Upper Bounds for Delays. In this section we will describe
how to choose the delay bounds dj, and d;, that are needed for the arrival time interval
computations from Section 4.3.2. As already stated, we use the Elmore delay model
from Section 3.4 for measuring signal delays. Let (v,w) € E(D), N := N(w), and s € N
and T' C N be the source and sink pins of IV, respectively. Note that w € T.

For defining a delay lower bound dj, (v, w) we let Y be an approximately shortest Steiner
tree for N(w), which can be computed using the methods from Section 2.3. Moreover,
let Ryin and Chin denote the minimum wire resistance and capacitance per unit length

60 4. GLOBAL ROUTING WITH TIMING CONSTRAINTS

over all allowed routing layers for N(w), respectively. We define

dip (v, w) := R(s) - <C’min Z dist(x, y) + C’(T)>
(zy)EEY)

+ Runin - dist(s, w) - (3Couin - dist(s, w) + C(w))

This is a lower bound if Y is a shortest Steiner tree for N(w).

For defining a delay upper bound d,p(v, w) we again compute an approximately shortest
Steiner tree Y for N(w), and we assume that all wiring edges of Y are located on the
lowest allowed wiring layers for N (w), as these usually have the least favorable electrical
properties when it comes to signal delay. We compute wire resistances and capacitances
for Y as described in Definition 3.2, but multiply them by a parameter (> 1 in order to
compute the (-scaled Elmore delay dg/(s,w) from s to w as in Definition 3.1. We then
set dyp (v, w) = dg,(s, w) +1n, where 7 is a second parameter. In our experiments, we set
¢ to 1.5 and 7 to 0.25 picoseconds.

The reasoning here is as follows: Multiplying all wire and via RC values by (is roughly
the same as multiplying all edge lengths by (, so dg/(s, w) corresponds to the Elmore
delay from s to w in Y where we plan for a detour of factor ¢ on every edge in Y (and
a few additional vias). 7 is a constant that is added to give some margin for very short
nets. We expect our router to make bigger detours only in very few cases, so dyp should
indeed be a reasonable upper bound in practice. The detour histogram from Figure 5.3
clearly supports this claim.

4.3.6. Summarizing the Model. Lastly, we give a short summary of our model
with respect to the formulation of the MIN-MAX RESOURCE SHARING PROBLEM from
Section 4.2. Letting G denote the global routing graph, we have R = E(G) U E(D) U
Uvevi, {70} and C = N U V(D). The blocks By, N € N, are defined in Section 4.3.1,
while we use the arrival time bounds from Section 4.3.2 for defining the blocks B,,
v € V(D). The usage functions usgy . for (N,e) € N x E(G) are defined as for the
TRADITIONAL GLOBAL ROUTING PROBLEM (cf. Section 4.2), while we define the usage
functions for delay and timing relaxation resources in Section 4.3.3. It is easy to see that
all usage functions are non-negative and convex and therefore meet the requirements
of the MIN-MAX RESOURCE SHARING PROBLEM. Theorem 4.8 shows that the model
is actually sound, and an oracle for arrival time customers is given in Section 4.3.4.
Therefore, the only missing piece is the oracle for net customers, which must be able to
minimize a weighted sum of congestion and timing prices. This oracle is described in
Chapter 5. Given all that, we can run Algorithm 1 to obtain the result from Theorem 4.2.
As we can provide an optimum oracle for arrival time customers, o from Theorem 4.2 is

determined solely by the oracle for net customers. Applying randomized rounding as in

4.3. INCORPORATING TIMING CONSTRAINTS 61

Theorem 4.3 and a heuristic called Rechoose and Reroute at the end, we can obtain a
global routing from the fractional solution provided by Algorithm 1. Here, we note that
we do not have to apply randomized rounding for arrival times, as a convex combination

of arrival times for a customer is again a feasible arrival time for this customer.

CHAPTER 5

The RC-Aware Routing Oracle

In this chapter we are going to present our RC-aware routing oracle, which fits into the
resource sharing framework from Chapter 4 by functioning as oracle for net customers.
To this end, the task for our RC-aware routing oracle consists of computing Steiner
trees minimizing a weighted sum of congestion and timing prices, where the weights are
generated by the resource sharing framework from Chapter 4. As for the rest of this
thesis, signal delays are measured using the Elmore delay model from Section 3.4. This
chapter is structured as follows: We start with a formal definition of the RC-AWARE
STEINER TREE PROBLEM in Section 5.1 and continue with an overview on previous
work in Section 5.2. We then first examine the RC-AWARE STEINER TREE PROBLEM
for two-terminal nets in Section 5.3, before we approach the general version in Section 5.4.
Finally, we conclude this chapter by presenting experimental results in Section 5.5. Parts
of the materials presented in this chapter are already published in [53, 107, 108].

5.1. Problem Formulation

We start by giving a formal definition of the RC-AWARE STEINER TREE PROBLEM. In
this chapter we are working exclusively with projected pin shapes (cf. Definition 2.9).
Connecting to exact shapes is then being done using the techniques from Chapter 6.
Moreover, as always throughout this thesis, we do not optimize wire types, but assume
a fixed wire type to be given for every net. The RC-AWARE STEINER TREE PROBLEM

can then be formulated as follows:

63

64 5. THE RC-AWARE ROUTING ORACLE

PROBLEM 5.1: RC-AWARE STEINER TREE PROBLEM

Input: A net N with source s € N and sinks T C N, a source resistance
R(s) € Rxq, sink capacitances C': T' — R>q, timing prices price: T' — R,
the global routing graph G with layers Z, wire resistances and capacitances
Ryire, Cwire: Z — R>q, via resistances Ryia: Z — R>q, congestion prices
price: E(G) — Rx>o.

Task: Find a Steiner tree Y for N minimizing

price(Y) := price(E(Y)) + > price(t) - dy (t),
teT

where dy (t) for t € T is the Elmore delay from s to t as defined by Defini-
tions 3.1 and 3.2.

This problem formulation indeed meets the needs of the resource sharing framework
from Chapter 4: There, the oracle for a net customer N is required to find a Steiner tree
Y approximately minimizing

S price(e) -usgn (V) + Y. Y price(f) - usgy 4(Y)

e€E(Q) teT f=(u,t)ed,(t)

= Z price(e) - usg(N,e) + Z Z price(/) ~dy (1),

ecE(Y) teT f=(u,t) €5 (1) () = Gumin (1)

where we can use the routing space usage usg(V, e) for e € E(G) as in the TRADITIONAL
GLOBAL ROUTING PROBLEM from Section 2.2 (also using Definition 2.4 assuming N to
be fixed). Clearly, minimizing (5.1) is equivalent to minimizing the objective function of
the RC-AWARE STEINER TREE PROBLEM given an appropriate translation of the prices.
As it contains the RECTILINEAR MINIMUM STEINER TREE PROBLEM (cf. Section 2.3.2),
it follows that the RC-AWARE STEINER TREE PROBLEM is N P-hard. Further hardness
results follow in Sections 5.3.1 and 5.4.1.

In our implementation, we use additional prices for wire length and vias, which can
just be added to the prices on E(G) without changing the semantics of the RC-AWARE
STEINER TREE PROBLEM. In any case, for the rest of this chapter it will be sufficient to
work directly with the formulation of the RC-AWARE STEINER TREE PROBLEM without

caring about how the prices are generated.

5.2. Previous Work

Although it is a natural formulation for the problem of constructing Steiner trees mini-
mizing Elmore delay during global routing, only few results regarding this problem are
known: Héhnle and Rotter [97] show that the RC-AWARE STEINER TREE PROBLEM is

5.3. RC-AWARE PATHS 65

NP-hard even if |[T| = 1. As we can show in [106], the general case with an arbitrary
number of sinks is even N P-hard to approximate within o(log |T'|). As both these works
use problem formulations that are slightly different from ours, we transfer these results
to our model in Sections 5.3.1 and 5.4.1. Moreover, Hahnle and Rotter [97] are also
able to state fully polynomial time approximation schemes for the special case |T'| = 1
and for the case where |T'| is arbitrary, but the topology of the Steiner tree is fixed. We
elaborate more on their approximation schemes in Section 5.3.2.

On the other hand, the planar version of the RC-AWARE STEINER TREE PROBLEM with
unit wire resistances and capacitances and without congestion prices has received quite
some attention in the past. The rest of this section will be dealing with results concerning
this problem: Boese et al. show in [18] that for the variant minimizing the weighted sum
of source-sink delays there is always an optimum solution using only Steiner points on the
Hanan grid.! Therefore, they can solve the problem in exponential time. They also give
an example in [17] showing that the existence of optimum solutions on the Hanan grid is
generally not given for the variant minimizing maximum source-sink delay. Kadodi [68]
and Peyer [90] show how to solve the problem of minimizing maximum source-sink
delay for instances with at most three sinks optimally in constant time. For larger
terminal sets, various heuristics have been implemented and evaluated in practice, but
no performance bounds are proven [17, 18, 19, 116]. Moreover, there is work by Cong
et al. [29] on optimizing a simplification of the Elmore delay formula, which seems to
be easier to optimize and yields an upper bound for the actual Elmore delay. Peyer et
al. [91] give heuristics for improving the Elmore delay of a given rectilinear Steiner tree
without increasing its length. The first constant-factor approximation algorithm is given
by us in [108]. A more extensive summary of (early) results is presented by Kahng and
Robins [69].

5.3. RC-Aware Paths

In this section we consider the RC-AWARE PATH PROBLEM, which is the special case
of the RC-AWARE STEINER TREE PROBLEM where T consists of a single sink ¢. The
difficulty here is that in contrast to the general SHORTEST PATH PROBLEM (see e.g. [75]),
the price of the path in the RC-AWARE PATH PROBLEM cannot be expressed as the sum
of the prices of its edges. In fact, this leads to the RC-AWARE PATH PROBLEM being
N P-hard, as is shown by Hahnle and Rotter [97] (Theorem 4.6). They actually consider
the RC-AWARE PATH PROBLEM in graphs with arbitrary resistance and capacitance

functions on the edges, but it is easy to extend their hardness result to our model. For

1The Hanan grid is the grid that is induced by the set of - and y-coordinates of all terminals — see
Hanan [46].

66 5. THE RC-AWARE ROUTING ORACLE

el €9 €n
O
fl f2 fn

FIGURE 5.1. Illustration of the instance of the RC-AWARE PATH PROB-
LEM from the proof of Theorem 5.3. The edges e¢; and f;, i = 1,...,n,
are on different layers of the global routing graph.

the sake of completeness, we restate their proof in Section 5.3.1. In Section 5.3.2 we
then present our RC-aware path search, which gives strong approximation guarantees
for the RC-AWARE PATH PROBLEM in practice. Parts of the results from Section 5.3.2
are published in [53, 107].

5.3.1. NP-Hardness of the RC-Aware Path Problem. To prove N P-hardness
of the RC-AWARE PAaTn PROBLEM, Héhnle and Rotter [97] use a reduction from the
PARTITION PROBLEM, which is known to be N P-complete [70]:

PROBLEM 5.2: PARTITION PROBLEM
Input: Numbers ay,...,a, € Qs with Y1 ; a; = 2.
Task: Decide whether there exists I C {1,...,n} such that } ,c;a; = 1.

Demanding Y"1 ; a; = 2 is unusual when formulating the PARTITION PROBLEM, but it

does not change the problem. However, it will be convenient for the proof of Theorem 5.3:

THEOREM 5.3 (Hahnle and Rotter [97] (Theorem 4.6)). The RC-AWARE PATH PROB-
LEM 4s N P-hard even if ny =1 in the definition of the global routing graph (cf. Defini-
tion 2.8).

PROOF. Let aq,...,a, be an instance of the PARTITION PROBLEM. We construct an
instance of the RC-AWARE PATH PROBLEM as illustrated in Figure 5.1: Let n, = n+1,
ny = 1 and n, = 2 in the definition of the global routing graph G, and let s and ¢ be
located in the tiles with minimum and maximum z-coordinate, respectively. The wiring
edges on layers 1 and 2 are denoted by eq,...,e, and fi,..., fn, respectively, where
higher indices imply higher z-coordinates. Prices, resistances and capacitances are then
set as follows:

e R(s) =0, C(t) =0, price(t) =1,

e price(e;) = 2a;, R(e;) =0,C(e;) =0,i=1,...,n,
e price(f;) =0, R(f;) = a;, C(f;) =2a;,i=1,...,n,
(e) = R(e) = 0 for all via edges e € E(G).

e price

5.3. RC-AWARE PATHS 67

Clearly, these settings of R and C' can be achieved by setting Ryire(1) = Cyire(1) = 0 and
Ryire(2) = 1, Cyire(2) = 2, and choosing appropriate lengths for the edges in G. Given an
s-t path Y embedded into G, we set I :={i € {1,...,n}: f € p(E(Y))} = {i1,..., ik}
for indices 71 < ... < iy. Moreover, define I¢:= {1,...,n}\ I and a(I’) := > ,cp a; for

any I’ C {1,...,n} for a more convenient notation. Then we can write
k k
price(Y) = Z 2a; + Z a;; (aij + Z 2%)
iele j=1 I=j+1

=2(2 — a(I)) +a(1)?

= (a(1) - 1)2 +3,

where we used a({1,...,n}) = 2 for the second equality. As the deduction of I from Y
above defines a bijection between s-t paths embedded into G and subsets of {1,...,n},
it follows that there exists an optimum s-t path Y in G with price(Y) = 3 if and only if
ai,...,a, define a yes-instance of the PARTITION PROBLEM. U

The restriction n, = 1 in Theorem 5.3 seems to be of minor importance, but we use it

later for proving N P-hardness of a different problem in Theorem 6.7.

5.3.2. Approximating the RC-Aware Path Problem. Due to the hardness
result from Section 5.3.1, the best we can hope for is an approximation algorithm for the
RC-AWARE PATH PROBLEM. In fact, as already mentioned in Section 5.2, Hdhnle and
Rotter [97] are able to devise a fully polynomial time approximation scheme for it. They
start their path search at ¢ and, similarly to the well-known algorithm of Dijkstra [34],
create labels for vertices in G until a label for s is created whose price is approximately
minimum. In contrast to Dijkstra’s algorithm, however, they can create multiple labels
for any v € V(G): In their algorithm, a label is a pair (v,i) € V(G) x (Z U {—o0})
associated with a downstream capacitance C(v,). Here, (v,4) corresponds to a v-t path
with price at most (1+ §)? for some ¢ > 0 (with (1 +)~ := 0) and a capacitance that
is at most C'(v,). Given such a label (v,1), it can then be propagated and create other
labels (u, j) € Tg(v) X (ZU{—o00}) — as the downstream capacitance corresponding to
(v,1) is known, one can calculate the Elmore delay along (u,v) in the path P defined by
adding (u,v) to the path corresponding to (v,). If P then defines an u-t path for its
price bucket j that has a lower capacitance than the current value of C'(u,j), then P is

used to represent label (u, j).

68 5. THE RC-AWARE ROUTING ORACLE

By choosing ¢ appropriately, this algorithm yields an (1 + ¢)-approximation for the
RC-AWARE PATH PROBLEM in

0 (n log(price,y, / pricey,) <m +nlog <n log(pricey, / pr1celb)>>> (5.2)

9 9

time, where n := |V(G)|, m := |E(G)|, price,, > 0 is an upper bound for the price of
any s-t path in G, pricey, > 0 is a lower bound for the price of any s-t path in G with
positive price, and we assume that we can compute logarithms to any base in constant
time (Theorem 4.10 in [97]).

Using similar techniques, Hihnle and Rotter also state a fully polynomial time approx-
imation scheme for embedding a fixed topology for a multi-sink net IV into G: Given
e > 0, their algorithm computes an (1+ ¢)-approximation for the problem of embedding
the given fixed topology and runs in

o <|N|2n log(pricey;, / pricey,) <|Nin2 +mtnlog (n log(pricey;, / pricey,)))) (5.3)

9 9

time, where we use an analogous notation and assumption as for (5.2) (Theorem 4.14
in [97]).

Clearly, the results of Hahnle and Rotter answer the question of how well the RC-
AWARE PATH PROBLEM can be approximated in polynomial time. However, looking
at the running times (5.2) and (5.3) of their algorithms, it becomes evident that in our
application where millions of nets have to be routed in a graph that can contain millions
of vertices, the fully polynomial time approximation schemes of Héhnle and Rotter are
most likely too slow to be used for more than a small fraction of the nets, e.g. the most
critical ones with respect to timing.

Therefore, we devise a different algorithm for the RC-AWARE PATH PROBLEM in this
section. It runs fast in theory and practice, and we will see that it offers strong approxi-
mation guarantees in our application. The idea is to define edge prices rcp: E(G) — Rxo,
called RC prices, and then find a shortest s-t path with respect to these prices (e.g. using
Dijkstra’s algorithm [34]). If the RC prices are chosen properly to approximate conges-
tion and timing prices that accrue from using the respective edges, then this results in
strong approximation bounds in practice.

We will see our RC prices once more in this thesis in Section 6.3, where a layer as-
signment algorithm minimizing congestion and timing prices is presented. Therefore,
there are strong similarities between this section and Section 6.3. However, there are
also some differences, and in order to keep both descriptions as simple as possible, we
give two standalone-descriptions for both sections, although this produces some amount

of overlap. In Section 5.3.2.1 we present our RC-aware path search for approximating

5.3. RC-AWARE PATHS 69

the RC-AWARE PATH PROBLEM, and we then analyze the given performance bounds in
Section 5.3.2.2.
5.3.2.1. RC-Aware Path Search. We start with a definition:
DEFINITION 5.4. Consider an instance of the RC-AWARE PATH PROBLEM. We define
'wire wire

Rmin . IZ%I? Ryire(2), cmin . — Héln Cyire(2),

to be the minimum wire resistance and minimum wire capacitance per unit length, re-
spectively. Moreover, we define the minimum upstream resistance and minimum down-

stream capacitance of v € V(G) as

R™ (v) := R(5) 4 Ryia(zs, 20) + B2 . dist(s, v),

min ‘wire
O™ (v) := Oyt - dist (v,) + C(),

respectively, where z; and z, denote the layers of s and v. Given an s-t path Y, the

actual upstream resistance of v € V(Y') is defined as
Ry’ (v) := R(s) + R(E(Py (s,v))).

The downstream capacitance is already defined in Definition 3.1, as it is widely used
throughout this thesis. It is easy to see that Rib (v) and C9%"(v) are lower bounds for

the upstream resistance and downstream capacitance of v € V(G). An alternative way
to define R.: for v € V(G) would be to set

Ry%,(v) = R(s) + min (Rwire(z) - dist(s,v) + Ryia(2s, 2) + Ruia(2, zv)), (5.4)

noting that in order to use a layer z € Z, we must first reach it from z; and later reach z,.
A better bound can be obtained by taking the preference directions of routing layers (cf.
Section 1.3.1) into account, as during global routing, wires orthogonal to the preference
direction of the given layer are usually not permitted: In this context, identifying our
resistances with costs, Henke [56] shows that for any v € V(G) there always exists a
minimum resistance s-v path that for some n; € Z>g,7 =1,...,5, is a sequence of
(a) m1 via edges, ny wiring edges in z-direction, ng via edges, ny wiring edges in
y-direction and ny via edges, or
(b) n1 via edges, no wiring edges in y-direction, ng via edges, ny wiring edges in
z-direction and ns via edges.
Henke also states an algorithm with running time O(|Z|) that computes such an optimum
sequence. Setting R-Y asin (5.4) or as described in [56] gives a better estimate, but the
advantage of setting it as in Definition 5.4 is that it can be evaluated in constant time.

We can now continue to define other quantities that we need throughout this section:

70 5. THE RC-AWARE ROUTING ORACLE

DEFINITION 5.5. Consider an instance of the RC-AWARE PATH PROBLEM. For (v, w) €
E(G) we set

cpyp (v, w) := price(t) - RuE (v)

min
to be the lower bound capacitance price of (v, w). Given an s-t path Y and (v,w) € E(Y),
we define
cp(v, w) := price(t) - Ry’ (v)
as the capacitance price of (v,w), and

Ceorr (v, w) := C(v,w) + CB . (dist(w,t) — dist(v, t))

wire

as the corrective capacitance of (v, w).

We note that neither cpy, (v, w) nor cp(v, w) depend on w, but semantically we never-

theless treat them as edge properties. We can now define our RC prices:

DEFINITION 5.6. Consider an instance of the RC-AWARE PATH PROBLEM. For (v, w) €
E(G) we set

C(v,w)

repe(0,10) = price(t) - R(v,w) - (S5 4 Cdn(w)).

ICPeor (U, W) = cpip (v, w) - Ceorr (v, W),
rep(v, w) 1= price(v, w) + rCPyipe (V, W) + TCPeop (V, W).
For an s-t path Y we set

rep(Y) = price(t) - R(s) - CI™ (s) + rep(E(Y)).

We will show that a path minimizing rcp is a good approximation for a path minimizing
price. The idea is that when we are labeling an edge (v,w) € E(G) during our path
search, we assume the minimum possible downstream capacitance for w to estimate the
delay along (v, w). This introduces an error, but the error is mitigated by the correction
term rcp,,,. This idea is illustrated by Figure 5.2. With that, we can define our main

theorem of this section. To simplify notation, we define % := 1 for the rest of this section.

THEOREM 5.7. Consider an instance of the RC-AWARE PATH PROBLEM. Let Y be an

s-t path minimizing rcp and Y™ be an s-t path minimizing price. Then we have
price(Y) < (1 + (a—1)(1 — 6))price(Y*),
where

o= max (Y) / Clmw)). §i= min (B2, (v) / RYP(v)).

s @

5.3. RC-AWARE PATHS

X)

FIGURE 5.2. When labeling an edge (v, w) during our RC-aware path
search, we assume the rest of the path to be optimum, i.e. as short
as possible (dotted lines) and using the best possible layers. Devia-
tions from these assumptions are partially corrected by rcp.g,, (v, w):
When labeling towards the target (left picture), we have Ceopy =
C(v,w) — C1n . dist(v,w), i.e. we only correct the capacitance differ-
ence that stems from possibly not choosing the layer with minimum ca-
pacitance. When labeling away from the target (right picture), we have
Ceorr = C(v,w) + CBIL . dist(v,w), i.e. we additionally correct the de-
tour of length 2dist(v, w) that is introduced by using (v, w). Of course,
the accuracy of repg,, (v, w) is determined by the accuracy of cpy, (v, w)

compared to cp(v, w) (cf. Lemma 5.9).

71

o

Before giving the proof of Theorem 5.7, we state a few lemmas. We start with a simple

identity involving corrective capacitances:

LEMMA 5.8. Consider an instance of the RC-AWARE PATH PROBLEM and let Y be an

s-t path. Then we have C(Y (v)) = CI¥(4)) 4+ Coore (E(Y (v))) for any v € V(Y).

Proor. We have

C(Y (v)) = C(E(Y (v))) + C(t) + Con - dist(v, t) — Con - dist(v, t)
= Cdown () 4 C(E(Y (v))) — C™2 . dist(v, t)

=Clmw) + Y Clay) + Cmin(dist(y, 1) — dist(x, 1))
(z.y)€E(Y (v))
= Cgﬁflvn(v) + Ceorr (E(Y (v))).

We continue with evaluating the difference between rcp and price:

72 5. THE RC-AWARE ROUTING ORACLE

LEMMA 5.9. Consider an instance of the RC-AWARE PATH PROBLEM and let Y be an
s-t path. Then we have

price(Y) =rcp(Y) + Z (—cppy(e)) -« Ceorr(€).
ecE(Y)
PRrROOF. For the wire delay price of Y we have
price(t) 3 R(v,w)- (CQ’Q“’) + C(Y(w)))

(v,w)EE(Y)
—price(t) Y Rlo.w)(T+ O w) + Con (B ()
(v,w)EE(Y)
= repyie(BOV))) price(t) S ROB(Py(5,0))) - Ceo(v0)

(vyw)eE(Y)

= rCPyire(E)+ Z (— price(t) - R(s)) - Ceorr(€),
ecE(Y)

where we used Lemma 5.8 to get the first and Lemma 3.3 to get the second equality. As
a result we get

price(Y') = price(E(Y')) + price(t) - R(s) - C(Y (s)) + rcpyire (E(Y))
+ Z (— price(t) - R(s)) - Ceorr(€)
e€cE(Y)
= price(E(Y)) + price(t) - R(s) - Cii™ (s) + 1Pyire (E(Y))

+Zcp 'corr)

ecE(Y)

=rep(Y)+ Y. (eple) = epi(e)) - Coonr(e),
ecE(Y)

where we again used Lemma 5.8 to decompose C(Y (s)) = CI0(5) + Coorr (E(Y (5))) for

min

the second equality. O

This gives us the following corollary:

COROLLARY 5.10. Consider an instance of the RC-AWARE PATH PROBLEM and let Y
be an s-t path. Then rcp(Y) < price(Y) holds.

PROOF. This follows directly from Lemma 5.9, as we have cpy,(e) < cp(e) and
Ceorr(e) > 0 for all e € E(Y). O

We can now prove Theorem 5.7:

5.3. RC-AWARE PATHS 73

PrOOF OF THEOREM 5.7. We will prove
price(Y) < (14 (a = 1)(1 = 8)) -rep(¥) < (1+ (a = 1)(1 = B)) - price(Y™).

The second inequality follows directly from Corollary 5.10, as this gives us rep(Y) <
rep(Y™*) < price(Y™*). For proving the first inequality we have to show

> (ep(e) = cpny(€)) - Coomle) < (= 1)(1 = B) - rep(Y) (5.5)
ecE(Y)

according to Lemma 5.9. We note that we have

C(Y (v)) = O™ (v) < (@ — 1) Cga™ (v) Vo eV(Y), (5.6)
cp(e) — cppy(e) < (1 = 5) ep(e) Vee E(Y), (5.7)

by definition of a and 8. Due to (5.7), showing (5.5) reduces to showing
Z cp(e) - Ceorr(€) < (v —1) - rep(Y).
ecE(Y)
This is done by the following calculations with the help of (5.6) and Lemmas 3.3 and 5.8:

Z Cp(e) : Ccorr(e)

ecE(Y)

:price(t)(R(s).ccorr(E(Y)H 3 R(E(Py(s,v)))-Ccorr(v,w)>
(v,w)eE(Y)

— price(t) (R(s) - (COV(3) - G (6) + X Blosw) (CO(w) - €l (w))

(v,w)eE(Y)

IN

(= 1) price(t) - (R(s) - Ca™(s) + Y. R(v,w) - Coat™(w))
(v,w)eE(Y)

(1) - (price(t) - R(s) - Ca™ (s) + repyine(B(Y)))
(e —1)-rep(Y).

IN

IN

5.3.2.2. Analyzing the Performance Bounds. The following proposition gives an eas-
ier to understand bound for a:

PropPoSITION 5.11. Consider an instance of the RC-AWARE PATH PROBLEM, and let

Y and « be as in Theorem 5.7. Then we have o < ~§, where

. maX,cz Cwire(z)

disty (v, t)
— - 5 (5 = maXx —0——Q.
minzez Cwire(z> veV(Y) dlSt(U, t)

74 5. THE RC-AWARE ROUTING ORACLE

Unit # Nets | Avg. Detour No Detour wACE4 OFtgt
[%] [% paths] (%] [100 pitch?)

U1 77528 0.40 99.35 88.9 6.0

U2 79119 0.47 99.08 87.6 0.0

U3 100 827 0.24 99.61 86.4 0.0

U4 111140 0.66 98.80 89.5 7.5

U5 119228 0.07 99.91 81.7 0.0

U6 254208 1.39 97.52 88.7 29.4
ur 276799 0.14 99.42 83.5 0.0

U8 | 1681671 0.45 98.92 86.1 37.4

TABLE 5.1. Path-based detour statistics on our testbed. A more detailed
detour histogram for U6 is given by Figure 5.3. The wACE4 and OFtgt
metrics are explained in Appendix A.

ProoOF. We have
o= max CE@)
veV(Y) C99vn (y)
< max ma?(zez Cyire(2) - di‘sty(v, t)+ C(t)
veV(Y) mingez Cyire(2) - dist(v,t) + C(t)

max,ez Cwire(»z) - disty (1), t)

< max
T veV(Y) mingez Cyire(2) - dist(v, t)

= ~4.
O

~ from Proposition 5.11 is a technology-dependent parameter, which is close to 1 in
most cases: If the topmost layers with the largest track pitch are excluded, then the
wire capacitance per unit length fluctuates by less than 15% for minimum width wires
on our 14nm designs. If the topmost layers are included, then differences are still within
a factor of two. However, if a net is routed mostly on the topmost layers, then S is likely
to become a strong bound, which compensates for the error in . Moreover, by their
very nature, these layers contain only a relatively small fraction of the total wire length
on the chip.

On the other hand, § depends on the actual routing result, and therefore appears to be
less predictable. However, Table 5.1 shows that on average, ¢ is very close to 1: For
creating this table we traverse all proper paths in our final global routing result and
compare the length of the path to the distance of its endpoints. In this context, a proper

5.3. RC-AWARE PATHS 75

Detour % | % Paths
0 97.52

0-10 0.15
10-20 0.31
20-30 0.37
30-50 0.56
50-100 0.76

> 100 0.33

Ficure 5.3. Congestion map and detour histogram of unit U6, which
exhibits the most detours in our testbed according to Table 5.1. The
congestion target for our run is at 90%, which corresponds to orange
edges.

path is a maximum path whose internal vertices (i.e. all vertices excluding the endpoints)
are Steiner vertices of degree 2 in the tree containing the path. Moreover, as our RC
prices are used to connect projected pin shapes, we also inspect our global routes while
they are connecting projected pin shapes, i.e. before using the methods from Chapter 6
to connect to exact shapes. As one can see in Table 5.1 and Figure 5.3, the large majority
of paths are shortest paths, and large detours happen rarely. Consequently, o should be

very close to 1 in most cases.

In contrast to «, B will often deviate significantly from 1: For shorter nets, R : might
be a good approximation for the actual upstream resistance, as it includes the source

resistance, which often dominates for short nets. However, for longer nets that are

up
min

not routed on the topmost layers, R becomes a weaker approximation, as the wire
resistance per unit length varies significantly across the layer stack: Compared to the
lowest layers, the wire resistance per unit length on the topmost layers decreases by
more than a factor of 100, with the wire resistance on intermediate layers taking on
intermediate values on this spectrum.

The effect of varying wire resistances could be mitigated by artificially restricting the
layer range allowed for routing certain nets, but such restrictions are likely to introduce
problems on their own. However, even if 3 is close to zero, the approximation bound
from Theorem 5.7 is still strong as long as « is not much larger than 1. An inversion of
these considerations occurs for nets that are routed mostly on the topmost layers, as we
already observed during the analysis of «4: In that case, 8 should be close to 1, while «
might deviate from it. However, the total error (aw — 1)(1 —) should still be small. As
a result of this analysis, we conclude that Theorem 5.7 provides strong approximation

bounds in practice given the current technology parameters.

76 5. THE RC-AWARE ROUTING ORACLE

5.4. RC-Aware Steiner Trees

Now that we have presented our approach to compute point-to-point connections in
Section 5.3, the next question is how to solve the RC-AWARE STEINER TREE PROBLEM
for multi-sink nets. In Section 5.4.1, we first recapitulate our result from [106] showing
that it is N P-hard to approximate the RC-AWARE STEINER TREE PROBLEM within
approximation guarantee o(log |T'|). We then turn our attention towards our algorithm
from [108] in Section 5.4.2, which achieves a constant-factor approximation guarantee
for a simpler model without congestion prices and different layer characteristics. Finally,
we extend this algorithm to our three-dimensional model in Section 5.4.3. The results
from Section 5.4.3 are partly published in [53, 107].

5.4.1. A Hardness Result. In this section we are going to present our result
from [106] regarding the hardness of the RC-AWARE STEINER TREE PROBLEM. As the
problem formulation used in [106] is slightly different from the one used in this thesis,
we adapt it to our model and restate the proof. We use a reduction from the MINIMUM
SET COVER PROBLEM:

PROBLEM 5.12: MINIMUM SET COVER PROBLEM
Input: A finite, non-empty set U = {u1,...,u,} and a set system & = {S1,...,Sn}
with (i, S; = U.
Task: Find I C {1,...,m} with ;c;S; = U and |I| minimum.

It is shown by Alon et al. [4] and Raz and Safra [96] that there exists a constant a > 0
such that it is IV P-hard to approximate the MINIMUM SET COVER PROBLEM within

approximation guarantee alog(n). We use this result for the proof of Theorem 5.13:

THEOREM 5.13. There exists o > 0 such that it is NP-hard to approximate the RC-
AWARE STEINER TREE PROBLEM within approzimation guarantee alog |T|.

ProOOF. We use a reduction from the MINIMUM SET COVER PROBLEM. Given an
instance SC' = (U, S) of the MINIMUM SET COVER PROBLEM, we construct an instance
RC'S of the RC-AWARE STEINER TREE PROBLEM as illustrated in Figure 5.4: We set
ng == m+1, ny, :=n+1and z = 3 in the definition of the global routing graph G
(cf. Definition 2.8), and p((i,j,k)) = (i,4,k) for (i,7,k) € V(G). Moreover, we set
p(s) :=(0,0,1) and T := {t1,...,t,} with p(¢;) :== (0,4,3), i = 1,...,n, and distinguish
the following edge sets in E(G):

. E1:{{(z’—l,O,l),(z’,O,l)}:izl,...,m},
« B ={{(i,j~1,2),(i,4,2)} ri=1,...,mj=1,...nf,

5.4. RC-AWARE STEINER TREES 7

t, @
uj; € S;?
lj @ ¢
to @
1 @
S @ @ @ L 4 @
ST So S; Sm

FIGURE 5.4. Instance of the RC-AWARE STEINER TREE PROBLEM used
in the proof of Theorem 5.13: Blue edges are located on layers 1 and 2
and have a positive capacitance, but no resistance. Red edges are located
on layer 3 and have a large resistance, but no capacitance. Using a via
between (4,0,1) and (7,0,2) for i € {1,...,m} corresponds to picking set
Si, and we can use a via between (4, j,2) and (¢, 7, 3) if and only if u; € S;
(i=1,...,m,j=1,...,n).

. E3:{{(z’—l,j,3),(i,j,3)}:izl,...,m,jzl,...,n},
o £, — {{(z’,O,l),(z’,O,Q)}:izl,...,m},
o By ={{(5:2),(0,5,3)} : (i) € {L,...,m} x {1,..,n} with u; € $; }.

We set price(e) = 1 for e € Ey, price(e) = 0 for e € E1UE;UFE3UE5, and price(e) = m+1
for all other edges in G. Moreover, we set R(s) = 0, and for t € T" we set C(t) = 0 and
price(t) = 1. Wire resistances and capacitances are defined by setting Ryire(3) = m + 1,
Cyire(1) = Cywire(2) = 1, and setting all resistances and capacitances of wires and vias to
0 otherwise.

We show OPT(SC) = OPT(RCS), where OPT denotes the optimum objective function
value of the respective instance. To this end, let I C {1,...,m} be a solution of SC.
Constructing a Steiner tree Y for RCS with price(Y) < |I| is straightforward: For
each t;, j = 1,...,n, we choose an edge e; = {(4,4,2),(4,7,3)} € Es with ¢ € I and
connect p(t;) to p(s) by a shortest path P; over e; and {(4,0,1),(7,0,2)} € E4. The
edge set (J;_; E(P;) then defines our Steiner tree Y with price(Y’) < [I|. This shows
OPT(RCS) < OPT(SC) < m.

78 5. THE RC-AWARE ROUTING ORACLE

Conversely, let Y be a Steiner tree with price(Y) < m. Then for any wiring edge
(v,w) € E(Y) located on layer 3, Y (w) cannot contain any wiring edge that is located
on layer 1 or 2, as in that case we would already have dy (t) > m+1 for any t € T(Y (w)).
That means that for any j € {1,...,n}, t; must be connected to s in ¥ by a path
containing two vias {(i;,7,2), (i;,4,3)} € Es and {(i;,0,1),(i;,0,2)} € E, for some
ij € {1,...,m} with u; € S;;. We can then derive a set cover solution I := Uj_;{i;}
with |I| < price(Y), proving OPT(SC) < OPT(RCS), and therefore our claim. O

5.4.2. An Approximation Algorithm for a Simpler Model. We have seen in

Section 5.4.1 that approximating the RC-AWARE STEINER TREE PROBLEM within a
constant factor is NV P-hard. In order to still be able to find good solutions for it, we take
an indirect route, which involves projecting our problem into a simpler model from [108]
as a first step:
Here, we deal with the construction of Steiner trees minimizing Elmore delay in general
metric spaces where the resistance and the capacitance of a wire are proportional to
its length, and congestion prices are not considered. Transferred to our scenario, this
corresponds to the version of the RC-AWARE STEINER TREE PROBLEM where we have
price(e) = 0 for all e € E(G), Ryia(z) = 0 for all z € Z and Ryire(z) = RY;.. and
Cywire(2) = CL,o for all z € Z, where RY,;., CE. .

special case the SIMPLIFIED RC-AWARE STEINER TREE PROBLEM, and we are able to

€ R>(are given constants. We call this

present a constant-factor approximation algorithm for it in [108].

In this section we recapitulate the mechanics behind this algorithm, as we use an exten-
sion of it for solving the RC-AWARE STEINER TREE PROBLEM for multi-sink nets in
our implementation (cf. Section 5.4.3). Here, we do not give any proofs — all relevant
proofs can be found in [108]. Our algorithm from [108] is given as Algorithm 3 and
illustrated by Figure 5.5.

Algorithm 3 RC Tree Topology Algorithm
Input: An instance of the SIMPLIFIED RC-AWARE STEINER TREE PROBLEM, a Steiner

tree Yy for N, ¢ > 0.
Output: A Steiner tree Y for N.

Y =Y.

1

2: for all edges (v, w) of Yj in reverse topological order do
30 Chound(v,w) := Clye - 5 min {dist(s, z) : 2 € V(Y (w)) U {v}}.
4. if C(Y(w)) + C(v,w) > Chound(v, w) then

5 delete (v, w) and reconnect Y (w) to s by a shortest path.
6

: return Y

5.4. RC-AWARE STEINER TREES 79

1 1 ;

FIGURE 5.5. Schematic progression of Algorithm 3: We start with the
initial Steiner tree Y{ on the left. Yy is short, but the wire delay from s
(red dot) to some sinks (black dots) might be large. During the course of
the algorithm, the dashed blue edges (middle picture) are deleted from
the tree and replaced by the green paths (right picture) by performing
reconnects in line 5. This increases the length of the tree, but reduces
wire delays. By modulating the value e, one might end up with fewer or
more reconnects.

In addition to the usual instance specifications of the SIMPLIFIED RC-AWARE STEINER
TREE PROBLEM, Algorithm 3 gets an initial Steiner tree Yy and a parameter € > 0
as input. Here, Y[is supposed to be as short as possible, as the performance bounds
achieved by Algorithm 3 depend on the length of Yj. It is therefore natural to construct
Yo by using an algorithm for the MINIMUM STEINER TREE PROBLEM IN GRAPHS or the
RECTILINEAR MINIMUM STEINER TREE PROBLEM (cf. Section 2.3). € on the other hand
determines a trade-off between minimizing source and wire delay: While minimizing
source delay requires the tree to be as short as possible, wire delay is minimized by
a star-like topology. In this regard, a large value of ¢ will result in large values of
Chound in line 3 of Algorithm 3 and therefore only few reconnects in line 5, keeping Y
short and the source delay small. In contrast to that, small values of & will result in
many reconnects in line 5, which reduces wire delay, but increases source delay. This

observation is formalized by the next theorem, which is adopted from [108]:

THEOREM b5.14. Given an instance of the SIMPLIFIED RC-AWARE STEINER TREE
PROBLEM, an initial Steiner tree Yy and € > 0, Algorithm 3 outputs a tree Y with

(1) C(Y(5) < (14 2) - C(Yo(s)),
(2) wdy (t) < max {(14¢)?, 14 £e3 + 362 4 2} - Ibya(t) forallt €T,
where wdy (t) for t € T is the wire delay from s to t in'Y as in Definition 3.1, and

Ibya(t) := R, - dist(s, t) - (%C’;ire -dist(s, t) + C(t)) is a lower bound for the wire delay
from s to t in any Steiner tree for N.

80 5. THE RC-AWARE ROUTING ORACLE

« 153 5
1.00 3.39 0.839
1.39 4.11 1.025
1.50 4.31 1.073
2.00 5.16 1.270

TABLE 5.2. Approximation ratios 5 of Algorithm 3 depending on the
approximation ratio « of the algorithm for the MINIMUM STEINER TREE
PROBLEM that is used to construct Yy. The respective choices of € are
also shown. The choices of « reflect bounds of different algorithms for the
MINIMUM STEINER TREE PROBLEM— see Section 2.3 for an overview.

If the length of Yp is within a factor of o within the optimum length, then condition (1)
from Theorem 5.14 tells us that the source delay of Y is at most a factor of a(1 + 2/
e) larger than the minimum possible source delay achieved by a shortest Steiner tree.
Therefore, by choosing the right values of €, one can achieve the approximation ratios
listed in Table 5.2 depending on the length of Y. However, in practice, it might of
course be better to choose other values of € depending on the instance parameters. For

more details on the algorithm we refer the reader to [108].

5.4.3. An Extension to Our Model. As we have learned in Section 5.4.2, Al-
gorithm 3 yields good approximate solutions for the SIMPLIFIED RC-AWARE STEINER
TREE PROBLEM. However, these will in general not be good solutions for the RC- AWARE
STEINER TREE PROBLEM: Firstly, congestion is ignored, which will almost certainly re-
sult in routing overflow. Secondly, uniform wire resistances and capacitances across all
layers are assumed, which will often be reasonable with respect to wire capacitances,
but very imprecise with respect to wire resistances. Therefore, we need to incorporate
congestion prices and different layer characteristics into our model, which is the topic of
this section: In Section 5.4.3.1 we explain how the initial tree Y; for running Algorithm 3
is constructed. Section 5.4.3.2 then describes our way to apply Algorithm 3, and Sec-
tion 5.4.3.3 shortly describes a post-processing method that is applied before returning
the resulting tree.

5.4.3.1. Constructing the Initial Tree. For constructing the initial tree Yy for Al-
gorithm 3 it seems intuitive to compute a tree minimizing congestion prices and wire
length or capacitance, as an initial tree minimizing wire length yields the best bounds
for the SIMPLIFIED RC-AWARE STEINER TREE PROBLEM from Section 5.4.2. However,
in practice, completely neglecting wire resistances during the construction of the initial
tree results in insufficient use of the upper layers. We therefore use a heuristic variant

5.4. RC-AWARE STEINER TREES 81

of our RC prices from Section 5.3: To do this, we regard all sinks in 7" as one super-sink
t* with

price(t*) := price(T), C(t*) :=C(T) 4 Cc™n . Z dist(v, w),
(vyw)eE(Yr)

where CID is the minimum wire capacitance as in Definition 5.4, and Y7 is an ap-
proximately minimum rectilinear Steiner tree for 7" (cf. Section 2.3.2). Distance com-
putations to t* during the computation of our RC prices are performed with regard to
BByr := BB(T') x Z, where BB(T') is the bounding box of T" as in Definition 2.15, and
Z is the set of layers on the chip. More precisely, this means that we set dist(v,t*) :=
mingepp, dist(v,a) for v € V(G). For (v,w) € E(G) we then use modified RC prices

rep (v, w) that are defined by
rep (v, w) := price(v, w) 4 p(v, W) - TCPyyire (v, W) + TCPEor (v, W),

where

A if p(v) € BBy and p(w) € BBr,
(v, w) = ,
1 otherwise,

for some A € [0, 1], and

rCDore (v, w) = eppp (v, W) - Ceorr (v, w),

cply (v, w) == price(t*) - Ry (v),

min

min wire

RUP7 N(U) = R(S) + /'L(Ua w) ’ (Rvia(zsa Zv) + Rmin : diSt(S, ’U))
+ (1 = p(v, w)) - R™MIN . dist(s, t*),

wire

using the notation and definitions from Section 5.3.2. In our implementation we set
A=0.1.

The interpretation is as follows: When labeling an edge (v,w) € E(G) outside of BBr,
then we are often in the situation where s is not contained in BBy, and (v, w) is likely
to be part of every s-t path, ¢ € T. This claim is supported by Table 5.1, which shows
that detouring outside of BBy should only happen rarely. In that case, the model of
considering T as one super-sink t* is suitable, and we set u(v,w) = 1, as then rcp*
coincides with rcp. If on the other hand v is contained in BBy, then it is hard to
estimate in advance which sinks will be contained in Yjy(w) (without consideration of
the algorithm used to construct Yjp), which makes it difficult to come up with a good
estimate for wire delay prices. In that case, we scale rcpy,. by A to still give the router

an incentive to use higher layers when price(¢*) or C(¢*) is high.

82 5. THE RC-AWARE ROUTING ORACLE

) (e
=
I
[-
=t
@
g

FIGURE 5.6. Illustration of rcp” during the construction of Yy: We see
a net with source s and sinks T' = {t1,t9,t3,t4} that is connected by
the initial tree Yy consisting of red and green edges. Red edges outside of
BBr (dashed blue rectangle) drive all sinks in T'. Therefore, setting p = 1
is an accurate estimate in this case. For green edges inside of BBy we
cannot make such a statement: The wire delay along the edge (v, w) only
affects t3 and t4, but not t; and to. Similarly, the corrective capacitance
Ceorr(v,w) only influences the path from s to v. Here, its influence on
the path from s to t; affects all sinks, but its influence on the path from
t1 to v does not affect 1 any more. Before Yj is constructed, these effects
are difficult to assess, as the routing topology inside of BBy is unknown
and can be hard to predict.

The correction term rcp# . is scaled in the same manner: Here, we first notice that for
an edge (v, w) € E(G) outside of BBy we have u(v,w) = 1, and so rcp¥ ,, coincides with
ICPeorr- Otherwise, if (v, w) is inside of BBy, we notice the simple identity

p(v, w)dist(s,v) + (1 — p(v,w))dist(s, t*) = p(v,w)(dist(s, v) — dist(s, ")) + dist(s, t*),

up7 u

which allows for a more easily understood explanation of R ;'"(v): Here, we fully con-

sider the upstream resistance R(s)+ RIL . dist(s,t*), as this resistance is likely to affect
all sinks. Analogously to the estimation of wire delay prices, we scale the remaining
upstream resistance Ryia(2s, 2y) + RIL - (dist(s, v) — dist(s, t*)) by A, as we cannot reli-
ably estimate which sinks will be affected by this resistance. An illustration is given by
Figure 5.6.

In our implementation we use the Standard Block Solver described by Miiller [86] (Sec-
tion 4.7.3) for the MINIMUM STEINER TREE PROBLEM IN GRAPHS (cf. Section 2.3.1)
in order to construct Yy. If edge costs for such an algorithm for the MINIMUM STEINER
TREE PROBLEM IN GRAPHS are to be fixed a priori, a closer inspection of the location
of the respective edge in relation to the positions of s and the sinks in 7" might give more
accurate cost estimates. Better results might be obtained if cost estimates are adjusted

during the course of the specific algorithm being used to construct Yj.

5.4. RC-AWARE STEINER TREES 83

Mentionable in this regard is an algorithm devised by Heeger [49], who uses a variant of
the Dijkstra-Steiner algorithm by Hougardy, Silvanus and Vygen [59] and an extension of
our techniques from Section 5.3 for the construction of RC-aware Steiner trees: Given an
instance of the RC-AWARE STEINER TREE PROBLEM, his algorithm propagates labels
(v,I) € V(G) x 2T through the graph, which correspond to Steiner trees connecting v
and I with minimum estimated prices and an associated downstream capacitance. When
a label (v, I) is processed, it may generate labels (w, I') for w € I'¢(v) and labels (v, TU.J)
in conjunction with other labels (v, J) for # C J C T'\ I. Finally, the algorithm returns
the Steiner tree corresponding to the label (s,7T") at a point where the estimated price
of this label cannot be reduced.

Following our approach from Section 5.3, Heeger proposes a variant where he estimates
the downstream capacitance of label (v,I) by Cymi(v,I), where Csme(v,I) is a lower
bound for the capacitance of a Steiner tree connecting v and I (including sink capaci-
tances). This way, he can compute a Steiner tree Y achieving an a-approximation for

the RC-AWARE STEINER TREE PROBLEM in O(2F(nlogn 4 0m) + 3¥n) time, where
CY(v)) ,
o= max with 0 /0:=1),
veV(Y) Comt(v, T(Y (v))) (/)

k:=|T|, n:=|V(G)], m := |E(G)|, and 6 is an upper bound for the running time of one

computation of Cyy. Heeger also proposes a variant where the downstream capacitance
of label (v, I) equals the capacitance of the Steiner tree corresponding to (v, I), and an
optimal but slow variant, where the downstream capacitance is part of the label, and
multiple labels are stored for any combination of v € V(G) and I C T To save running
time, Heeger’s algorithm can also be restricted to only consider one routing topology,
which is obtained by running our algorithm from this section (including Algorithm 3)
first in Heeger’s implementation. For more on the work of Heeger including experimental
results, the reader is referred to [49].
As Algorithm 3 is unlikely to improve upon the initial tree for nets with only three pins
by means of changing the two-dimensional outline of the tree and also entails some addi-
tional running time, we only call it for nets with at least four pins in our implementation.
For nets with three pins we stop after the computation of Yy, but set A = 0.25 in the
definition of u to promote an increased use of upper layers, as we do not run Algorithm 3
afterwards to decrease wire delays. For nets with two pins, of course, we just run our
RC-aware path search from Section 5.3.

5.4.3.2. Application of Algorithm 3. Having constructed the initial tree Yy as ex-
plained in Section 5.4.3.1, we are going to apply Algorithm 3 from Section 5.4.2: We run
Algorithm 3 for every value of ¢ € [0.25, 25] that is a multiple of 0.25 without performing
a path search for reconnecting components in line 5. Instead, we estimate the price of

84 5. THE RC-AWARE ROUTING ORACLE

the resulting solution by assuming that the newly found paths are shortest paths, and

that their wire resistance and capacitance per unit length is given by

* . N Z(’U,’u})EEere(Y()) R(/U7 w) *. L Z(va)eEwire(YO) C(U’ w)

T Y ()€ Buine(vo) dist (v, w) T Y (00)€ Buine(v0) dist(v, w)
where Eyire(Yp) is the set of wiring edges of Yy (cf. Definition 2.6).> The idea is to be
guided by Yy for estimating R . . and C%

wire wire’

as during the construction of Yy we already
give incentive to use the upper layers for nets with a high capacitance or high timing
prices, unless this is not possible due to congestion (cf. Section 5.4.3.1). Moreover,
Table 5.1 shows that assuming shortest paths to be used for reconnects in line 5 is a
reasonable choice. Congestion prices are neglected for our price estimates, i.e. at this
point we only consider timing prices.

If we find a solution with lower estimated timing prices than Yy, we use our RC-aware
path search from Section 5.3 in order to perform the actual reconnect in line 5. Here, we
again use the super-sink model from Section 5.4.3.1, but this time we model the com-
ponent to be reconnected as super-sink: Consider the situation in line 5 of Algorithm 3

when Y (w) needs to be reconnected to s. We model Y (w) as super-sink t*, where we set
price(t") i= price(T(Y (w))), C(t") i= C(E(Y (w)) + C(T(Y (w))).

We then use rcp as in Section 5.3 to reconnect t* to s, but make one simple modification:
For (v,w) € E(G) we set

cpy, (v, w) = price(T) - R(s) + price(t™) - (Rvia(zs, 2,) + R™I . dist (s, v)),

as the source delay affects all sinks in 7', while the wire delay along the new path
only affects t*. Moreover, similar to Section 5.4.3.1, we perform distance computations
to t* with respect to the bounding box of V(Y (w)), i.e. for any v € V(G) we set
dist(v,t*) := mingepp(v (v (w)))xz dist(v,a). This allows distance computations to be
performed in constant time.

5.4.3.3. Postprocessing and Returning the Tree. For achieving its proclaimed ap-
proximation guarantee for the SIMPLIFIED RC-AWARE STEINER TREE PROBLEM, Al-
gorithm 3 requires all paths that are reconnecting components in line 5 to be disjoint.
In our formulation of the SIMPLIFIED RC-AWARE STEINER TREE PROBLEM and RC-
AWARE STEINER TREE PROBLEM, this is always possible, as we do not define our Steiner
trees to be subgraphs of the global routing graph. Instead, Definition 2.3 ensures that
our output tree Y can have an arbitrary graph structure, which is embedded into the

global routing graph.

2We set 0 /0 := 1 for a valid (but meaningless) definition in degenerate cases.

5.4. RC-AWARE STEINER TREES 85

S RN

N
N

\

N

N

|

A

e I -
L~ \\

FIGURE 5.7. A sequence from practice illustrating the application of Al-
gorithm 3 as described in Section 5.4.3. Black lines depict global routing
tiles, and green lines illustrate global wires running from tile center to
tile center connecting the pins (gray diagonal lines). The source pin is
colored red while sink pins are colored black. We start with the initial
tree Yy (upper left picture). Yj is short, but wire delays to the sinks in the
lower right corner are presumably large. Algorithm 3 then deletes multi-
ple wires (upper right picture), and the resulting components are recon-
nected to the source pin (lower picture). As described in Section 5.4.3.3,
some wires (e.g. the ones reconnecting the components at the bottom to
the source pin) are merged at the end.

In a geometric sense, however, Y might contain parallel segments and loops. In practice,
this can be undesirable, as it may complicate the representation and handling of Steiner
trees in the data structures of all involved tools. For example, in the IBM physical design
flow where BonnRouteGlobal is used, Steiner trees are represented as a set of wires in
general interfaces, and connectivity is defined by geometric intersection. Therefore, we

86 5. THE RC-AWARE ROUTING ORACLE

merge parallel segments after application of Algorithm 3 as in Section 5.4.3.2, and remove
possible loops in a geometric sense by computing a shortest-path tree in Y rooted at s.
In the end, we either return Y or Y depending on which one of the two achieves a lower
price.

An example from practice is given by Figure 5.7. As we can see in this example, the
merging of wires can result in topology changes, as now multiple components computed
by Algorithm 3 may be driven by the same wire. In such cases, the layer assignment
algorithm from Section 6.3 — possibly even enhanced by the capability to assign wire
types — might be an advantage, as this algorithm could assign wires driving multiple
components to higher layers or assign thicker wire types to them. Another possibility
is to use the approach of Heeger [49], who fixes the topology of Y, but recomputes a
tree approximately minimizing the price among all trees with this topology (cf. Sec-
tion 5.4.3.1).

5.5. Experimental Results

In this section we are going to present experimental results that demonstrate the ef-
fectiveness of our RC-aware routing framework, which encompasses our general timing-
aware routing framework from Chapter 4 as well as the RC-aware routing oracle pre-
sented in this chapter. As explained in Appendix A, we use recent 14nm microprocessor
designs provided by IBM for our experimental results, which are optimized up to a point
where they are ready for routing. In particular, the input contains a layer and wire type
assignment (cf. Section 1.3.2.4.1) that has been generated by the IBM design flow. All
experiments appearing in this section are conducted with 16 threads on an Intel Xeon
E5-2667 v2 server running at 3.30 GHz. For the explanation of metrics appearing in sub-
sequent tables we refer to Appendix A.4. Here, all metrics are measured after connecting
to exact shapes using the methods from Chapter 6, more precisely Section 6.4.

In Table 5.3 we compare results for three different routing methods, where each one is
represented by one row in the table: For the method titled Estimates, every net is as-
sumed to be routed by an approximately shortest Steiner tree that is located completely
on the two lowest layers of the layer assignment of the given net (apart from vias con-
necting to the pins), using the wire type assigned to the net. Here, the approximately
shortest Steiner tree is computed using the methods outlined in Section 2.3.2. This is
exactly the method that is used to estimate routing trees during timing optimization
prior to global routing, as described in Section 1.2.2.

The run labeled Traditional BonnRouteGlobal (short: Traditional BRG) represents the
traditional way of performing global routing. Here, "traditional” also implies that basi-
cally the TRADITIONAL GLOBAL ROUTING PROBLEM from Section 2.2 is solved, which is

87

5.5. EXPERIMENTAL RESULTS
Unit Run WS FOM EV WL wACE4 OFtgt RT
(# nets) [ps] [ps] [m] (%] [100 pitch?®] [h:mm:ss]
U1 Estimates -157 -38463 621 0.939 — — —
(77528) | Traditional BRG | -179 -41236 704 0.958 88.8 5.9 0:00:55
RC-Aware BRG | -129 -29121 597 0.953 88.8 5.4 0:02:32
U2 Estimates -104 -81487 198 1.087 — — —
(79119) Traditional BRG | -119 -82537 347 1.111 87.7 0.0 0:00:32
RC-Aware BRG | -97 -57441 311 1.102 87.5 0.0 0:02:00
U3 Estimates -150 -159305 406 1.236 — — —
(100827) | Traditional BRG | -150 -157248 659 1.245 83.3 0.0 0:00:51
RC-Aware BRG | -149 -118185 296 1.248 86.5 0.0 0:02:49
U4 Estimates -245 -214126 149 1.202 — — —
(111140) | Traditional BRG | -210 -208458 260 1.235 88.7 3.3 0:00:58
RC-Aware BRG | -196 -152791 197 1.230 89.6 8.7 0:03:11
Ub Estimates -63 -58267 52 1.367 — — —
(119228) | Traditional BRG | -63 -56608 19 1.376 80.8 0.0 0:00:45
RC-Aware BRG | -62 -27207 5 1.383 81.7 0.0 0:03:04
U6 Estimates -122 -325030 237 4.861 — — —
(254208) | Traditional BRG | -130 -345512 1201 5.031 89.0 67.6 0:02:10
RC-Aware BRG | -121 -226617 1406 5.013 88.6 26.8 0:08:48
U7 Estimates -94 -125151 375 4.714 — — —
(276 799) | Traditional BRG | -109 -156522 598 4.762 83.1 0.0 0:02:37
RC-Aware BRG | -55 -64614 765 4.758 83.8 0.0 0:09:18
U8 Estimates -109 -1979601 3110 37.088 — — —
(1681671) | Traditional BRG | -453 -1980714 11309 37.508 85.9 358.9 0:17:01
RC-Aware BRG | -86 -836609 9335 37.572 86.1 34.0 1:04:18

TABLE 5.3. Experimental results comparing our RC-aware routing
framework to traditional BonnRouteGlobal and routing tree estimates.

the standard way of formulating the global routing problem. To achieve this, Traditional

BonnRouteGlobal uses the resource sharing framework presented in Chapter 4 without

the enhancements to incorporate timing constraints. Instead, timing is considered indi-

rectly by means of a layer and wire type assignment and netlength bounds for timing

88 5. THE RC-AWARE ROUTING ORACLE

critical nets. Moreover, minimization of total wire length is regarded as objective func-
tion. Traditional BonnRouteGlobal strictly obeys the layer and wire type assignment
given in the input: Layers below the minimum layer of the layer assignment are com-
pletely forbidden for routing (except for dropping vias on the pins), and the wire type
assigned to the net is used for all wires. The aforementioned netlength bounds are also
generated by the IBM design flow with the goal of preventing detours on timing-critical
nets, and they are treated by Traditional BonnRouteGlobal as constraints similar to
routing capacity constraints. Traditional BonnRouteGlobal has been the default global
routing method in the IBM design flow for several years and is as such well established.
An overview and comparison to another industrial router is given in [41] by Gester et
al.

Finally, the last experiment denoted by RC-Aware BonnRouteGlobal (short: RC-Aware
BRG) shows the results that we obtain using our new timing-aware routing framework
from Chapter 4 in combination with the RC-aware routing oracle from this chapter.
In this run, we ignore the layer assignment in the input when routing nets, i.e. we
always allow all layers when routing any net. As already mentioned in the beginning
of this chapter, we still obey the wire type assignment, as wire type optimization is
not yet incorporated in our RC-aware routing framework. The netlength bounds for
timing-critical nets that are used by Traditional BonnRouteGlobal are also ignored by
RC-Aware BonnRouteGlobal, as it optimizes RC delay directly, and is therefore not
reliant on netlength bounds.

The numbers in Table 5.3 demonstrate a strong performance of RC-Aware BonnRoute-
Global: While Traditional BonnRouteGlobal correlates fairly well with the routing esti-
mates, RC-Aware BonnRouteGlobal achieves significantly better timing numbers on ev-
ery design. On some designs, mainly U6 and U8, routing congestion can also be reduced
by ignoring the layer assignment. Similarly, RC-Aware BonnRouteGlobal achieves a
lower wire length than Traditional BonnRouteGlobal on some units, which is also mainly
due to the fact that RC-Aware BonnRouteGlobal ignores the layer assignment, therefore
making the global routing problem easier. Moreover, there can be stronger incentives to
keep timing-critical nets short due to timing costs (cf. Chapter 4) in RC-Aware Bonn-
RouteGlobal compared to Traditional BonnRouteGlobal, as netlength bounds are only
set for a small fraction of all nets, and the objective function of minimizing wire length
is subordinate to the goal of keeping congestion low. One can also see that the wire
length achieved by RC-Aware BonnRouteGlobal is never significantly higher than the
one achieved by Traditional BonnRouteGlobal, and always within a few percent of the

wire length achieved by the routing estimates, which can be considered a lower bound

5.5. EXPERIMENTAL RESULTS 89

for practical purposes.® This invalidates possible worries about a noticeable wire length
increase by using the RC tree topology algorithm from Section 5.4.

Naturally, running time is higher when using RC-Aware BonnRouteGlobal compared
to Traditional BonnRouteGlobal, as the incorporation of timing constraints results in a
more difficult variant of the global routing problem. However, running times are still
fairly low an all units except U8, where RC-Aware BonnRouteGlobal takes roughly one
hour. For a unit of this size, this is still adequate, in particular in light of the fact that
results are significantly better. Moreover, as we will see later in Section 7.6, the complete
routing flow including detailed routing takes several hours on this design, making the
running time penalty of running RC-Aware BonnRouteGlobal easily bearable.

When it comes to the last metric that we tracked, namely the number of electrical vio-
lations, the picture is mixed: Compared to Traditional BonnRouteGlobal, the number
of electrical violations decreases on most, but not all, units, when running RC-Aware
BonnRouteGlobal. Overall, this can be considered as an improvement. Compared to
the routing tree estimates, however, the number of electrical violations increases on mul-
tiple designs, especially the large ones. This can be explained by the fact that timing
optimization running before global routing uses routing estimates, and therefore opti-
mizes the netlist in such a way that electrical violations are minimized when routing
estimates are used. RC-Aware BonnRouteGlobal, however, only optimizes timing, but
does not model slew or capacitance limits directly. This can result in subpar routes
for timing-uncritical nets that do not negatively impact timing, but result in electrical
violations. Here, a reduction of electrical violations can be achieved afterwards by run-
ning the routing based optimization methods from Chapter 7, as is shown in Section 7.6.
However, as a task for the future, it would be better to avoid electrical violations already
in RC-Aware BonnRouteGlobal.

The second table, Table 5.4, then compares RC-Aware BonnRouteGlobal strictly obeying
the layer assignment (short: RCA-BRG + LA) to RC-Aware BonnRouteGlobal ignoring
the layer assignment (short: RCA-BRG - LA), where the latter mode is the one used for
the runs depicted in Table 5.3. Here, one can see that timing and congestion are better
on every design when the layer assignment is ignored, and wire length also decreases
slightly on most designs. Regarding running times, the search space for path searches is
larger when layer assignments are ignored, which should result in larger running times
on the one hand, but on the other hand, the global routing problem becomes easier
when layer assignments are ignored, which typically results in smaller running times. As

a result, the running times of both runs are relatively even, with slightly larger running

3It is not strictly a lower bound as we use approximation algorithms for computing shortest Steiner trees
for large terminal sets as outlined in Section 2.3.2, but on average, it should be close to an actual lower
bound.

90 5. THE RC-AWARE ROUTING ORACLE

Unit Run WS FOM EV WL wACE4 OFtgt RT
(# nets) [ps] [ps] [m] (%] [100 pitch?] [h:mm:ss]
Ul RCA-BRG + LA | -129 -30605 602 0.956 89.4 8.2 0:02:28
(77528) | RCA-BRG - LA |-129 -29121 597 0.953 88.8 5.4 0:02:32
U2 RCA-BRG + LA | -97 -58669 330 1.109 90.2 16.8 0:02:06
(79119) | RCA-BRG - LA | -97 -57441 311 1.102 87.5 0.0 0:02:00
U3 RCA-BRG + LA | -149 -120288 316 1.247 86.8 0.0 0:02:48
(100827) | RCA-BRG - LA | -149 -118185 296 1.248 86.5 0.0 0:02:49
U4 RCA-BRG + LA | -196 -156150 216 1.235 89.6 15.9 0:03:13
(111140) | RCA-BRG - LA | -196 -152791 197 1.230 89.6 8.7 0:03:11
U5 RCA-BRG + LA | -62 -27539 2 1.383 82.1 0.0 0:03:03
(119228) | RCA-BRG - LA | -62 -27207 5 1.383 81.7 0.0 0:03:04
U6 RCA-BRG + LA | -121 -238790 1117 5.030 88.9 38.8 0:07:47
(254208) | RCA-BRG - LA | -121 -226617 1406 5.013 88.6 26.8 0:08:48
ur RCA-BRG + LA | -55 -72571 586 4.768 85.7 0.0 0:09:10
(276 799) | RCA-BRG - LA | -55 -64614 765 4.758 83.8 0.0 0:09:18
U8 RCA-BRG + LA | -90 -861559 7792 37.584 86.9 340.0 1:01:35
(1681671) | RCA-BRG - LA | -86 -836609 9335 37.572 86.1 34.0 1:04:18

TABLE 5.4. Experimental results comparing RC-Aware BonnRoute-
Global obeying the layer assignment in the input ("+ LA’) to ignoring it
(- LA”).

times on large units when the layer assignment is ignored. With respect to electrical
violations, the picture is again mixed: On smaller units, ignoring the layer assignment
results in a slight reduction of electrical violations. On our large units U6, U7 and
U8 with a complete layer stack, ignoring the layer assignment rather results in more
electrical violations. Here, violating the layer assignment on some timing-uncritical nets
might result in congestion benefits, but also in electrical violations.

As a summary, it is safe to say that RC-Aware BonnRouteGlobal achieves significantly
better results than Traditional BonnRouteGlobal, and can therefore be considered the
superior routing method. Moreover, RC-Aware BonnRouteGlobal achieves better results
when ignoring the layer assignment, which also demonstrates the validity of our methods
from this chapter to construct Steiner trees minimizing Elmore delays and congestion

not only in a two-, but directly in a three-dimensional model.

CHAPTER 6

Connecting to Exact Shapes

In this chapter we illustrate the process of transforming a Steiner tree connecting the
projected shapes of a net into one connecting exact shapes (cf. Definitions 2.7 and 2.9).
Connecting to exact instead of projected shapes during global routing has several ad-
vantages: Firstly, it bears more resemblance to an actual detailed routing, and therefore
gives much more accurate estimates for metrics like timing and power consumption than
a global routing that only connects projected shapes. This is for instance very important
for computing reasonable signal delays for the timing-aware global routing framework
from Chapter 4, or for the routing based optimization flow from Chapter 7. A second
important advantage of connecting to exact shapes is that it allows for a more precise
modeling of local congestion effects. Thirdly, a locally well optimized global routing con-
necting to exact shapes might constitute better input for track assignment and detailed
routing (cf. Sections 1.3.3 and 1.3.4) depending on whether these algorithms make use
of the local structure of global routes. At this point it might be worth noting that our
results from this chapter are not meant to replace track assignment, as we do not make
any attempt to obey minimum distance rules (cf. Section 1.3.1).

In order to connect to exact shapes we apply a multi-stage approach when routing a net
N: Firstly, we compute a Steiner tree X connecting the projected pin and prewire shapes
of N using the routing algorithms from Chapter 5 and Chapter 7 in their respective
scenarios. Afterwards, we transform X into a two-dimensional tree Yy connecting the
two-dimensional projections of the exact shapes of N while still preserving the global
topology of X. This step is described in Section 6.1. Here, and for the rest of this
chapter, a two-dimensional tree is a tree embedded rectilinearly into R? in the sense of
Definition 2.3.

Thereafter, we apply a post-optimization that optimizes the z- and y-coordinates of the
Steiner points of Y on a local scale, yielding a two-dimensional tree Y that is locally
optimized. This post-optimization step is described in Section 6.2. In order to obtain a
three-dimensional tree we then use a timing- and congestion-aware layer assignment step
that assigns z-coordinates to the edges of Y while preserving their x- and y-coordinates.
This layer assignment step is described in Section 6.3. It is working as part of the global

router and assigns individual wires in contrast to traditional layer assignment tools that

91

92 6. CONNECTING TO EXACT SHAPES

assign whole nets, and that are usually separate tools generating constraints for the
router (cf. Section 1.3.2.4.1).

As a timing model for our layer assignment step we use the Elmore delay model from
Section 3.4. However, adaptions of our results may also be used to optimize timing
with other delay models, e.g. the linear delay model described by Held et al. [53]. The
congestion model used during our layer assignment step is very simple and general. It
can be used in traditional settings where only wires crossing tile borders are considered,
but it can also optimize local congestion for congestion models that are reliant on that.
As throughout the rest of this thesis, we do not incorporate a wire type assignment
(cf. Section 1.3.2.4.1) in the layer assignment algorithm from Section 6.3, but assume a
fixed wire type to be given for every net. However, as will become clear when reading
Section 6.3, extending our algorithm to also assign wire types should be straightforward.
We note that the layer assignment algorithm from Section 6.3 is not necessarily connected
to the process of connecting to exact shapes. In fact, it could also be used in other
contexts, e.g. as part of the net router from Chapter 5. However, as it is an essential part
of the overall process of connecting to exact shapes outlined in this chapter, we present
it in this context. The overall process from this chapter is currently being implemented
in BonnRouteGlobal, and only partly finished at the time of this writing. Therefore,
Section 6.4 concludes this chapter with a brief description of the current implementation
that is being used to produce experimental results throughout this thesis.

The process outlined above may remind of global routing frameworks that first route in
the two-dimensional projection of the global routing graph and assign layers afterwards,
as e.g. described by Lee and Wang [78, 79]. However, our approach has the key advan-
tage that during the actual routing step we already use our net router from Chapter 5
that optimizes timing and congestion in a three-dimensional model. This makes sure
that subsequent steps — local optimization and layer assignment — are able to find a
solution that is good with respect to timing and congestion.

A different approach to connect to exact shapes is taken by Hdhnle and Saccardi [45,
100], who devise a global routing framework that neither uses the global routing graph as
presented in Section 1.3.2.1 nor projected pin and prewire shapes. Instead, they consider
exact shapes directly during the routing process and therefore do not need a separate
routine that connects to exact shapes a posteriori. This approach is more precise, but
it is also rather elaborate and requires significant changes in the global router, and
is therefore considered out of scope for this thesis. In contrast to that, our approach
from this chapter is simpler and easier to integrate into the current implementation of
BonnRouteGlobal. However, it may be noted that our timing-aware layer assignment

6.1. FROM PROJECTED TO EXACT SHAPES 93

algorithm from Section 6.3 might still be beneficial even in the scenario of Hahnle and
Saccardi [45, 100].

6.1. From Projected to Exact Shapes

In this section we describe the process of converting a Steiner tree connecting the pro-
jected shapes of a net to the two-dimensional outline of one connecting exact shapes.
We give a rather descriptive characterization of this process without going into every
detail. Let N be a net and X be a Steiner tree connecting the projected shapes of N.
Let X1,..., X be connected subgraphs of X such that

e V(X)) NV(X;)=0,4,5=1,....k i #7,
o N C Ui, V(Xy),
e NNV(X;)#0,i=1,...,k,
o V(X;) ={veV(X):distx(m,v) =0}, where m; € N NV (X;) is an arbitrary
pinin V(X;),1=1,... k.
These subgraphs can be computed as follows: Assume that for somei € N, Xq,..., X; 1

have already been computed, and N ¢ ;;11 V(X;). Then pick m; € N\ ;;11 V(X;)
and compute V(X;) by traversing X starting at m; (e.g. with depth-first search), using
only zero-length edges (including vias). Intuitively, each X; corresponds to a subgraph
of X in a global routing tile where connections to exact pin shapes have to be added,
as E(X;) contains only vias and other zero-length edges. We note that the subgraphs
X1,..., X are uniquely defined (up to the numbering).

We derive a two-dimensional projection X’ of X by keeping the graph structure of X, but
neglecting z-coordinates of all vertex positions.! In the same way we derive a subgraph
X/ from X; for all i = 1,...,k. Moreover, we do not regard X’ as embedded into the
global routing graph, but as embedded directly into the chip area.

For each 7 = 1,...,k we apply the following procedure: We first subdivide all edges
in dx/(V(X])) at the borders of the global routing tile corresponding to X/, and then
remove the parts located inside this tile. Let M; be the set of endpoints of the previously
subdivided edges located at the tile borders and N; := N N V(X;). We compute an
approximately shortest rectilinear Steiner tree (cf. Section 2.3.2) connecting M; and the
two-dimensional projections of the exact shapes of N; and insert it into X’ in place of X.
When this process has been completed for all: = 1,.. ., k, we arrive at a two-dimensional
Steiner tree Yy that connects the two-dimensional projections of exact pin shapes. By
construction, Y differs from X’ only locally in the tiles where local rectilinear Steiner

trees connecting exact shapes were inserted. An illustration is given by Figure 6.1.

1We note that X’ might contain loops or parallel segments in a geometric sense even if X does not, but
this is not an issue in this context.

94 6. CONNECTING TO EXACT SHAPES

/

=

ANS .

FiGUurE 6.1. Illustration of connecting to exact shapes as outlined in
Section 6.1: We start with a route connecting projected pin shapes (left
picture), as indicated by the diagonal grey lines. In tiles containing pins
the global wiring reaching to the tile center is then replaced by a Steiner
tree connecting exact pin shapes, but tile borders are still crossed in their
center (right picture). This can lead to local detours, which are resolved
using the methods from Section 6.2.

The above description neglected the case where prewires are present, which occurs fre-
quently when running the routing based optimization flow from Chapter 7. Analogously
to pin shapes, these prewires, which are originally given by their exact shapes, can be
projected to the global routing graph and used during the net routing process by map-
ping their endpoints to the vertex whose vertex area contains them. If connecting to
exact shapes of prewires is required in certain global routing tiles, then we proceed as de-
scribed above, but solve the RECTILINEAR MINIMUM STEINER TREE WITH PREWIRES
PROBLEM as described in Section 2.3.3 instead of the RECTILINEAR MINIMUM STEINER

TREE PROBLEM to also include the two-dimensional projections of these prewires in Yj.

6.2. Optimizing x- and y-Coordinates

Consider the two-dimensional tree Yy resulting from the procedure described in Sec-
tion 6.1. By construction, Yy crosses tile borders only in their centers. This can cause lo-
cal detours, as can be seen in Figure 6.1. Therefore, we proceed with a post-optimization
method by Kiefner [71], which fixes the topology of Y but optimizes the positions of
its Steiner points within their tiles. Before giving the problem statement, we define
R = {[z1,22] X [y1,92] CR?: 21 < 9,y1 < 92} to be the set of axis-parallel rectangles
in R?. With that, the problem statement is as follows:

6.2. OPTIMIZING X- AND Y-COORDINATES 95

PROBLEM 6.1: MINIMUM STEINER TREE WITH FIXED TOPOLOGY PROBLEM

Input: A Steiner tree topology Yy for a net IV, rectangular move bounds r: V(Yp) \
N — R.

Task: Find Steiner point positions p: V(Yp) \ N — R? with p(v) € r(v) for all
v € V(Yy) \ N minimizing

> dist(p(v), p(w)).

(v,w)EE(Yo)

The move bounds 7 are specific to our application in global routing. However, the case
without move bounds can also be modeled in our formulation by setting all move bounds
to the bounding box of N. Moreover, the problem could also be formulated in a more
general fashion to consider Steiner trees in R? (d € N), and the results mentioned in this
section would still hold. However, we restrict ourselves to only cover the two-dimensional
case, as this is the one that is relevant in our scenario.

Sankoff and Rousseau [103] show how to solve the MINIMUM STEINER TREE WITH
Fixep TorpoLOGY PROBLEM in linear time:

THEOREM 6.2 (Sankoff and Rousseau [103]). One can solve the MINIMUM STEINER
TREE WITH FIXED TorPoLOGY PROBLEM in O(|V(Yy)|) time.

An improvement of their algorithm by Kiefner [71] gives a stronger result by optimizing
source-sink path lengths as secondary objective. In the following, we let Y denote the
Steiner tree defined by the topology of Yy and the Steiner point positions p from the
MINIMUM STEINER TREE WITH FIXED TOPOLOGY PROBLEM. Moreover, as usual, s
denotes the source and T' the sinks of N:

THEOREM 6.3 (Kiefner [71]). One can find a solution'Y of the MINIMUM STEINER TREE
WITH FIXED TOPOLOGY PROBLEM such that

(1) > (vw)ck(y) dist(v, w) is minimized,

(2) disty (s, t) is minimum for allt € T among all trees minimizing (1),

in O(|V(Yy)|) time.

It is not obvious that a solution fulfilling (2) actually exists, but this is proven in [71].
Compared to a tree only satisfying condition (1), a tree also satisfying condition (2)
yields a better timing due to reduced source-sink path lengths.

In our implementation we apply the algorithm of Kiefner using the Steiner tree topology
of Yy from Section 6.1. Before applying the algorithm, we clone every vertex v € V(Yp)
that is incident to both immovable prewires (e.g. detailed wires as in Chapter 7) and
movable global wires into two connected vertices such that one of the two is incident

96 6. CONNECTING TO EXACT SHAPES

FI1GURE 6.2. Continuation of the sequence started in Figure 6.1: After
applying the procedure from Section 6.1, our route connects exact shapes,
but crosses tile borders always in their center (left). This can result in
local detours, as when connecting to the pin in the upper part of the
picture. Applying the algorithm of Kiefner [71] as outlined in Section 6.2
solves this problem by moving Steiner points to optimum positions within
their tiles (right). One can also observe that not only the length of the
tree, but also the length of source-sink paths is minimized: Shifting the
horizontal wire attached to the source pin (red) downwards as in the
left picture yields a tree with the same length, but longer source-sink
paths. In this case, however, Kiefner’s algorithm yields a tree where all
source-sink paths are shortest paths.

to all immovable prewires and the other to all movable global wires. As move bound
for a Steiner vertex v € V(Y)) we then use the area of the global routing tile that v
is located in if v is not connected to immovable prewires, and we fix the positions of
Steiner vertices that are connected to immovable prewires. This way, we ensure that this
post-optimization only works locally and does not change the Steiner tree on a global
scale. Letting this algorithm change the route on a global scale would be undesirable as
it does not consider routing congestion. An illustration of the process from this section
is given by Figure 6.2.

6.3. Assigning Layers

Let Y be the two-dimensional Steiner tree that results from the optimization of x- and
y-coordinates from Section 6.2. The last step to be run in our overall process consists of
assigning layers to the edges of Y. In accordance with the resource sharing framework
from Chapter 4 the objective will be to minimize a weighted sum of congestion and timing

6.3. ASSIGNING LAYERS 97

prices, where we use the Elmore delay model from Section 3.4 to measure signal delays.
As a technical prerequisite we assume throughout this section that the maximum vertex
degree of Y is bounded by a constant. Technically, this is not assured by our general
framework from Chapter 2, as we embed arbitrary Steiner trees into the layered chip
area or the global routing graph. In our implementation, however, every Steiner vertex
in Y will only be incident to at most four wires (two vias and two wires expanding in
preference direction of the layer). This section is structured as follows: We start with
explaining the difference between working locally and globally in Section 6.3.1 before we
state the problem formulation in Section 6.3.2. In Section 6.3.3 we then introduce RC
prices that are akin to the ones from Section 5.3.2, and give a layer assignment algorithm
minimizing these RC prices in Section 6.3.4. Section 6.3.5 then concludes this section
with a hardness result showing that requiring a bounded maximum vertex degree for Y

is necessary for deriving a layer assignment algorithm minimizing our RC prices.

6.3.1. Working Locally or Globally. As the first step in our process from Sec-
tion 6.1 only works locally on tile-internal connections, and the second step from Sec-
tion 6.2 does not move Steiner points outside of their global routing tiles, it is possible
to map every tile border crossing segment in Y back to an edge in the original global
route X (connecting projected shapes) and therefore preserve the wiring layers used by
X on a global scale.? In that case, the only thing that is left to do for the layer assign-
ment algorithm is to assign layers to tile-internal segments, and therefore we refer to
this method as working locally.

The opposite to that is working globally, which involves also assigning long wires that
are crossing tile borders. This certainly results in longer running times, but when it
comes to quality of results, it seems to be the more promising of both options. As our
problem formulation from Section 6.3.2 allows fixing the layers of certain wires, working
locally and globally both fit into the theoretical framework described here. However, in
practice, both strategies will most likely give notably different results. We elaborate on

the strategy used for experimental results for this thesis in Section 6.4.

6.3.2. Problem Formulation. Let S := A x Z be the layered chip area from
Definition 2.5. Moreover, let s € V(Y') be the source and T' C V(Y') be the sink pins
of the net N connected by Y. As Y is a two-dimensional tree connecting the two-
dimensional projections of exact shapes of N, we assume Y to be embedded into A.
For each edge e € E(Y) we are given a non-empty set Z, C Z of allowed layers for e.

Moreover, as the layers of pins are fixed, we are given a fixed layer z(7) for every m € N.

2This only holds if for all pins = € II we have pp,(7) = v for the vertex v € V(G) whose vertex area
contains pex (7). If that is not the case, some tile border crossing segments are added by the method
from Section 6.1. However, these segments should be short and only be used to access pins.

98 6. CONNECTING TO EXACT SHAPES

To simplify the presentation, we assume (as always) that N is the set of leaves of Y, and
that each m € N is reached by a zero-length edge e, with Z., = {z(7)}.> Subsequently,
the term two-dimensional tree will encompass this modeling of pin layers as zero-length
edges as well as a constant maximum vertex degree.

We then are looking for a mapping z: E(Y) — Z with z(e) € Z, for all e € E(Y).
Such a mapping is called a layer assignment. In particular, when using the term layer
assignment, we implicitly assume that the constraints z(e) € Z, for all e € E(Y') are met

(unless explicitly stated otherwise). For v € V(Y') a layer assignment z defines values
Zmin(v) := min{z(e) : e € dy (v)}, Zmax (V) := max{z(e) : e € Iy (v)},

that define the layer range that has to be spanned by a via at v. Clearly, these vias have
to be incorporated into the objective function. The objective function will be dependent

on the following additional input:

DEFINITION 6.4. Given a two-dimensional Steiner tree Y and a set of layers
Z ={1,...,n.}, layer-dependent edge prices are defined by a function price: E(Y)xZ —
R>¢ and a function price: V(Y) x Z — R>g. Here, price(e, z) for (e,2z) € E(Y) x Z
denotes the price of assigning e to z, and price(v, z) for (v,z) € V(Y) x Z denotes the
price of a via from 2z to z + 1 at v. Layer-dependent RC data is defined by wire resis-
tance and capacitance functions R,C: E(Y) x Z — R>(and a via resistance function
R:V(Y) x Z — R>¢. Here, R(e,z) and C(e, z) for (e,z) € E(Y) x Z denote the re-
sistance and capacitance of the wire that results from assigning e to z, and R(v, z) for
(v,2) € V(Y) x Z denote the resistance of a via from z to z + 1 at v. As a short form,
we define an extension f: V(Y') x Z2 for any of the three via functions f € {price, R, C'}

by f(v,21,2) i= Lot 2l £ (0, 2).

This definition is basically an adaption of Definition 3.2 to the scenario from this section.
Here, the values price(v,n,), R(v,n.) and C(v,n,) for v € V(Y) are superfluous by
definition, but we still keep them to simplify notation.

In our application, layer-dependent edge prices are composed of congestion and objective
function prices, e.g. for the objective function of minimizing a weighted sum of wire
length and via count. Subsequently, we laxly refer to them collectively as congestion
prices, although in general any prices can be incorporated here as long as the total price
of the route can be expressed as the sum of the prices of its wires and vias. However,

3Strictly speaking, in the degenerate case where many pins are located on the same position but on
different layers (so they cannot be conflated), this construction can violate the assumption that the
maximum vertex degree in Y is bounded by a constant. This case can be incorporated into our algorithm
from this section by making use of the fact that for any v € V(Y) all but a constant number of edges in
dy (v) are located on a fixed layer. However, to avoid overcomplicating the description, we neglect this
degenerate case in this section.

6.3. ASSIGNING LAYERS 99

this cannot be done for timing prices in most delay models, in particular not for the
Elmore delay model from Section 3.4 that we are using. We address this issue later in
Section 6.3.3.

We might also have prewires, in particular detailed wires, where the layer is fixed. This
can be modeled by setting Z. = {z.} for an edge e corresponding to an input wire
located on layer z., and defining price(e, z.), R(e, z.) and C(e, z.) to match the wire’s
properties. Input vias can be handled analogously. Moreover, also for global wires we
might want to restrict the set of possible layers, e.g. in order to work only locally as
described in Section 6.3.1.

The combination of a two-dimensional Steiner tree and a layer assignment naturally

defines a three-dimensional Steiner tree:

DEFINITION 6.5. Let Y be a two-dimensional Steiner tree and z: E(Y) — Z be a layer
assignment. Then the three-dimensional tree according to z is denoted by Y,. Given
layer-dependent edge prices and layer-dependent RC data as in Definition 6.4, one can
naturally define extensions price, R,C: E(Y;) — R>¢, e.g. in order to compute Elmore

delays as in Definition 3.1.

Definition 6.5 leaves out the exact details on how to construct Y, and how to define the
extensions of price, R and C, but the process should be obvious. As the local topology
at vias depends on the layer assignment, it is easier to express timing prices in terms of
the resulting three-dimensional tree. This leads to the following problem formulation:

PROBLEM 6.6: 2D TREE LAYER ASSIGNMENT PROBLEM
Input: A two-dimensional Steiner tree Y for a net N with source s € N and sinks
T C N, a source resistance R(s) € Rx>g, sink capacitances C: T — R,
timing prices price: 7' — Rxq, a set of layers Z = {1,...,n,}, a non-empty
set of allowed layers Z, C Z for every e € E(Y), layer-dependent edge prices
and layer-dependent RC data as in Definition 6.4.
Task: Find a layer assignment z: E(Y) — Z with z(e) € Z. for all e € E(Y)
minimizing
price(z) := price(E(Y;)) + Z price(t) - dy, (t),
teT
where Y, is the three-dimensional tree according to z as in Definition 6.5 and
dy,(t) for t € T is the Elmore delay from s to ¢ as in Definition 3.1.

N P-hardness of the 2D TREE LAYER ASSIGNMENT PROBLEM follows directly from
Theorem 5.3:

100 6. CONNECTING TO EXACT SHAPES

THEOREM 6.7. The 2D TREE LAYER ASSIGNMENT PROBLEM is N P-hard even if |T| =
1.

Proor. This follows directly from Theorem 5.3, as when n, = 1, the RC-AWARE
PATH PROBLEM can be trivially reduced to the 2D TREE LAYER ASSIGNMENT PROB-
LEM. O

The next sections deal with finding an approximate solution for the 2D TREE LAYER
ASSIGNMENT PROBLEM.

6.3.3. Approximating Elmore Delay Prices. To get a good approximate so-
lution for the 2D TREE LAYER ASSIGNMENT PROBLEM we use an approximation of
Elmore delay prices that is very similar to our RC prices from Section 5.3.2. As such,
we use a similar line of thought as in Section 5.3.2 and derive similar results. However,
as there are naturally some differences between the use of our RC prices in this section
compared to Section 5.3.2, we give a standalone description here to keep the presentation
simpler and self-contained.

Using a modified version of our RC prices from Section 5.3.2, we will be able to get
modified layer-dependent edge prices that also include delay prices, which allows us to
solve a simpler problem. Here, we make use of the following facts that are given in our
situation:

(1) The two-dimensional outline of our Steiner tree is already fixed.

(2) Via capacitances are zero throughout our data set.

(3) Wire capacitances per unit length are usually not overly different across different

layers for a given wire type.

Through item (1) the topology of the resulting three-dimensional tree is largely, but not
entirely, independent of the layer assignment: There will be a one-to-one correspondence
between FE(Y) and Eyire(Y>), but the number of vias and the local topologies at vias
will be dependent on the actual layer assignment. (2) and (3) will help us to develop
an algorithm that achieves a strong approximation guarantee for current technologies,
as the approximation guarantee of our algorithm will depend on the error that we make
when estimating downstream capacitances. We need the following definitions:

DEFINITION 6.8. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROBLEM.
Minimum edge resistances and capacitances Ruyin, Crin: E(Y) — R>¢ are defined by

Rumin(e) := min R(e, 2.), Chin(e) :== min C(e, 2¢),

2e€Ze 2e€Zc

for e € E(Y'). This way, we can derive minimum downstream capacitances

Crin(Y'(v)) := Crin(E(Y (v)) + C(T(Y (v))

6.3. ASSIGNING LAYERS 101

for v e V(Y). For e = (v,w) € E(Y) and 2. € Z, we define the lower bound capacitance
price of (e, z¢) by

max{zs, ze }—1

cp (€, ze) == price(T") - R(s) + price(T(Y (w))) Z xev{%}i/r%s) R(z,2")

z'=min{zs, ze }
+ Z pI'lCG(T(Y(y))) ! Rmin(xa y)7
(z:y)EE(Py (s,v))
where z; € Z is the fixed layer of the unique edge that is incident to s. Moreover, the

corrective capacitance of (e,z.) € E(Y) x Z is defined as
Ccorr(€> Ze) = C’(e, Ze) - Crnin(e)-

Given a layer assignment z: E(Y) — Z and e € Eyi(Y:) located on layer z., we
naturally extend Chin, cpyp, and Ceorr by setting

Cmin(e) = Cmin(el)a Cplb(e) = Cplb(ela 26)7 Ccorr(e) = Ccorr(e/y Ze)a

where €/ € E(Y) is the two-dimensional edge corresponding to e. For e € Ey,(Y,) we set
Chin(€e) = cpp,(e) = Ceorr(e) = 0. Moreover, for (v, w) € Eyire(Ys) we set its capacitance

price to

cp(v,w) := price(T) - R(s) + Z price(T(Y,(y))) - R(z,vy),
(z.y)EE(Py, (s,))

while we set c¢p(v,w) := 0 for (v,w) € Eyia(Y).

It is straightforward to check that all values introduced by Definition 6.8 can be computed
in a total of O(|V(Y)| - |Z]) time. We note that it is not necessary to define meaningful
minimum capacitances or capacitance prices for vias, as their capacitance is zero anyway.
Compared to Section 5.3.2 the definition of corrective capacitances is simpler, as we
cannot make detours when only computing a layer assignment. However, the lower bound
capacitance prices are more complex, as we are also dealing with multi-sink nets in this
chapter. Therefore, we need to multiply the minimum resistances in the definition of cpy,
with varying prices, as varying sets of sinks are affected by the respective resistances.
It is important to note that we have cpy,(v,w) < cp(v,w) for all (v,w) € Eyire(Yz)
(and trivially for all via edges), as we assume minimum resistances for edges in Y and
multiply the resistance of a possible via stack for reaching the layer of (v,w) only by
price(T(Y (w'))) in the definition of cpy,, where (v/,w’) € E(Y) is the two-dimensional
edge corresponding to (v, w). Again, as already elaborated on in Section 5.3.2.1, better
lower bound capacitance prices cpy, (e, ze), € = (v,w) € E(Y), z. € Z, could be obtained
by making use of the fact that in order to use a certain layer z € Z for some edge in
E(Py(s,v)), one would need a series of vias from z, to z and from z to z.. With the help

102 6. CONNECTING TO EXACT SHAPES

of Definition 6.8 we can define modified edge prices for use during our layer assignment

algorithm:

DEFINITION 6.9. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROBLEM.
For e = (v,w) € E(Y) and z. € Z, we set
C(e, ze)

I'CPyire (€, 2e) := price(T(Y (w)) - R(e, z¢) - (5

+ CoinlY (w)).

rcpcorr(ea 26) = Cplb(eﬂ Ze) ’ CCOI"I“(ea Ze)a
rep(e, ze) := price(e, ze) + ICPyire (€, Ze) + ICPeorr (€, Ze)-

Given a layer assignment z: E(Y) — Z and v € V(Y), let (u1,w1), ..., (ug, wg) € E(Yz)
be the resulting via edges at v. Then we set

k
rep(v, z) := price(v, 2min(V), Zmax(v)) + Zprice(T(Yz(wi))) - R(ug, w;) - Crin (Yz(w;)),
i=1
and

rep(z2) = price(T) - R(s) - Cruin(Y'(8)) + Z rep(v, 2) + Z rep(e, z(e)).
veV(Y) ecE(Y)

We used Y, in order to simplify the definition of rcp(v, z) for v € V(Y'), but rcp(v, 2)
actually only depends on the layer assignment of dy(v). We will prove that a layer
assignment minimizing rcp is a good approximation for a layer assignment minimizing
price. Analogously to Section 5.3.2, the idea is that when we are dealing with an edge
(v,w) € E(Y) in our layer assignment algorithm, we assume minimum downstream
capacitances for Y (w) in rcpy... This introduces an error, but the error is mitigated by
the correction term rcp,,,,, as quantified by Theorem 6.10. Here, and for the rest of this

section, we define 0 / 0 := 1 in order to simplify notation:

THEOREM 6.10. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROBLEM.
Let z be a layer assignment minimizing rcp and z* be a layer assignment minimizing
price. Then we have

price(z) < (1 +(a—1)(1 - 5)) - price(z"),
where

L C(Yz(v)) o . Cplb(e)
O Cm (Va(0)) b= I on(e)

6.3. ASSIGNING LAYERS 103

We can easily bound a by
C(e)
a< max ———-—,
ecE(Y,) Cmin(€)
which results in strong approximation guarantees in practice due to the reasoning at the
beginning of this section. An analogous bound for 8 does not hold, as Y, may contain
more vias than are accounted for in cpy,. a and g from Theorem 6.10 are similar, but
not identical, to « and § from Theorem 5.7. We therefore refer to Section 5.3.2.2 for an
analysis of a and 3, as the majority of this analysis also applies to our layer assignment
scenario. We now continue with proving Theorem 6.10, but state a few lemmas first.

We start with a simple identity:

LEMMA 6.11. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROBLEM and
let z be a layer assignment. Then for any v € V(Y,) we have C(Y,(v)) = Cpin(Y2(v)) +
CCOIT(E(YZ (v)))'

Proor. We have

We continue with the relationship between rcp and price:

LEMMA 6.12. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROBLEM
and let z be a layer assignment. Then we have
price(z) = rep(z) + Z (—cppp(e)) - Ceorr(€)-
GGE(Yz)
Proor. Using Lemma 6.11 we get
Zprlce ~dy, (t)
teT
v, W)

— price(T) - R(s) - C(Ya(s) + 3 price(T(Y(w))) - R(v, w) ((1(2 4 C(Yz(w))>

(v,w)eE(Y)
= price(T) - R(s) - (Cmin(Yz(s)) + Ccorr(E(Yz(s))))
+ Z price(T (Y, (w))) (
(vw)EEB(Yz)

+ Y price(T(Yz(w))) - R(v,w) - Ceorr(E(Yz(w))).

(v,w)EE(Yz)

mmm(w)))

104 6. CONNECTING TO EXACT SHAPES

Using Lemma 3.3 we can rearrange parts of the equation in the following way:

price(T) - R(s) - Ceon(B(Yx(5))) + D> price(T(Yz(w))) - R(v,w) - Coon (B(Yz(w)))
(v,w)eE(Yz)

= > (price(D)-R(s)+ Y price(T(YV:(y)) - R(,9)) - Ceonr(v,w)

(v,w)EE(Y) (z,y)EPy, (s,v)

= Z cp(e) - Ceorr(€)
GGE(Yz)

= Z Cplb(e) ’ corr + Z (- Cplb()) ’ CCOH‘(e)'
ecE(Y) e€E(Yz)

Combining this with our initial calculations we get

z price(t) - dy, (t)

teT
= price(T") - R(s) - Crin(Y2(5))

+ Z price(T(Y,(w))) - R(v,w) - (

(v,w)eE(Yz)
+ Z Cplb(6 : corr + Z (- Cplb()) : Ccorr(e)
e€E(Yz) ecE(Yz)
= price(T) - R(s) - Cryin(Y2(s))

+ Z 1"prire(ev Z(e)) + rcpcorr(ev Z(e))
ecE(Y)

+ >, price(T(Yz(w))) - R(v,w) - Cuain(Yz(w))
(v,w)EEyia(Yz)

+ Z (— cppy(e)) - Ceorr(€)

ecE(Yz)

C(v,w)

2 oY))

= rcp(z) — price(E(Y3)) + Z (— cpyy(e)) - Ceorr(€),
ecE(Y>)

and this was to show. U
We get a simple corollary:

COROLLARY 6.13. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROB-
LEM and let z be a layer assignment. Then rcp(z) < price(z) holds.

PRrOOF. This follows directly from Lemma 6.12, as we have cp,(e) < cp(e) and
Ceorr(€) > 0 for all e € E(Y). O

We are now able to prove Theorem 6.10:

6.3. ASSIGNING LAYERS 105

PrOOF OF THEOREM 6.10. We prove
price(2) < (14 (a = 1)(1 = 8)) -rep(2) < (1+ (a = 1)(1 = B)) - price(=").

The second inequality follows directly from Corollary 6.13, as this gives us rep(z) <
rep(z*) < price(z*). For proving the first inequality we have to show

>~ (epe) = pi(e)) - Ceon(e) < (= 1)(1 =) - rep(2) (6.1)

e€E(Yz)
according to Lemma 6.12. We note that we have
C(Yz(v)) = Cin(Yz(v)) < (@ = 1) Cin(Y2(v)) VoeV(Y,), (62)
cp(e) — cpp(e) < (1 = 5) ep(e) Vee E(Yz), (6.3)
by definition of o and 3, and Lemma 6.11 immediately gives us
Ceorr (E(Yz(v))) < (@ = 1) Croin (Yz(v)) Vo e V(Yz) (6.4)

from (6.2). Due to (6.3), showing (6.1) reduces to showing
Z Cp(@) ’ Ccorr(e) < (06 — 1) . I“Cp(z).

CEE(Yz)

This is done by the following calculations with the help of (6.4) and Lemma 3.3:

Z Cp(e) : Ccorr(e)

6€E(Yz)
- 3 (price(T)-R(s)+ 3 price(T(Yz(y)))~R(x,y)>-Ccorr(v,w)
(v,w)EE(Yz) (z,y)€Py, (s,v)

= price(T) - R(s) - Ceorr (E(Yz(s))) + Z price(T(Yz(w))) - R(v,w) - Coorr (E(Yz(w)))
(v,w)€E(Y:)

< (@~ 1)(price(T) - R(s) - Con(Ya(s)) + 3 price(T (Y (w))) - R(v,w) - Coin(¥s(w)))
(vyw)eE(Yz)
< (a—1) - 1ep(2).

0

6.3.4. Layer Assignment by Dynamic Programming. We now show how to
find a layer assignment minimizing our RC prices from Section 6.3.3. To achieve this
we use a dynamic programming approach which is basically an improved and extended
version of the one presented by Michaelis [80], who also considers congestion prices, but
not RC delays. We introduce the notion of solution candidates in Section 6.3.4.1, present
an outline of the overall layer assignment algorithm in Section 6.3.4.2 and answer the
key question of how to compute solution candidates in Section 6.3.4.3.

106 6. CONNECTING TO EXACT SHAPES

6.3.4.1. Solution Candidates. In our dynamic program we compute solution candi-
dates for the edges in E(Y'), which correspond to optimum partial layer assignments.
We first define RC prices for the kinds of partial layer assignments that we are interested

in:

DEFINITION 6.14. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROBLEM,
and let v € V(YY) with 6y (v) = {e}, e = (u,v). Then a partial layer assignment at v is
a layer assignment z: E(Y (v)) U{e} — Z, and the partial RC price of z is given as
rep(e, z(e)) + Y rep(w,2)+ Y rep(es z(€)).
weV (Y (v)) e CE(Y (v))
Partial RC prices are well-defined as they only depend on the layers of E(Y (v)) U {e}.

We can now define solution candidates:

DEFINITION 6.15. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROBLEM.
A solution candidate cand(e, z.) for e = (u,v) € E(Y) and z, € Z. is a partial layer
assignment z: E(Y (v))U{e} — Z with z(e) = z. that is minimal with regard to partial
RC prices among all such layer assignments. As a notational convenience, we associate

cand(e, z.) not only with the layer assignment but also with its partial RC price.

6.3.4.2. Layer Assignment Algorithm. The notion of solution candidates allows us

to formulate our layer assignment algorithm, which is given as Algorithm 4. In line 4

Algorithm 4 2D Tree Layer Assignment Algorithm

Input: An instance of the 2D TREE LAYER ASSIGNMENT PROBLEM.
Output: A layer assignment z: E(Y) — Z.
: for all e € E(Y) in reverse topological order do
for all z, € Z, do

compute cand(e, z).
. Let es be the unique edge in dy-(s) and zs be its fixed layer.
return cand(es, z5)

AR > v

we make use of the fact that s is a leaf in Y with |Z,,| = 1 for the unique outgoing edge
es of s. By definition of cand, the algorithm returns the correct solution. Of course, the
crucial question is how to do the candidate computations in line 3.

6.3.4.3. Computing Candidates. Consider the computation of cand(e, z.) for e =
(u,v) € E(Y) and z, € Z,. Let 6 (v) = {e1,...,eq} with e; = (v,w;), i =1,...,d. As
discussed in the beginning of this section, d can be considered as a constant. Since we are
processing the edges of Y in reverse topological order during the course of Algorithm 4,

we can assume that cand(e;, ze,) has already been computed for every e; = (v,w;) €

6.3. ASSIGNING LAYERS 107

) Umax
€3 Wa
W3 €2
'l} .
mid)+
[>® >0
u € Ummin €1 wy

FIGURE 6.3. Illustration of the situation from Section 6.3.4.3: We are
given an edge e = (u,v) € E(Y) with §7(v) = {e1,e2,e3}, e; =
(v,w;),i = 1,...,3, and a layer assignment z: E(Y) — Z obeying the
given fixed layer order e < e; =< eg = e3. In the three-dimensional tree
Y, according to z, there are a via (red) and three vertices vpin, ¥miq and
Umax corresponding to v (and possibly multiple vertices corresponding to
u, wy, we and ws not shown in the picture). Arrows indicate edge direc-
tions in Y., and one can see that the local topology at the via depends on
z. However, fixing the layer order to e < e; < eg < e3 already determines
the local topology at the via to a large degree.

6 (v) and z,; € Z,. According to Definition 6.14, cand(e, z¢) is determined in the
following way:
d

cand(e, z.) = min{rcp(e, z.) + rep(v, 2) + Z cand(e;, z(e;)) :
i=1

z: 0y (v) — Z with z(e) = ze, 2(€;) € Ze,,i =1,...,d}.

To compute cand(e, z.) we compute an optimum partial layer assignment for all possible
orders of ze, z(e1), ..., z(eq) — as d is constant, there is only a constant number of those.
To simplify the description, we only elaborate on the case e < e; < ... < ¢4, where this
notation means that we restrict ourselves to layer assignments z where z. < z(e;) <

. < z(eq). It will be easy to see that all other orders can be handled in the same
manner. In particular, for any order where e; < e < e; for some 4,j € {1,...,d}, the
parts below and above z. can be dealt with independently. Some orders may not yield
a feasible solution due to the requirement that z(e;) € Z,, for i = 1,...,d. These cases
will be identified by our algorithm. An illustration of the setting of this section is given
by Figure 6.3.

108 6. CONNECTING TO EXACT SHAPES

As stated earlier, the delay prices through the via at v depend on the local topology at
the via, which in turn depends on the layer assignment of dy (v). However, if the layer

order is fixed, we can express the delay prices through the via in a separable fashion:

DEFINITION 6.16. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROBLEM.
Let v € V(Y) with 6y (v) = {e} and 6 (v) = {e1,...,ea}, €& = (v,w;), i =1,...,d. Let
ze € Z. and consider the fixed layer order e < e; = ... < ¢eq. Fori =1,...,d let

a; = price(T(Y(w;))) and B; := Cupin(€;) + Cmin(Y (w;)). Then for e; € 5;(1)) and
Ze; € Ze; we define the via delay price of assigning e; to z., as

d
Vdp(e’bzei) = R(U,ZC,Z&L) . (a’l . /B’L + Z (a’b : 5] + /BZ : aj))

j=i+1

As d is considered to be constant, it is possible to compute vdp(e;, z¢,) for all pairs
(eiyze;) € 0y (v) X Z in a total of O(|Z]) time. The meaning of vdp becomes clear
through the following proposition:

PROPOSITION 6.17. Consider an instance of the 2D TREE LAYER ASSIGNMENT PROB-
LEM. Letv € V(Y) with 6y (v) = {e} and & (v) = {e1,...,ea}, i = (v,w;),i =1,...,d.
Let ze € Z. and consider the fized layer order e X e; < ... < eq. Let z: dy(v) = Z be a
partial layer assignment obeying this order with z(e) = z.. Then

d

rep(v, z) = price(v, ze, z(eq)) + Zvdp(ei, z(€;)).
i=1

PRrROOF. Fori=1,...,d let o; and §; as in Definition 6.16 and define
d
vi= i Bt Y (ai'5j+ﬁi'aj)v
j=i+1
ie.
vdp(e;, z(€;)) = R(v, ze, 2(€;)) - i
Moreover, for any k € {1,...,d} we have
d d d d d d

S vi=> i+ Y, Y (uB+ Bioy) =D iy B

i=k i=k i=k j=i+1 i=k j=k
For 2" € {z.,...,z(eq) — 1} let f(2') = (a(2'),b(2’)) € E(Y,) be the via edge correspond-

ing to v between layers 2’ and 2’ + 1 (after subdividing these via edges appropriately).
Here, we can assume z(eq) > ze, as otherwise there is nothing to show. Moreover, let

6.3. ASSIGNING LAYERS 109

k(z') :==min{i € {1,...,d} : z(e;) > 2’} for 2 € Z. Then we have

d d
Z Vdp(ei, Z(ei)) = Z R(Ua Zes Z(ei)) i
=1 =1

z(eq)—1 d
= Z R(Uvzl)' Z Yi
2'=ze i=k(z")
z(eq)—1 d d
= Z R(’U,Z’)' Z (673 Z ﬂj
2/=ze i=k(z") j=k(2')
z(eq)—1
= > R(f(2)) - price(T(Yz(b(z")))) - Cin(Y=(b(2")))

= rcp(v, z) — price(v, ze, z(eq)),
and this was to be proven. O
We can now state Algorithm 5, which computes an optimum partial layer assignment

for our given layer order. As a notational convenience we set cand(e, z.) := oo for any
ec E(Y)and z. € Z\ Z.

Algorithm 5 Fixed Layer Order Partial Layer Assignment Algorithm

Input: An instance of the 2D TREE LAYER ASSIGNMENT PROBLEM, v € V(Y') with
5y (v) = {e}, 65 (v) = {e1,...,eq}, e; = (v,w;),i = 1,...,d, a fixed layer order
e=e1 =X...=X ey, a fixed layer z., € Z, for e.

Output: A partial layer assignment z: E(Y (v)) U{e} — Z with z(e) = z..

1: for k=0,...,d do

2. OPT(k, z) := reple, zo) + X8| cand(ey, z).

3: for 2’ =z.+1,...,n, do

4: for k=0,...,ddo &

5 OPT(k,2') = Z:%m’k (OPT(Z', 2 —1)+ Z vdp(e;, 2') + cand(e;j, z’))

j=it1
+ price(v, 2’ — 1).

6: return miny_, _, OPT(d,z')

THEOREM 6.18. If Algorithm 5 returns a finite value, then it computes a partial layer
assignment z: E(Y (v)) U {e} = Z minimizing partial RC prices among all such partial
layer assignments with z(e) = z. and layer order e < e; <X ... = eq.

If Algorithm 5 returns an infinite value, then there exists no partial layer assignment
z: BE(Y(v))U{e} = Z with z(e) = z. and layer order e < e; = ... < eq.

110 6. CONNECTING TO EXACT SHAPES

PROOF. For k € {0,...,d} and 2’ € Z let a k-partial layer assignment with maximum
layer ' be a layer assignment z: (U, E(Y (w;)) U {e;}) U{e} — Z with z(e;) € Zo, N
{zey..., 2"}, i =1,...,k, and z(e) = z.. Let the partial RC price of such a k-partial
layer assignment be defined as

k

rep(e, ze) + price(v, ze, 2') + Zvdp(ei, z(ei)) + cand(e;, z(e;)).
i=1

In particular, any d-partial layer assignment is a partial layer assignment in the sense of
Definition 6.14. Moreover, for any optimum partial layer assignment z*: E(Y (v))U{e} —

Z with z*(e) = z. we have

reple, z*(e)) + Y. rep(w,2)+ Y rep(€, ()
weV (Y (v)) S/ EE(Y (v))
d
=rcp(e, ze) + rep(v, 27) + Z cand(e;, 2" (e;))
i=1
d

= rep(e, 2e) + price(v, ze, 2% (eq)) + Y _ vdp(es, 2*(e;)) + cand(e;, 2% (e;)),
i=1

where we used Proposition 6.17 to get the last equality. Let OPT*(k,2’) for (k,2’) €
{1,...,d} x Z be the minimum partial RC price of any k-partial layer assignment with
maximum layer 2’ if such a layer assignment exists, and OPT*(k, z’) = oo otherwise. We
claim that OPT* equals OPT from Algorithm 5. In that case, Algorithm 5 returns the
correct solution.
We certainly have OPT(k, z.) = OPT*(k, z¢) for k = 0,.. ., d after initialization in line 2.
So let 2/ > z. and k € {0,...,d}. We first note that OPT(k, z’) = oo if and only if at
least one of the following conditions holds for all i € {0,. .., k}:

(1) OPT(i,2" — 1) = o0, i.e. no feasible layer assignment of {ej,...,e;} in the layer

range {2,...,2 — 1} exists (by induction),

(2) cand(ej, 2’) = oo for some j € {i+1,...,k}, ie. 2" ¢ Z,.
Now assume that (1) and (2) do not hold. In that case OPT(k,z’) can be associated
with an index ¢ € {0,...,k} such that {ej,...,e;} are assigned optimally within the
layer range {z,...,2" — 1}, and {e;y1,...,ex} are assigned to z’. Therefore, using
OPT*(i,2/ — 1) = OPT(i,2' — 1) for all i = 0,...,k by induction, line 5 correctly
computes OPT*(k, z’) = OPT(k, 2’) by taking the minimum over all such possible choices
ofi € {0,...,k}. 0

The running time analysis is simple:

6.3. ASSIGNING LAYERS 111
PROPOSITION 6.19. Algorithm 5 can be implemented in O(|Z|) time.

ProoOF. We first recall that by our assumptions from the beginning of this section, d
can be considered as a constant. The via delay prices vdp(e;, z¢;), i = 1,...,d, z¢, € Z,,
can be computed in a total of O(|Z]) time. Therefore, as lines 2 and 5 take constant

time, the total running time of Algorithm 5 amounts to O(|Z|). O

We can now formulate the main results of this chapter:
COROLLARY 6.20. Algorithm 4 can be implemented in O(|E(Y)|-|Z|?) time.

PROOF. We show how to implement line 3 for e = (u,v) € E(Y) in O(|Z]) time: We
apply Algorithm 5 to all possible layer orders of dy (v). As [0y (v)]| is constant, there is
only a constant number of such orders. Using Proposition 6.19, the total running time
for one invocation of line 3 of Algorithm 4 then amounts to O(|Z]) time, and the claimed

total running time for Algorithm 4 follows. t

THEOREM 6.21. Algorithm 4 is an (1 + (= 1)(1 — ﬁ)) -approximation algorithm for
the 2D TREE LAYER ASSIGNMENT PROBLEM, where o and 3 are defined as in Theo-
rem 6.10.

PRrROOF. By definition of cand, Algorithm 4 returns a layer assignment minimizing
rcp. The proclaimed approximation bound then follows from Theorem 6.10.]

At this point we also mention the fully polynomial time approximation scheme for em-
bedding a fixed Steiner tree topology into a graph given by Hadhnle and Rotter [97],
which we shortly introduce in Section 5.3.2. This also yields a fully polynomial time
approximation scheme for a slightly modified version of the 2D TREE LAYER ASSIGN-
MENT PROBLEM where z- and y-coordinates of Steiner vertices are not completely fixed
(they are movable within the graph). However, as for the RC-AWARE PATH PROBLEM,
the running time (5.3) of the approximation scheme is most likely too large for using it
for more than a very small fraction of nets in our application. Therefore, our algorithm
presented in this section seems more suitable for large-scale application in practice, as
it should be sufficiently fast for practical purposes.

6.3.5. A Hardness Result Regarding Unbounded Vertex Degrees. During
the development of Algorithm 4 we assumed that the maximum vertex degree in Y
is bounded by a constant. Without this requirement, Algorithm 4 would not be a
polynomial time algorithm, as we consider every possible layer order of dy(v) when
computing cand(e, z.) for e = (u,v) and z. € Z, in line 3. We now show that assuming
the maximum vertex degree to be bounded is indeed necessary for computing a layer

assignment minimizing rcp:

112 6. CONNECTING TO EXACT SHAPES

FIGURE 6.4. The Steiner tree Y from the proof of Theorem 6.22. Red
edges are fixed on layer 2, while blue edges may be assigned to layer 1 or
3. Layer-dependent edge prices and RC data are consistently zero except
for vias at v, which have a positive resistance.

THEOREM 6.22. Consider the version of the 2D TREE LAYER ASSIGNMENT PROBLEM
where Y is allowed to have unbounded vertex degrees. Then computing a layer assignment

minimizing rcp is N P-hard.

We use a reduction of the well-known N P-complete PARTITION PROBLEM [70], whose
formulation is already given in Section 5.3.1. We need the following trivial lemma for
the proof of Theorem 6.22:

LEMMA 6.23. Consider the function f: R — R defined by f(x) = 22+ (S —x)? for some

S € R. Then f attains its unique minimum for x =S /2.
Proor. We have
f@) =2+ (S—z) =222 - 250+ 52 =2(x - 5/2)°+ 5 /2.

O

PROOF OF THEOREM 6.22. Let ay,...,a, € Qsg be an instance of the PARTITION
PROBLEM. We construct an instance of the 2D TREE LAYER ASSIGNMENT PROBLEM
as depicted by Figure 6.4:

o V(Y)={s,v}U{wi,...,w, } UT with T = {t1,...,tn},
o BE(Y)={(s,v)} U{(v,w;), (wi,t;) :i=1,...,n},
Z=1{1,2,3},
Z. ={1,3} if e = (v,w;) for i € {1,...,n}, Z. = {2} for all other e € E(Y),
R(s) =0, price(t;) = C(t;) = a;,i =1,...,n,
price(e, z.) = R(e, ze) = C(e, ze) = 0 for all (e, z.) € E(Y) x Z,
price(z, z;) = 0 for all (z,2,) € V(Y) x Z,

6.3. ASSIGNING LAYERS 113

z=3 Zmax (V)

z=1 zmin(v)

FIGURE 6.5. Illustration of a layer assignment corresponding to a par-
tition I = {iy,...,ix} and I¢ = {igy1,...,9n} in the proof of The-
orem 6.22. Vertical positions of vertices and edges indicate their z-
coordinates. Edges incident to sinks in T" are located on layer 2, but their
vertical positions are slightly displaced for illustrative purposes. Bundles
of edges indicate that the paths starting in zpmin(v) and zpax(v) and end-
ing in 7" are disjoint. The price of the layer assignment equals the delay
price through the green via at v, and is therefore fully determined by I
and I°€.

e R(v,z,) =1forall z, € Z, R(z,2,) =0 for (z,2;) € (V(Y)\ {v}) x Z.

We note that the edges (s,v) and (wj,t;), i = 1,...,n, exist due to our convention that
pins are leaves in Y that are incident to an edge on a fixed layer (representing the layer
of the pin).

Every layer assignment for this instance of the 2D TREE LAYER ASSIGNMENT PROBLEM
is fully determined by which of the edges (v, w;), i = 1,...,n, are assigned to either layer
1 or 3. In that sense, let z be a layer assignment, and let I = {i € {1,...,n}: z(v,w;) =
3} and I° = {1,...,n} \ I. An illustration is given by Figure 6.5. Then we have

2 2
rep(z) = Zprice(ti) ZC’(ti) + Z price(t;) Z C(ti) = (Z ai> + (Z ai> .

icl icl icle icle icl icle
Letting S := > ; a;, it follows from Lemma 6.23 that there exists an optimum layer
assignment z with rep(z) = S? /2 if and only if ay, ..., a, describe a yes-instance of the
partition problem. O

114 6. CONNECTING TO EXACT SHAPES

6.4. Implementation in BonnRouteGlobal

As already mentioned, this chapter describes a three-step approach for transforming a
route that is connecting projected shapes to one connecting exact shapes. At the time
of this writing, only two of these three steps, namely the ones outlined in Sections 6.1
and 6.2, are implemented and fully functional in BonnRouteGlobal. The layer assign-
ment step from Section 6.3 is currently being implemented.

However, as we still need to connect to exact shapes for our experimental results in
Chapters 5 and 7, e.g. in order to be able to do timing computations, we replace the
layer assignment step outlined in Section 6.3 by a heuristic method: We first restrict
ourselves to working locally as described in Section 6.3.1, and then do a heuristic layer
assignment for tile-internal segments. As this is only an intermediate solution, we omit
the description of this heuristic layer assignment method at this point. Here, it is impor-
tant to emphasize that as we are restricting ourselves to working locally, the heuristic
layer assignment only has local effects — the global layer assignment of long wires is
therefore still determined by the respective routing methods described in Chapters 5
and 7.

CHAPTER 7

Routing Based Optimization

After the main global routing phase has finished and all nets are routed, one could
directly proceed with detailed routing. Although this is a feasible approach that has
been used successfully in the past, we present a new routing flow where we include an
additional timing optimization step called Global Routing Based Optimization (GRBO)
inbetween global and detailed routing. Moreover, we add a second routing based timing
optimization step called Detailed Routing Based Optimization (DRBO) directly after
detailed routing. This results in the routing flow depicted in Figure 7.1. This flow has
been developed in collaboration with Michael Kazda and his team from IBM, who set
up the optimization flow using BonnRouteGlobal.

The main focus of this chapter is our incremental global router, which we call Incremental

BonnRouteGlobal. Its task is to incrementally change the existing routing in order to

RC-Aware
BonnRouteGlobal

GRBO with
Incremental
BonnRouteGlobal

[BonnRouteDetailed }

DRBO with
Incremental
BonnRouteGlobal

[BonnRouteDetailed J

FIGURE 7.1. A simple sketch of our routing flow.

115

116 7. ROUTING BASED OPTIMIZATION

adapt to the changes that are induced by the timing optimization tools running in GRBO
and DRBO. Due to this role, the incremental router is one of the central components
of GRBO and DRBO and constitutes the main difference between RBO and the timing
optimization steps running in the VLSI design flow prior to RBO. GRBO and DRBO
are also incorporated and broadly used in the IBM production flow.

This chapter is structured as follows: Section 7.1 and 7.2 are overview chapters. The
former gives an overview on GRBO and DRBO in general, and the latter describes the
transaction framework that is used to control Incremental BonnRouteGlobal. The next
three sections then describe features of Incremental BonnRouteGlobal: In Section 7.3
we describe the process that we use to complete the routing of partially wired nets,
which goes under the name minimal reroutes. Subsequently, we turn our attention to
the situation where buffers are inserted into an already routed net, and the problem of
distributing the wiring into the resulting subnets. This problem is referred to as the
Copy Routes Problem, and it is covered in Section 7.4. The last feature of Incremental
BonnRouteGlobal that we describe in this thesis is its multi-threaded implementation,
and the description is given in Section 7.5. Sections 7.3 — 7.5 contain experimental results
tailored to the respective topic, and as a summary of that, we present experimental
results showing the effectiveness of our whole new routing flow in Section 7.6.

The incremental routing framework utilized in this chapter including the code to run
the various timing optimization steps is provided by IBM. Our main contributions to
the routing flow depicted in Figure 7.1 are the parts related to BonnRouteGlobal, i.e.
RC-Aware BonnRouteGlobal from Chapters 4 and 5 and Incremental BonnRouteGlobal
from this chapter.

7.1. GRBO and DRBO

GRBO and DRBO constitute timing optimization flows (cf. Section 1.2.2) that are built
around Incremental BonnRouteGlobal. This means that whenever pin positions are
changed or nets are created during timing optimization, we use our incremental global
router to complete the routing. Except for few detailed wires that are possibly in the
input to global routing, we almost exclusively deal with global wires during GRBO. In
contrast to that, we start with a fully detailed routed design in DRBO. Our incremental
global router then adds global wires and removes no longer required detailed wires to
connect nets that are modified during DRBO. Therefore, we work with a mix of global
and detailed wires during DRBO.

In the remainder of this section we first motivate adding the GRBO and DRBO steps to

our routing flow in Section 7.1.1. Afterwards, we give a cursory overview on the timing

7.1. GRBO AND DRBO 117

optimization flows that we use in GRBO and DRBO in Section 7.1.2. At last, we turn

our attention to the problem of estimating routing capacities for DRBO in Section 7.1.3.

7.1.1. Motivation. In the subsequent paragraphs we shortly reason about why we
are adding GRBO and DRBO to our routing flow. Of course, the crucial point is that it
gives good results in practice, as shown in Section 7.6. However, we want to elaborate
more on the reasons behind this.

7.1.1.1. Motivating GRBO. The main reason for adding the GRBO step to our rout-
ing flow is as follows: While an extensive amount of timing optimization is already being
done prior to global routing, this timing optimization has to use wiring estimates. More
precisely, in our VLSI design flow every net is estimated to be wired as an approximately
shortest Steiner tree that is embedded on the two lowest layers of the layer assignment
of the given net (cf. Section 1.3.2.4.1).

This is optimistic in one way, namely that there are no detours introduced due to routing
congestion. However, it can also be both optimistic and pessimistic with respect to the
layer choice, as the router might be able to use higher layers for routing certain nets, or
it might sometimes be forced to use lower layers than the layer assignment prescribes
because it cannot close all connections otherwise. This inaccuracy is certainly strongly
mitigated by a good layer assignment, but as the layer assignment algorithm most likely
does not have an as accurate picture of routing congestion as the global router itself,
some amount of inaccuracy is inherent to this approach. As an additional drawback, the
current method of estimating Steiner trees before global routing does not incorporate
our new techniques for computing RC-aware Steiner trees from Chapter 5, therefore
introducing additional pessimism.

Since there is both optimism and pessimism in the estimation method, it is a priori not
absolutely clear whether our global routes will yield a better or worse timing than the
estimates. However, the data from Sections 5.5 and 7.6 clearly shows that our RC-aware
global router consistently achieves significantly better timing results than the estimates.
In any case, as the timing characteristics of the global routes differ significantly from
the ones of the routing tree estimates, and the global routes are far better estimates for
the detailed routes than the routing tree estimates, it certainly makes sense to run some
amount of timing optimization after global routing in GRBO.

7.1.1.2. Motivating DRBO. Motivating the DRBO step is not difficult: Detailed
routing is a hard problem, and, as will be shown in Section 7.6, we often see some
amount of timing degradation after detailed routing compared to our global routes. This
is expected to some extent, as the process from Chapter 6 applies local optimizations
to the global routes, making them a rather optimistic estimate for the detailed routes.
In this context, improving the interplay between the global and the detailed router is

118 7. ROUTING BASED OPTIMIZATION

of major importance. However, it is a hard problem in practice, and some deviation is
expected.

Another reason for using a detailed routing based optimization step is that when the
design is fully detailed routed, more precise timing models that take coupling capac-
itances into account can be used. As explained later in Section 7.1.2, we do not use
such timing models for our experiments in this thesis, but it is certainly an advantage
to incorporate them in a production flow, as it is done in the DRBO version running in
the IBM production flow.

7.1.2. GRBO and DRBO Flows. The timing optimization done in RBO is less
extensive than the one done before routing, but otherwise the same general principles
apply. In our GRBO and DRBO flows we use buffering, gate sizing, Vt optimization
and local placement changes, which are basic timing optimization steps introduced in
Section 1.2.2. These operations are used in different variations in order to improve
power consumption and timing, and to resolve electrical violations. The code to run
these operations is taken from the IBM physical design environment, and the overall
optimization flows are similar, but not identical, to the ones that are running in the
IBM production flow.

With respect to incremental routing, gate sizing, Vt optimization and local placement
changes are similar operations in the sense that they only modify nets by changing
pin positions. The difference here is the extent to which pin positions change: Gate
sizing and Vt optimization are often combined and usually lead to small changes of pin
positions, or no changes at all, in which case the change is said to be pin-compatible.
The circuit library is actually designed to encourage pin-compatible changes, as they
provide a way to improve timing without requiring actual routing changes, which is
especially helpful during DRBO. Bigger pin movements occur when circuits are moved
with the intention of improving timing metrics — after all, very small movements will
most likely only result in very small improvements. However, bigger movements can also
occur during gate sizing when a larger gate is chosen that does not fit any more into its
old spot on the placement layer. In that case placement legalization (cf. Section 1.2.1)
must solve the problem and might cause bigger pin movements.

Contrary to that, buffering does not modify existing nets, but deletes them and creates
new ones instead. Here, several modes are possible: In the simplest mode, an existing
net is subdivided by insertion of buffers. This step may require bigger routing changes
than for example gate sizing, but as the newly added buffers are usually placed relatively
close to the routing tree, the routing can often be completed by adding a relatively small
amount of wiring, as is shown in Section 7.4. On the other hand, buffers may also be
removed, and in fact whole buffer trees that have been built earlier in the optimization

7.1. GRBO AND DRBO 119

flow may be rebuilt. In that case it is likely that bigger routing changes are required.
Our GRBO and DRBO flows both include pure buffer insertion routines (i.e. no buffer
removal), while we use buffer tree restructuring only in GRBO due to the magnitude of
routing changes required for that operation.

Throughout this chapter, timing extractions are done using RICE [95]. Moreover, we
use a simple model where the capacitance of a wire only depends on the layer and wire
type of the wire, but not on its neighbors. Incorporating coupling capacitances caused
by neighboring wires is possible and more accurate when dealing with detailed wires, but
some questions are raised when incremental routing changes and the addition of global
wires come into play. In the IBM DRBO flow where our incremental global router is used,
coupling capacitances are incorporated into the timing model. However, for simplicity
and comparability of timing results, we use the simpler method of neglecting coupling
capacitances in this thesis.

7.1.3. Capacity Estimation for DRBO. One important topic to be addressed
in the context of DRBO is the capacity estimation: While there are already routing
blockages present in the traditional global routing scenario, the amount of blocked space
is generally small compared to the amount of free space. Moreover, at least large block-
ages often have a simple structure that makes them easier to handle. The contrary is
true for DRBO: Here, the design is fully detailed routed, and therefore most of the space
is blocked by detailed wiring that can be highly branched on a local scale. Therefore,
the capacity estimation of BonnRouteGlobal that existed prior to the DRBO use case
proved to be impractical for DRBO, and refinement was needed. In the remainder of
this section we give a coarse description of the capacity estimation and usage update
methods that we use for DRBO. This is joint work with Pietro Saccardi, who did the
majority of the work by providing the implementation of the capacity estimation.
BonnRouteGlobal’s new capacity estimation for DRBO works roughly like this: Consider
the situation directly after detailed routing. Let G be the global routing graph and
e = {(i,5,k),(@',7,k)} € E(G) be a wiring edge, and assume i < i’ without loss of
generality. Then we define the edge area of e as A(e) := {a € A(i,j, k) U A(i',j', k) :
(i, 7))z < az < p(i',5")z}. Given this, we let

e F(e) C A(e) be the free space that we could occupy by placing minimum width
wires in A(e) without violating minimum distance rules,

e B(e) C (A(e) \ F(e)) be the space that is blocked by non-removable routing
blockages,

e D(e) = A(e) \ (F(e) U B(e)) be the space that is blocked by detailed wires.

We then set the capacity of e to the area of A(e)\ B(e) and assume D(e) to be occupied
by input detailed wires. B(e) and D(e) are both initially blocked, but in contrast to

120 7. ROUTING BASED OPTIMIZATION

B(e), D(e) can be freed during DRBO by deleting detailed wires that are no longer
needed. In other words, the area of B(e) is (permanently) subtracted from the edge
capacity, while the area of D(e) is counted as input usage that may be reduced later. To
match our model, these capacities and input usages are divided by the length of e and
scaled down to unit capacities by adapting the usage functions.

Of course, this description is only a coarse outline. In practice, a considerable amount of
fine-tuning has to be applied to compute reasonable estimates for B(e), D(e) and F'(e)
in presence of complex spacing rules.

Moreover, computing these areas requires a global outlook on the shapes in the whole
edge area A(e), which makes it difficult to update D(e) when detailed wires are removed
during DRBO. We therefore use simple estimates that only look at individual wire
shapes when updating D(e) during DRBO. This is not exactly precise, but as the routing
changes made during DRBO are typically only local, it is a reasonable method in practice.
An improvement of this method might be to do an exact recomputation of D(e) a few
times in the DRBO flow, but we did not incorporate this yet.

Our way of computing capacities for DRBO will have some effects on the experimental
results that we are going to present in the remainder of this chapter. We will elaborate

on this in the respective sections where this is of consequence.

7.2. The Incremental Routing Framework

When the incremental routing process starts, our router is registered with a general
incremental routing interface provided by IBM. Other tools (usually timing optimization
tools) can then control the router by means of that interface. In the following we call
the tool that is using the incremental router the operating tool. This section contains
three subsections: In Section 7.2.1 we present the notion of a transaction, which is the
basic underlying concept of the incremental routing interface mentioned above. After
that, we outline in Section 7.2.2 how Incremental BonnRouteGlobal implements changes
that occur during a transaction. At last, Section 7.2.3 describes the mechanics behind

undoing a transaction.

7.2.1. Transactions. As already stated, transactions are the fundamental concept
behind the incremental routing framework that we are working in. In fact, the incremen-
tal routing process can be regarded as a series of individual transactions. For the sake
of simplicity we first describe the transaction framework with a single-threaded context
in mind. In a multi-threaded context the process works in a similar manner, but some
additional complexity is introduced. We elaborate on that in Section 7.5.

The transaction framework works like this: Before making any changes, the operating
tool must start a transaction. When a transaction is started, a callback mechanism is

7.2. THE INCREMENTAL ROUTING FRAMEWORK 121

back to start

Start transaction

data model changes

data model changes

Impl
Undo changes mplement]
discontent changes
with
changes

content with changes

Commit changes

FIGURE 7.2. Transaction framework to operate the incremental router.

activated: Any relevant changes to the chip data model (e.g. circuit movements) are
communicated to the router via callback functions that were previously installed. This
way, the operating tool only needs to communicate its changes to the data model, but
not directly to the router, as this is done automatically. It also makes the operating tool
less dependent on the router, because for the most part the tool can act in the same way
whether a router is installed or estimates are used.

When a transaction is active, the router only listens to the callbacks, but it does not im-
plement them on-the-fly, as the callbacks can be very fine-grained. To have the changes
implemented, the operating tool must issue a specific implementation request to the
router. Afterwards, the operating tool can query various metrics like timing and routing
congestion in order to decide whether to commit or undo the changes: When changes are
committed, the state at the beginning of the transaction is forgotten, and the current
state is established as a basis for further transactions. When wundo is called, all changes
made in this transaction (including routing changes) are undone. A more detailed de-
scription of how such an undo request is implemented in BonnRouteGlobal is given in
Section 7.2.3. It is also possible for the operating tool to issue multiple implementation
requests in a single transaction until the decision to commit or undo is made. A trans-
action is called open if it has been started but has neither been committed nor undone.

Figure 7.2 illustrates the transaction framework.

7.2.2. Implementing Changes. During the incremental routing process, nets can
be modified, deleted or newly created. An example for a modification is a placement
change of a single circuit, which results in a pin position change for all the adjacent nets.
Deletion and creation of nets occurs during buffering.

122 7. ROUTING BASED OPTIMIZATION

In our implementation we keep track of all nets that have been modified, deleted or
newly created since the last implementation request or the start of the transaction.
When implementation of these changes is requested, we remove all deleted nets from our
data structures and complete the routing of modified and newly created nets. A crucial
point about routing nets in this context is that we often can start with prewiring that
already connects large parts of the net. This prewiring can be obtained in different ways
depending on the history of the net.

In the first case, the net has been modified in the course of the transaction. In that case,
we use the existing wiring of the net as a starting point and use the minimal reroute
procedure from Section 7.3 to complete the routing.

In the second case, the net has been newly created by subdividing an already routed net
into multiple nets through buffer insertion. In that case, we first run the copy routes
procedure from Section 7.4 to distribute the wiring of the original net among the nets
resulting from buffer insertion. After that, we again use the minimal reroute procedure
from Section 7.3 to route those nets.

An exception to this rule occurs when there is a layer assignment or wire type change for a
net: In that case, we reroute the affected net from scratch. Rerouting from scratch is also
done in all cases that are not covered by the above rules. In our current optimization
flows this only happens in GRBO when buffer trees are rebuilt, as our copy routes
procedure from Section 7.4 only covers the case where a net is subdivided into multiple
nets through buffer insertion, but not the reverse operation of merging multiple nets
into one net through buffer removal. However, in general timing optimization flows there
could also be other cases that are not covered by the above rules for preserving prewiring,

which could for example occur when local logic restructuring is run (cf. Section 1.2.2).

7.2.3. Undoing Transactions. As stated in Section 7.2.1, the incremental routing
framework offers the operating tool the possibility to undo transactions. When such a
request to undo a transaction is issued, the router must revert all changes in its data
model that were caused by this transaction. To be able to do this, we store the following

extra information at any point in time during a currently open transaction:

e We store the set Mpewy C N of new net versions (where A/ denotes the netlist, as
usual): We have N € Nyey if and only if N has been modified or newly created
during the course of the current transaction. When a transaction is undone,
we first remove all nets in Mpew from the netlist, and all data associated with
these nets from our other data structures.

e Complementary to NMyew, we store the set Norig of original net versions: When
anet N € (N \ Nnew) is modified or deleted, we add a snapshot of it to Nyyig.
In addition to that, we also make a snapshot of the data associated with the net

7.3. MINIMAL REROUTES 123

that is stored in other data structures, including its route. In that sense, Noyig
is not a subset of A/, but rather a collection of data associated with nets. When
a transaction is undone, we add back all of this data to our data structures
after having removed the data associated with Mpeyw.

e For every resource r € R from our resource sharing framework (cf. Chapter 4),
in particular edge resources, we store the usage difference Ausg, that was in-
duced in this transaction (unless Ausg, = 0). When a transaction is undone,

we set usg, := usg, — Ausg, for all » € R, where usg, is the current usage of r.

In a single-threaded context, this method ensures that after undoing a transaction, our
internal data model is restored back to its state at the point in time when the transaction
was started. In a multi-threaded context (cf. Section 7.5), this cannot be guaranteed,
as other threads may have made changes inbetween. However, what we can always
guarantee is that we revert the changes that were made in the particular transaction

being undone.

7.3. Minimal Reroutes

As outlined in Section 7.2.2, we are often facing the situation where we have to route
a net N and we are already given a wiring that almost connects N. This wiring may
be the wiring of a previous version of N, or it may be the case that N resulted from
buffering a larger net, and the wiring has been assigned to N during the copy routes
process described in Section 7.4. This leads us to the notion of minimal reroutes and
the corresponding MINIMAL REROUTE PROBLEM, which is described in this section.

7.3.1. The Minimal Reroute Problem. In the way our RBO framework is set
up, most pin movements are relatively small, and buffers are usually also inserted close
to the existing wiring. Therefore, we use a method that aims to reconnect disconnected
pins to the existing prewiring with a minimum amount of added wire length. As a
consequence, we treat the minimization of a weighted sum of wire length and via count
as the objective and avoiding routing overflow as a constraint. This leads to the definition
of the MINIMAL REROUTE PROBLEM and the COARSE MINIMAL REROUTE PROBLEM,
which are introduced in Sections 7.3.1.1 and 7.3.1.2, respectively.

7.3.1.1. Defining the Minimal Reroute Problem. Before we can define the MINIMAL
REROUTE PROBLEM, we need the following definitions:

DEFINITION 7.1. Let S be the layered chip area with layers Z, Y be a Steiner tree

connecting the exact shapes of a net N, and price‘gége: Z — R>p and priceg,ifj 1 Z = Rxo

124 7. ROUTING BASED OPTIMIZATION

objective function prices for wires and vias. Then for (v,w) € E(Y) we define
pricegy;(p(v)2) - dist(v,w) i p(v). = p(w)s,

priceobj(v, w) := { max{p(v):,p(w):}-1 (7.1)

priceg{;(z’) otherwise,
z’:min{p(?))z ,p('w)z }

to be the objective function price of (v, w).

Definition 7.1 defines our objective function prices in a fairly standard way. We continue
with a definition that is required to define our congestion prices:

DEFINITION 7.2. Let G be the global routing graph and Y be a Steiner tree connecting
the exact shapes of a net N. For F' C E(Y') we define

Eg(F) = {{(i,j,k), (7, §',K)} € B(G) : 3 (v,w) € F with
p(v) € A(i, j, k) and p(w) € A(i', 5, k) }

to be the edges of G covered by F.

Definition 7.2 will be used to determine congestion prices, which are always based on
covered edges of the global routing graph due to our current congestion model. We first
state our definition of the MINIMAL REROUTE PROBLEM and then explain the details

and reasoning behind this problem formulation:

PROBLEM 7.3: MINIMAL REROUTE PROBLEM
Input: A net N, a Steiner tree Y[connecting the exact shapes of a subset Ng C N
(possibly Ny = (), the global routing graph G with layers Z, congestion prices
price

cong: B(G) = Rxp, wire and via objective function prices priceg’gge: Z —

RZO and pricegg}: Z — RZO'
Task: Compute a subgraph Y of a suitable subdivision of Y and a Steiner
tree Y with E(YJ) C E(Y) connecting the exact shapes of N such that

price,,; (E(Y) \ E(Yy)) + pricecons(Ec(E(Y)) \ Eq(E(Yy))) is minimized.

In contrast to most other parts of this thesis, we explicitly allow Yy to contain Steiner
vertices of degree 1 — after all, Yj often almost connects the entire net, which includes
wires that reach close to the disconnected pins. We require Yj to be a Steiner tree, but
in principle, the problem could also be defined to work with a Steiner forest. However,
defining Yy to be a Steiner tree will simplify the definition of our shape-based edge
lengths from Section 7.3.3.2 a bit. In our application in practice, Y} is always a Steiner

tree. Throughout this section, we often use the term prewires in order to refer to Y.

7.3. MINIMAL REROUTES 125

In the above model, price,,; is measured based on the exact layout of Y, while price

is measured based on covered edges of the global routing graph. The reason for the

cong

former is that it is more precise, and the reason for the latter is that it is in sync with
the congestion model that we used during the main global routing phase before the
incremental routing process. If the congestion model was based on exact shapes from

the very beginning, then price could also be modeled based on exact shapes, which

cong
would yield a more consistent model. We will elaborate more on the definition of price
cong 11 Section 7.3.3.

7.3.1.2. Solving the Minimal Reroute Problem. For solving the MINIMAL REROUTE

obj
and price

PROBLEM we still mainly work on the global routing graph and only use a heuristic
approach for minimizing wire length based on exact shapes. This leads to the definition of
the COARSE MINIMAL REROUTE PROBLEM, which is basically a version of the MINIMAL
REROUTE PROBLEM that is defined purely in terms of the global routing graph:

PROBLEM 7.4: COARSE MINIMAL REROUTE PROBLEM
Input: A net N, a Steiner tree Xy connecting the projected shapes of a subset Ny C
N (possibly Ny = 0), the global routing graph G, edge prices price: E(G) —
Rso.
Task: Compute a subgraph X{, of Xy and a Steiner tree Y with E(X{) C E(Y)
connecting the projected shapes of N such that price(E(Y) \ E(Xp)) is min-
imized.

Here, Xg represents the edges of the global routing graph that are covered by the prewires
of the underlying instance of the MINIMAL REROUTE PROBLEM in the sense of Defini-
tion 7.2. As such, Xy might also contain Steiner vertices of degree 1. As we sometimes
refer to an instance of the COARSE MINIMAL REROUTE PROBLEM and its underly-
ing instance of the MINIMAL REROUTE PROBLEM at the same time, we always denote
the prewires in the MINIMAL REROUTE PROBLEM as Yj and the ones in the COARSE
MiINIMAL REROUTE PROBLEM as Xy in order to make them distinguishable.

Our process now works as follows: Given an instance of the MINIMAL REROUTE PROB-
LEM, we first turn it into the corresponding instance of the COARSE MINIMAL REROUTE
PROBLEM. We then solve the COARSE MINIMAL REROUTE PROBLEM and finally use
the methods from Chapter 6 — more precisely Section 6.4 — to convert the computed
tree into one connecting exact shapes, providing a solution for the original instance of
the MINIMAL REROUTE PROBLEM. Moreover, Steiner vertices of degree 1, which may
be left over in the prewiring, are removed at the very end of the minimal reroute process.
An image sequence from practice illustrating this process is given by Figure 7.3.

126

7. ROUTING BASED OPTIMIZATION

=

I

FI1GURE 7.3. A minimal reroute sequence from practice: We start with
a fully detailed routed net (blue), where the source pin is shown in red,
while the four sink pins are colored black (upper left). The black hor-
izontal and vertical lines illustrate the global routing tile grid. During
DRBO, the source pin is moved to a different location (upper right).
We then solve the corresponding instance of the COARSE MINIMAL RE-
ROUTE PROBLEM, which gives us a global routing (green) that reconnects
the source pin to the prewiring (lower left). However, this global routing
is embedded into the global routing graph, and therefore lacks connec-
tions to exact shapes, as indicated by the diagonal gray lines. Therefore,
we use our methods from Chapter 6 in order to connect to exact shapes,
and remove Steiner vertices of degree 1 at the very end (lower right).

7.3. MINIMAL REROUTES 127

It is easy to see that the COARSE MINIMAL REROUTE PROBLEM can be reduced to
the MINIMUM STEINER TREE PROBLEM IN GRAPHS (cf. Section 2.3.1), as the edges
corresponding to Xy can just be contracted. We can therefore approximate it as outlined
in Section 2.3.1. An open question is how to choose the edge prices for the COARSE
MINIMAL REROUTE PROBLEM. We address this in Section 7.3.3. Before we do that, we

discuss the reasoning behind our problem formulations in Section 7.3.2.

7.3.2. Motivating the Minimal Reroute Problem. In this section we moti-
vate our formulation of the MINIMAL REROUTE PROBLEM from Section 7.3.1. We first
present related work in Section 7.3.2.1 and then discuss our problem formulation in
Section 7.3.2.2.

7.3.2.1. Related Work. In the context of the MINIMAL REROUTE PROBLEM, related
work exists in the form of work dealing with variants of the STEINER TREE REOP-
TIMIZATION PROBLEM. In this problem, we are given an instance I of the MINIMUM
STEINER TREE PROBLEM IN GRAPHS and an optimum solution of a slightly different
instance Iy. Here, I results from Iy by a local modification, the most important ones
being: increasing the cost of an edge, decreasing the cost of an edge, adding a vertex
to the graph, deleting a vertex from the graph, adding a terminal to the terminal set,
removing a terminal from the terminal set.

As it is the most applicable variant in our scenario, we will restrict ourselves to the case
where a terminal is added to or removed from the terminal set. This yields the following

problem formulation:

PROBLEM 7.5: STEINER TREE REOPTIMIZATION PROBLEM WITH CHANGED TERMINAL
SET
Input: A complete graph G, metric edge costs ¢: E(G) — Rxp, a terminal set
Ty embedded into G, a Steiner tree Yy for Tp minimizing ¢(E(Yp)), and a
terminal set T" such that
(a) T =Ty U {t} for a new terminal ¢ embedded into G, or
(b) T="1T, \ {t} for t € Tj.

Task: Compute a Steiner tree Y for 7' minimizing c¢(E(Y)).

In [15], Bockenhauer et al. show that both variants (a) and (b) of this problem are
N P-hard: Any instance of the MINIMUM STEINER TREE PROBLEM IN GRAPHS can
be solved by iteratively solving variant (a) starting with an empty terminal set, or by
iteratively solving variant (b) starting with a terminal set that comprises all vertices of
the graph, in which case the optimum solution is a minimum spanning tree. Moreover,

128 7. ROUTING BASED OPTIMIZATION

they give 1.5-approximation algorithms for both variants: For variant (a), their algorithm
simply connects the new terminal ¢ to Yy by an edge of minimum cost. Therefore, their
algorithm runs in O(|T|) time (given an adequate representation of the edge costs). On
the other hand, their algorithm for variant (b) is not as simple and requires a running
time of O(|V(G)|*17). In addition to that, they devise a PTAS for the restricted case
where edge costs are natural numbers in {1,..., k} for a constant k. A related problem is
studied by Escoffier et al. [36]: They study a variant of version (a) where the newly added
terminal is also a new vertex in V(G). For this case, they give an 1.5-approximation
algorithm with running time O(|T'|? log |T|). Moreover, they present a (2— (1/(k+2)))-
approximation algorithm for the case where k such new terminal vertices are added.
These bounds are improved by Bilo et al. in [12]: They give an 1.344-approximation
algorithm for the version where one terminal is added, and an 1.408-approximation
algorithm for the variant where one terminal is removed. Further improvements are
made by Bilo and Zych [13, 127]: They provide ((30 —2) / (20 — 1)) + ¢ approximation
algorithms for any e > 0 for variants (a) and (b), where o is the approximation guarantee
of an algorithm for the MINIMUM STEINER TREE PROBLEM IN GRAPHS that they use
as a subroutine. Assuming the best-known algorithm of Byrka et al. [21] to be used,
this results in an approximation guarantee of 1.218. With the same notation, this is
improved by Goyal and Mémke [43] for both variants to (100 —7) /(70 —4), which results
in an approximation ratio of 1.204 using [21] again. Finally, Bilo gives polynomial time
approximation schemes for both variants in [11].

7.3.2.2. Discussing the Problem Formulation. In our formulation of the MINIMAL
REROUTE PROBLEM we seek to minimize the wire length that is added to the tree.
When translated into the COARSE MINIMAL REROUTE PROBLEM, this corresponds to
computing a minimum Steiner tree for N while assuming zero prices for the edges of Xj.
Generally, this can result in suboptimal solutions, as shown in Figure 7.4.
In order to avoid such situations, one could let the router use the prewires for a reduced,
but not zero, price. This would be easy to model: Instead of making edges covered by
prewires free to use as in the COARSE MINIMAL REROUTE PROBLEM, one could multiply
the price of every edge e € E(G) that is covered by prewires by a factor a. € [0, 1].
By a reasonable choice of these multipliers, the situation from Figure 7.4 could most
likely be avoided (assuming moderate congestion prices). Another possibility might
be to make use of the algorithms for the STEINER TREE REOPTIMIZATION PROBLEM
WITH CHANGED TERMINAL SET from Section 7.3.2.1, as most reroutes are required
because only a few pins are moved — in many cases, it is actually only one pin in a net
that is moved. This could be modeled as a sequence of both variants of the STEINER

7.3. MINIMAL REROUTES 129

p(s)

FI1GURE 7.4. Sketch of an instance of the MINIMAL REROUTE PROBLEM:
The sink t is initially connected to s by the blue path and then moved
to a new position p/(¢) during RBO. In the corresponding instance of
the MINIMAL REROUTE PROBLEM, the blue path corresponds to Yy, and
reconnecting t to Yy by the dashed red line might very well be an optimum
solution in our problem formulation. However, reconnecting ¢ directly to
s is more desirable in this case.

TREE REOPTIMIZATION PROBLEM WITH CHANGED TERMINAL SET, or it might even
be interesting to derive algorithms for a third variant where a terminal is moved.
However, we refrain from these possibilities, as we want to stick to the objective of
completing the existing wiring with a minimum amount of routing changes, even if there
are cases where a smaller wire length can be obtained by making bigger changes. Firstly,
this is naturally desirable in DRBO, as the goal in DRBO is to fix timing problems by
introducing as few global wires as possible, as implementing newly added global wires
later by the detailed router can be difficult and introduce new timing problems.

In GRBO the picture is less clear, but also there we seek to make as few routing changes
as possible in the absence of an RC-aware incremental router, i.e. an extension of the
methods from Chapters 4 and 5 to the incremental routing scenario. The reason for this
is that our global routes that exist at the start of the incremental routing process are
well optimized with respect to their timing characteristics. This is demonstrated clearly
by our experimental results from Section 5.5, where we can show that our RC-aware
routes achieve a much better timing than the baseline run, which basically optimizes
wire length. Therefore, as our incremental routing framework is not yet RC-aware, we
seek to modify our initial RC-aware global routes as little as possible in order to retain
their timing characteristics.

Apart from that, it is natural that the more sophisticated routing methods from Chap-
ter 4 used during the main global routing phase tend to find better routes than the
simplistic method of routing one net at a time during incremental routing. Moreover,
timing optimization tools might also consider electrical characteristics of the existing
route for their optimization, which also supports making only small routing changes.
Another important benefit is running time: In many cases, the COARSE MINIMAL RE-
ROUTE PROBLEM can be solved very quickly, as only a few new short paths have to be

130 7. ROUTING BASED OPTIMIZATION

computed. Allowing bigger changes would almost certainly result in a larger running
time — for example, multiplying the prices of all global routing graph edges covered
by prewires by a certain factor as outlined above could require recomputations of long
paths or the whole tree even in cases where one pin has been moved by only a small
amount.

As a conclusion, there are several indications that making only minimal routing changes
may yield better results in less running time than making larger changes with an in-
cremental router that is not RC-aware. This is clearly demonstrated experimentally by
Table 7.1 from Section 7.3.4.1. Therefore, we stick to our formulation of the MINIMAL
REROUTE PROBLEM for both GRBO and DRBO, as it is a natural and simple problem
formulation for minimizing the amount of routing changes that are performed to com-
plete each route. A possible improvement might be to use a timing-aware incremental
routing framework. In that case, bigger routing changes could be beneficial (at least
in GRBO), and a different formulation for the MINIMAL REROUTE PROBLEM might be

favorable. We leave this as a possible subject for future research.

7.3.3. Defining Prices. In this section we define the various price functions that
are used in the definitions of the MINIMAL REROUTE PROBLEM and COARSE MINIMAL
REROUTE PROBLEM in Section 7.3.1. We start with the price functions for the MINIMAL
REROUTE PROBLEM in Section 7.3.3.1 and then use them to define our edge prices for
the COARSE MINIMAL REROUTE PROBLEM in Section 7.3.3.2.

7.3.3.1. Prices for the Minimal Reroute Problem. To define price gy,
the MINIMAL REROUTE PROBLEM, we first define load prices Ip: R — R by

and price,,; for

1p(ﬂf) — eaiﬂ+6(min { max{wmin,m}fﬁnax } _'Ymin) .

In our implementation we choose a@ = 40, 5 = 160, Ymin = 0.975 and ~Ypax = 1.025.
Given a net N and e € E(G) we set

pricecong(e) = lp(usge + usg(N, 6)) o lp(usge),

where usg, is the current relative routing space usage of e, and usg(N, e) is the fraction
of routing space that N consumes on e. The intention here is as follows: We express
congestion prices in terms of our load prices, and the congestion price for using an edge
e when routing a net N is exactly the load price difference that is caused when N uses
e. These load prices depend exponentially on the load with a base of ¢®, and when the
load is in the critical interval [Ymin, Ymax), prices grow rapidly with a base of e th

For defining price,y,; we set

lp((smax) - 1p((smin)
lavg

pricelft®(2) = p(2) -

9

7.3. MINIMAL REROUTES 131

for z € Z, where dmax = Ymin and Omin = dmax — 0.05 are constants, [,y is the average
length of wiring edges in the global routing graph, and p(z) is a layer-dependent constant:
Letting zmin and zmax denote the minimum and maximum layer of the layer assignment
of the net N to be routed, and w(z) for z € Z denote the metal width of the wire type
of N on z, we set

1 if Zmin <2 < Zmax

p(z) == 1.05 - 0.05 - max {07 (w(zmin) /w(z)) — 1} otherwise.

The reasoning here is as follows: The objective function price of a wire of length lave
on a layer z € [Zmin, Zmax] IS set to equal the load price difference of dpin and dmax
(cf. Equation 7.1), i.e. the congestion price of adding a wire on an edge that increases
usage from dpin t0 dmax. The intention behind our setting of dpin and dmax is to let
objective function prices dominate congestion prices for edges safely below 100% usage,
but let congestion prices dominate when approaching 100% usage. Moreover, as, unlike
the routing oracle from Chapter 5, our incremental router is currently not timing-aware,
we penalize violating the layer assignment through p, where the magnitude of the pe-
nalization depends on the quotient of the wire widths on z and zuyi,. The via prices

wire

obj

via
obj
technology-dependent parameters that are also used for determining via prices during

priceli%(z), z € Z, are expressed in multiples of pricelt®(z), where the multipliers are
the main global routing phase.

Our definitions of price and price,},; are tailored to the way we do incremental routing:

con obj
We route one net at a tifne without iipping up and rerouting other nets, and there is
currently no step in our optimization flow that aims to resolve congestion. Therefore,
it is natural to let congestion prices grow rapidly in an interval around 100% routing
space usage, as creating detours is more desirable than creating routing overflow in our
scenario. This is especially true for our current optimization flow, as not all operating
tools make their decision to commit or undo a transaction based on congestion increases,
but they do check timing metrics.
Adding the possibility to rip out and reroute bystander nets during incremental routing
would probably be an improvement, but in particular in a multi-threaded context (cf.
Section 7.5), some issues would need to be addressed. Another possible improvement
might be to add steps to the optimization flow whose goal is to resolve congestion created
during the incremental routing process. The challenge here would be to preserve most
of the timing improvements that were achieved during the previous optimization steps.
7.3.3.2. Edge Prices for the Coarse Minimal Reroute Problem. In this section we de-
fine the edge prices price: E(G) — Rxq for the COARSE MINIMAL REROUTE PROBLEM.
As we solve the COARSE MINIMAL REROUTE PROBLEM as an approximation of the

132 7. ROUTING BASED OPTIMIZATION

MINIMAL REROUTE PROBLEM, these edge prices are defined based on the underlying
instance of the MINIMAL REROUTE PROBLEM. In that sense, assume for the remainder
of this section that we are given an instance of the MINIMAL REROUTE PROBLEM which
we use as a basis for defining edge prices for the corresponding instance of the COARSE
MINIMAL REROUTE PROBLEM.

Let e € E(G). If e is a via edge between layer z and z + 1, then we set price(e) :=

via

pricep;t (2) + pricecog(e). If e is a wiring edge on layer z, then we set

price(e) := priceggge(z) -sbl(e) + price ong(€),

where sbl(e) is the shape-based length of e. This means that in contrast to the classical
model, where we would set sbl(v,w) := dist(v, w) for (v,w) € E(G), we take the exact
shapes of the pins and prewires in the tiles that we are connecting into account. As

already stated in Section 7.3.1, making price,,,(€) dependent on sbl(e) would also be

con,
possible in a congestion model that is based on ixact pin and wire shapes.

The lengths sbl: E(G) — R>q are determined in the following way: Consider the input
of the underlying instance of the MINIMAL REROUTE PROBLEM, and let N := N \ Np.
For every global routing tile (7,7) € {1,...,n.} x {1,...,ny} (cf. Definition 2.8) we

define
pins(i, j) = A(i, §) N { (p(x)a, p(7),) : w € N'},
wires(i,) == A(i, /)N |J L*(e),
e€E(Yp)

to be the areas that are covered by the two-dimensional projections of exact shapes of
disconnected pins and prewires (see Definition 2.13 for the definition of L?P). We then
set

bb(i. 7) BB (pins(4,j) U wires(i, j)) if pins(i, j) U wires(s, j) # 0,
Z’ =
{p(ia 7) } otherwise,

where BB is the bounding box as in Definition 2.15, and p(i, j) is the center of tile (3, j).
This allows us to define sbl(v,w) for a wiring edge {v,w} = {(iy, jv, k), (tw, juw, k)} €
E(G) as

dist (v, w) if wires(iy, ju) # 0 and wires(iy, ju) # 0,

sbl(v, w) =
{dist (bb(iy, ju), bb(iw, jw)) otherwise,

where dist(bb(iy, ju), bb(iw, juw)) is the minimum rectilinear distance between any two
points in bb(i,, j,) and bb(iy, jw)-
An illustration is given by Figure 7.5. The reasoning behind this definition of sbl is as

follows: If a tile (i,7) does not contain any prewires or pins from N’ then we assume

7.3. MINIMAL REROUTES

p(t3)

P'(t2)

Ficure 7.5. Illustration of our shape-based edge lengths from Sec-
tion 7.3.3.2: We see four global routing tiles delimited by black lines,
and we identify them by their tile coordinates (0,0), (0,1), (1,1) and
(1,0) (clockwise starting from the lower left). Moreover, we see a net
with four pins s, t1, t2 and t3, and a route connecting them (in blue).
During RBO, t2 is moved from p(t2) to p(t2), making a reroute necessary.
For computing shape-based lengths for edges between tile (1,0) and tiles
(0,0) and (1,1), we compute the bounding boxes of the pin and wire
shapes in each tile: For tile (0,0), this bounding box is illustrated by the
dashed green lines; for tile (1,0), the bounding box just comprises p'(t2);
for tile (1,1), it coincides with the area covered by the blue wire located
in that tile.

The dashed red lines then illustrate the shortest connections between
these bounding boxes. Their lengths define the shape-based edge lengths
from Section 7.3.3.2. This way, the objective function prices for connect-
ing p'(t2) to tile (0,0) are much smaller than for connecting it to tile
(1,1). In the traditional model, where edge lengths are always measured
from tile center to tile center, connecting p’(t2) to tile (1,1) would be
associated with the same objective function prices as connecting it to tile
(0,0), which could result in a locally bad routing.

133

134 7. ROUTING BASED OPTIMIZATION

that we are routing from and to the center of the tile, and so bb(i,7) = {p(i,7)}. On
the other hand, if (i,) contains prewires or pins from N’ then we assume that a wire
entering the tile is used to access these pins or prewires, and so bb(i, j) is the bounding
box of their shapes.

An exception occurs when both adjacent tiles already contain prewires, which must
already belong to the same connected component of Yy. This is irrelevant in a two-
dimensional model, but in our three-dimensional model, the router might in some rare
cases actually use an edge between two tiles that are already covered by prewires on a
different layer if via prices in one of the two tiles are very high. In that case, we use the
standard model that assumes the distance of the respective tile centers as the length of
the wire.

As just mentioned, our definition of sbl is based on the two-dimensional projections of
pin and prewire shapes, but the actual net routing is done on the three-dimensional
global routing graph. However, in the majority of cases, using a two-dimensional model
for the definition of sbl seems to be more reasonable, as it is common to first enter a tile
with a wiring edge and then use vias to connect to pins or prewires.

The following propositions show that the computation time for sbl including prepro-
cessing is fast. For these propositions we make some realistic assumptions about data

structures in our global router implementation:

PROPOSITION 7.6. Computing wires(i, j), pins(i, j) and bb(i, j) for all tiles (i,7) can be

done in O(nlog k+m) time, where n := |N'|, k := ng-ny is the number of global routing

tiles, and m ==Y .cpeyyy [{(5,5) € {1, .., na} x {1,...,ny} : A(i, §) N L*P(e) # 0}].

PROOF. We assume that for any point (x,y) in the two-dimensional chip area we
can find the tile (4, 7) with (z,y) € A(i,j) in O(log k) time, as this can be achieved by
using binary search on a data structure that contains all tile borders sorted by their
coordinate. Therefore, we can compute pins(i,j) for all tiles (i,7) in O(nlogk) time.
For computing wires, we start at an arbitrary vertex v € V(Yp) and query its tile. We
then traverse Y starting from v, for instance by using depth first search, and assign
every wire part to the tile it is located in. This can be done in O(log k + m) time, and

so the total running time follows. O
Querying sbl(e) for e € E(G) can then be done in constant time:

PROPOSITION 7.7. Given wires(i, j) and bb(i, j) for all tiles (3, j), we can compute sbl(e)
for any e € E(G) in O(1) time.

PRrOOF. We store a n; X n, matrix containing wires, bb and an integer time stamp
for every tile (i, j). Each time we route a net, we increase a counter and use this counter

7.3. MINIMAL REROUTES 135

as time stamp to distinguish current and outdated entries (4, j) (which are interpreted as
wires(i, j) = bb(4, j) = 0) in our matrix. Initializing the matrix requires O(ng - n,) time,
but has to be done only once when the incremental routing process begins. Afterwards,

sbl can be queried in constant time. O

In practice, there are usually only relatively few tiles (4, j) with bb(s, j) # 0. Therefore,
one can also use a fast search data structure like a hash table in order to save memory
and keep the implementation simple.

Clearly, this approach is far from being accurate. An accurate approach for handling
exact pin and prewire positions is given by Héhnle and Saccardi [45, 100]. However, as
already stated in Chapter 6, this approach is rather complex and beyond the scope of
this thesis. We therefore stick to this simpler method of using shape-based edge lengths,
and our experimental results from Section 7.3.4 show that this method already helps to
reduce the amount of wire length that is added when solving the MINIMAL REROUTE
PROBLEM.

7.3.4. Experimental Results. In this section we analyze the practical perfor-
mance of our minimal reroute framework. To do this, we present two different sets
of experimental results: In Section 7.3.4.1 we compare GRBO results with minimal
reroutes to GRBO results in a setting where every modified net is rerouted from scratch.
Afterwards, we examine the effects of our shape-based edge lengths in practice in Sec-
tion 7.3.4.2.

All experiments presented in this section are carried out on an Intel Xeon E5-2667
v2 server running at 3.30 GHz using 16 threads. As usual, our testbed and metrics
appearing in subsequent tables are explained in Appendix A.

7.3.4.1. Minimal Reroutes versus Rerouting from Scratch. We start with comparing
our default GRBO flow that uses minimal reroutes against a hypothetical GRBO flow
where every net that is changed during GRBO is rerouted from scratch, ignoring all
prewires. This rerouting is done using the same edge prices and minimum Steiner tree
algorithm (cf. Section 2.3.1) as in the case with minimal reroutes, just without using
the prewires. We choose GRBO for this experiment as rerouting all nets from scratch
is not really acceptable in DRBO, and a comparison of metrics like timing and wire
length between the two runs would be difficult to interpret due to the fact that the
run using minimal reroutes would preserve much more detailed wiring while rerouting
from scratch would add much more global wiring. The purpose of this experiment is to
validate claims from Section 7.3.2 stating that retaining large portions of our RC-aware
routes is superior to reconstructing large parts of the routing tree by a minimum Steiner
tree algorithm, therefore also confirming the validity of our formulation of the MINIMAL
REROUTE PROBLEM.

136 7. ROUTING BASED OPTIMIZATION

Unit Run WS FOM EV WL wACE4 OFtgt RT
(# nets) [ps] [ps] [m] (%] [100 pitch?®] [h:mm:ss)
Ul Start -129 -29328 598 0.953 88.8 4.6 —
(77528) MR =72 -21851 406 0.954 88.9 5.3 0:06:10

No MR | -77 -24539 438 0.957 89.7 10.9 0:06:12

U2 Start -97 -57448 313 1.102 87.6 0.0 —
(79119) MR -85 -48097 230 1.102 87.9 0.0 0:05:32
No MR | -94 -50430 211 1.100 88.0 0.0 0:06:00

U3 Start -149 -118322 299 1.246 86.4 0.0 —
(100 827) MR -74 -84562 259 1.249 86.8 0.0 0:07:13
No MR | -81 -88906 233 1.248 87.4 0.0 0:07:13

U4 Start -196 -152236 200 1.230 89.4 8.2 —
(111 140) MR -116 -84031 150 1.242 89.3 9.1 0:10:53
No MR | -148 -102543 129 1.247 90.3 34.9 0:11:18

U5 Start -62 -27501 3 1.383 82.1 0.0 —
(119228) MR -59 -10847 0 1.382 82.7 0.0 0:08:47
No MR | -59 -20220 14 1.381 85.8 0.0 0:09:27

U6 Start -120 -226777 1385 5.007 88.5 19.1 —
(254208) MR -102 -193967 1193 5.012 88.9 30.7 0:22:29
No MR | -108 -217576 972 5.022 89.3 37.7 0:27:03

ur Start -59 -64554 771 4.757 83.6 0.0 —
(276799) MR -55 -22667 606 4.757 83.8 0.0 0:17:12
No MR | -55 -30704 464 4.755 85.4 0.1 0:19:15

Us Start -86 -834010 9321 37.560 86.1 43.1 —
(1681671) MR =75 -356411 2946 37.523 86.4 29.9 2:12:02
No MR | -75 -490186 1614 37.497 87.3 28.0 2:45:53

TABLE 7.1. Experimental results comparing minimal reroutes against
rerouting from scratch.

Our results are illustrated in Table 7.1. The ”Start” row depicts the results after running
RC-aware BonnRouteGlobal from Chapters 4 and 5, directly before starting GRBO.
The row labeled "MR” represents the run where minimal reroutes are used (which is the
default in our RBO flows), while the "No MR” row represents the run where we always

7.3. MINIMAL REROUTES 137

reroute from scratch. Confirming our conjectures from Section 7.3.2, the first thing to
notice is that timing results are always superior when minimal reroutes are used, and
often by large amounts. This is not surprising, as our RC-aware routes computed during
the main global routing phase should exhibit a better timing behavior than minimum
Steiner trees computed during incremental routing. Moreover, keeping routing changes
minimal might also be favorable for timing optimization tools.

The second observation is that the number of electrical violations often decreases when
rerouting from scratch. This is in accord with our findings from Section 5.5, where
we observed that our RC-aware router sometimes introduces electrical violations by
making detours on timing-uncritical nets. If fixing such electrical violations is attempted
during GRBO, then rerouting from scratch using a timing-agnostic minimum Steiner
tree algorithm can actually solve the problem, as such an algorithm does not introduce
generous detours due to the timing-uncriticality of the net. However, this effect is likely
to diminish once electrical violations are better handled during RC-aware routing.
Looking at congestion, we can see that it does not increase to a noticeable extent when
minimal reroutes are used, but increases slightly on some units when rerouting from
scratch. In principle, this does not have to be the case, as when rerouting from scratch
the previous route is still a possible option, unless some of the used edges of the previous
route have been blocked by a different thread. However, in practice, deviations are
likely to occur. Moreover, as already pointed out above, in some cases such as electrical
violation fix up and power recovery, detouring routes for timing-uncritical nets might be
replaced by short routes, as the minimum Steiner tree algorithm used by Incremental
BonnRouteGlobal is not timing-aware.

Wire length decreases slightly on the less congested units when rerouting from scratch,
which is expected due to the objective of minimizing wire length during the net routing
process. On the more congested units, e.g. on U6, wire length can also increase. However,
the variations in wire length are very small throughout the whole testbed. In general, it
is also intuitive that the simple method of routing one net at a time does not achieve the
same quality of results as the more elaborate global routing algorithm from Chapter 4.
At last, we see that using minimal reroutes results in decreased running times, which is
expected. Here, it is important to note that with 16 threads — the number of threads
used for our experiment — only a small fraction of the GRBO running time is actually
spent in BonnRouteGlobal — as we see later in Table 7.6 from Section 7.5.3.1, it is
less than 15% on our largest unit U8. In fact, the running time spent in BonnRoute-
Global increases by 73% on U8 when rerouting from scratch, which can be considered a
substantial increase.

138 7. ROUTING BASED OPTIMIZATION

As a summary, we conclude that using minimal reroutes results in superior results in
less running time. The only exception here is the number of electrical violations, but as
explained above, the minimal reroute framework is unlikely to be the root cause of this
effect. These results confirm claims from Section 7.3.2 about the motivation behind our
formulation of the MINIMAL REROUTE PROBLEM, and prove the practical viability of
our approach. Of course, further improvements can certainly be made, as pointed out
in Section 7.3.2.

7.3.4.2. Shape-Based FEdge Lengths. In this section we evaluate our shape-based edge
lengths from Section 7.3.3.2 experimentally. To this end, we provide two tables — Ta-
ble 7.2 for GRBO and Table 7.3 for DRBO. The rows of our tables can be explained as fol-
lows: In the row labeled ”Start” we list the metrics directly before we start our incremen-
tal routing process. In GRBO, this is directly after RC-Aware BonnRouteGlobal from
Chapters 4 and 5 has been run. For the starting point for our DRBO tables, we run RC-
Aware BonnRouteGlobal without GRBO followed by BonnRouteDetailed. The second
and third row then display the results after the incremental routing process. Here, the
run labeled "IBRG + sbl” uses the shape-based edge lengths presented in Section 7.3.3.2
during the reroute process. In contrast to that, the run labeled "IBRG - sbl” represents
the traditional setting without shape-based edge lengths, i.e. sbl(v,w) := dist(v,w) for
any wiring edge (v, w) € E(G) in the notation of Section 7.3.3.2.
In addition to general metrics, our tables contain one column labeled AWL and one
column labeled AAWL. The former contains the number (wl — wly) / wlp, where wl is
the total wire length after the step in the respective row, and wly is the wire length at
the start of the incremental routing process, i.e. the wire length corresponding to the
"Start” row. In the row labeled AAWL we display the relative difference of the total
added wire length in all reroutes and an approximate lower bound for it. More precisely,
we have
S rezawl(L,Y (1)) — awl(Z,Y*(1)

AAWL -)
Yrezawl(l,Y*(I))

where

7 is the set of instances of the MINIMAL REROUTE PROBLEM that were solved

during the whole incremental routing process,

awl(1,Y) = X1 w)eE(v)\ B (r) dist(v, w), where Y is a solution for I and
Yo(I) represents the prewires for I in the MINIMAL REROUTE PROBLEM,

Y (I) for I € Z denotes the solution that we found for I,

e Y*(I) for I € 7 is a solution for I that approximately minimizes awl.

Here, Y* is found by the approximation algorithm for the RECTILINEAR MINIMUM
STEINER TREE WITH PREWIRES PROBLEM that is described in Section 2.3.3.

7.3. MINIMAL REROUTES 139
Unit After... WS FOM PWR AWL AAWL wACE4 OF'tgt RT
(# nets) [ps] [ps] mW] %] [%] (%] [100 pitch?] [h:mm:ss]

U1 Start -129 -29665 54.79 — — 88.8 3.9 —
(77528) IBRG -sbl | -72 -22250 55.28 0.18 7.52 89.0 6.5 0:05:49
IBRG +sbl | -72 -22023 55.39 0.16 6.98 89.0 5.2 0:06:10

U2 Start -98 -57419 2241 — — 87.6 0.0 —
(79119) IBRG - sbl | -90 -48920 2247 -0.06 2.97 88.0 2.0 0:05:27
IBRG + sbl | -88 -48449 22.51 -0.06 2.40 87.8 0.0 0:05:29

U3 Start -149 -118255 70.71 — — 86.3 0.0 —
(100827) | IBRG -sbl | -76 -85909 71.04 0.24 1.71 86.8 0.1 0:07:02
IBRG +sbl | -75 -83985 71.01 0.21 1.19 86.8 0.0 0:07:13

U4 Start -196 -152137 37.05 — — 89.4 6.3 —
(111140) | IBRG - sbl |-116 -83667 39.03 1.09 15.66 89.2 4.1 0:10:34
IBRG + sbl | -118 -85564 39.04 1.02 15.58 89.4 5.4 0:11:18

U5 Start -62 -27489 34.08 — — 82.0 0.0 —
(119228) IBRG - sbl | -59 -9333 34.34 -0.03 1.72 82.5 0.0 0:08:20
IBRG + sbl | -59 -9526 34.39 -0.05 1.03 82.9 0.0 0:08:55

U6 Start -122 -225276 198.86 — — 88.6 24.0 —
(254208) | IBRG - sbl | -108 -188177 193.66 0.14 13.19 89.0 42.7 0:21:01
IBRG + sbl | -109 -188048 194.64 0.13 12.80 88.9 34.1 0:22:53

u7 Start -55 -63792 100.10 — — 83.5 0.0 —
(276 799) IBRG -sbl | -55 -27269 101.90 -0.01 1.06 84.1 0.4 0:16:29
IBRG + sbl | -55 -24928 101.96 -0.01 0.90 83.7 0.0 0:18:01

U8 Start -87 -834668 729.16 — — 86.1 44.1 —
(1681671) | IBRG -sbl | -75 -354967 739.78 -0.10 2.79 86.4 29.7 2:07:58
IBRG + sbl | -75 -359301 739.30 -0.10 2.33 86.5 27.0 2:11:26

TABLE 7.2. Experimental results for GRBO comparing a run with usage
of shape-based edge lengths ("IBRG + sbl”) to one without ("IBRG -
sbl”).

When comparing "IBRG + sbl” to "IBRG - sbl”, the AWL and AAWL columns display

the differences with regard to our objective of minimizing the amount of added wire

length most directly. However, we are of course also interested in the effects that these

differences have on general metrics, which are illustrated by the numbers in the other

columns.

140 7. ROUTING BASED OPTIMIZATION

Unit After... WS FOM PWR AWL AAWL wACE4 OF'tgt RT
(# nets) [ps] [ps] mW] %] (%] (%] [100 pitch?] [h:mm:ss]
U1 Start -132 -46373 55.05 — — 91.0 60.4 —
(77528) IBRG - sbl | -45 -33013 59.02 -0.01 3.57 90.5 56.4 0:05:36

IBRG + sbl | -44 -32892 59.04 -0.03 2.48 90.7 51.3 0:05:38

U2 Start -112 -81335 22.73 — — 88.1 7.8 —
(79119) IBRG - sbl | -86 -75395 23.04 0.06 3.26 88.1 10.4 0:06:47
IBRG + sbl | -84 -76904 23.09 0.05 1.79 87.7 7.8 0:06:01

U3 Start -153 -159431 71.15 — — 92.1 98.4 —
(100827) | IBRG -sbl | -78 -114716 74.67 0.0 2.74 90.9 43.2 0:07:12
IBRG + sbl | -79 -113313 74.69 0.01 1.65 91.5 75.0 0:07:01

U4 Start -200 -215175 37.45 — — 95.6 208.4 —
(111140) | IBRG -sbl | -104 -181698 39.40 0.07 3.05 96.0 224.1 0:08:14
IBRG + sbl | -101 -183683 39.33 0.08 1.80 95.5 199.0 0:08:01

U5 Start -64 -57007 34.65 — — 79.0 0.0 —
(119228) | IBRG - sbl | -59 -26671 35.26 0.0 3.46 79.9 0.2 0:08:28
IBRG + sbl | -61 -26191 35.16 0.0 1.99 79.0 0.0 0:08:28

U6 Start -134 -315633 199.99 — — 98.3 2985.0 —
(254208) | IBRG -sbl | -119 -275496 197.19 0.03 3.29 98.4 3056.4 0:18:31
IBRG + sbl | -118 -273741 197.37 0.02 2.52 98.3 2965.5 0:17:58

u7 Start -94 -180073 101.69 — — 95.8 1257.4 —
(276799) | IBRG - sbl | -58 -79064 104.08 -0.03 2.42 95.4 1110.6 0:16:21
IBRG + sbl | -55 -82463 103.21 -0.03 1.63 95.7 1192.1 0:16:05

U8 Start -105 -1752478 739.41 — — 95.0 13456.3 —
(1681671) | IBRG -sbl | -100 -1469722 756.94 -0.05 2.64 95.1 13737.9 2:21:52
IBRG + sbl | -101 -1462652 756.23 -0.05 1.98 95.0 13347.0 2:25:16

TABLE 7.3. Experimental results for DRBO comparing a run with usage
of shape-based edge lengths ("IBRG + sbl”) to one without ("IBRG -
sbl”).

The first thing to notice is that our shape-based edge lengths have a clear positive impact
on the amount of added wire length. This can be seen by looking at the columns labeled
AWL and AAWL, which generally show smaller numbers when shape-based edge lengths
are used. In this regard, AAWL is more expressive, as all reroutes are tracked in this
number, while AWL basically only tracks changes in nets that persist until the end of

7.3. MINIMAL REROUTES 141

the incremental routing process. In particular, if a transaction is undone due to a large
detour, then this detour is tracked by AAWL, but not by AWL. Moreover, AWL is
often close to zero, and can also be subject to some variation in the incremental routing
process, e.g. the number of transactions being performed.

Looking only at GRBO first, the AAWL numbers show that if congestion is low, then
the amount of wire length that we add during our reroutes is already close to our
approximate lower bound. We can also see that on uncongested test cases, using our
shape-based edge lengths closes the gap between our solution and our lower bound by a
relatively large amount. As congestion gets higher, the deviation from the lower bound
gets significantly larger, as can be observed in the GRBO runs on U4 and U6. On these
units, the relative AAWL differences between our two runs also become much smaller,
as there the AAWL number is largely determined by the amount of detours caused by
congestion, which affects both runs in the same way.

However, as already explained in Section 7.3.3.1, this is expected due to our aggressive
congestion prices, which encourage detours instead of creating routing overflow. In
particular, if a pin is moved into a neighboring tile during an operation such as gate
sizing in a congested region, then comparatively large detours might be necessary to
close the connection.

Surprisingly at first, high wACE4 numbers do not seem to imply high AAWL numbers
in DRBO. This seems to contradict our observation that high congestion causes higher
AAWL numbers. However, a look at the congestion plots from Figure 7.6 helps to
understand this effect: The congestion plots are taken from the DRBO runs on U4. On
the left side we see the congestion plot directly after global routing, and on the right side
we see the congestion plot that we get after initializing BonnRouteGlobal after detailed
routing. This means that the left congestion map would be the starting point for running
GRBO, and the right the one for DRBO. One can see that the left plot contains large
areas that are predominantly dark yellow and orange, which corresponds to around 90%
edge usage. As our congestion target is 90%, BonnRouteGlobal regards these regions
as very critical. In contrast to that, the right plot is largely green, but contains a few
heavily congested edges due to local detailed routing congestion. By definition of the
wACE4 metric [120], these few heavily congested edges cause a high wACE4 number of
over 95% on the right side, while the wACE4 is below 90% on the left side. However,
it is easy to imagine that working around the congestion hotspots is much harder given
the left congestion map than given the right one. This explains the AAWL differences
between GRBO and DRBO on designs with a large wACE4 number.

Getting a better match between the congestion maps after global and detailed routing

is an ongoing project in BonnRouteGlobal. However, to some extent, these differences

142 7. ROUTING BASED OPTIMIZATION

'V“"ﬁﬁ:",; "

FIGURE 7.6. Congestion maps on U4 at different points in the routing
flow: Left directly after global routing, and right directly after initializing
BonnRouteGlobal after detailed routing.

are inherent in our ways of measuring congestion before and after detailed routing (cf.
Section 7.1.3), as we also explain later in Section 7.6.

Unfortunately, the wire length improvements gained through the use of shape-based edge
lengths do not translate into a consistent improvement of timing metrics — all in all,
possible improvements obtained by using shape-based edge lengths seem to be getting
largely lost in the usual fluctuations that occur from run to run.

On the flip side, one can observe a small running time increase in GRBO when shape-
based edge lengths are used. The reason for this is that the "IBRG - sbl” run uses future
costs [47] for the objective function, while we disable them for the "IBRG + sbl” run,
as future costs are harder to obtain in this scenario. Looking at the results, it is not
clear whether it is worthwhile to invest the effort to obtain good future costs for the
scenario where shape-based edge lengths are used. Disabling objective function future
costs in the "IBRG - sbl” run adjusts the running times to roughly match the ones from
the "IBRG + sbl” run. These running time differences cannot be seen in DRBO, as here
we rarely encounter larger spots of high congestion and pin movements are generally
more local than in GRBO. This lessens the impact of a missing future cost on the total
running time.

Our conclusion is that when it comes to the objective of minimizing the amount of added
wire length, then using our shape-based edge lengths brings consistent and noticeable
improvements. However, the improvements seem to be too local to make a noticeable
difference in the general metrics that we are tracking in our runs. Therefore, to make
further improvements, it seems more worthwhile to improve the incremental routing
process to be able to work better on congested designs, e.g. by allowing to rip out
bystander nets when required. Another possible way to improve results could be to do
incremental routing in a timing-aware fashion similar to what is described in Chapters 4
and 5, as this should result in better routing topologies and layer choices, which should

positively impact timing.

7.4. COPY ROUTES 143

7.4. Copy Routes

In this section we discuss the Cory ROUTES PROBLEM, which occurs when a routed
net N is subdivided into multiple nets Ny,..., Ny by buffer insertion (cf. Section 1.2.2)
during GRBO or DRBO. As already outlined in Section 7.2.2, we must then first decide
how to distribute the wiring of N among Ny, ..., Ni before we can use the minimal re-
route procedure from Section 7.3 to route every net N;,i = 1,...,k. The Cory ROUTES
PROBLEM presented in this section only covers the case where buffers are inserted, but
not where buffers are removed. Dealing with the removal of buffers would be a possible
extension for the future.

This section consists of four subsections: In Section 7.4.1 we state some basic definitions
and outline the process of buffering along the route, which is used by the buffering
tools in our GRBO and DRBO flows. Afterwards, we formally introduce the Copy
RouTEs PROBLEM in Section 7.4.2, which is then simplified to the SIMPLIFIED COPY
ROUTES PROBLEM in Section 7.4.3. Section 7.4.3 also describes our algorithm for solving
the SiMPLIFIED CoPY ROUTES PROBLEM, which is then validated in practice by our
experimental results given in Section 7.4.4.

7.4.1. Buffering Routes. The buffer tree is given as a graph:

DEFINITION 7.8. Let N be a net with source s and sinks T. Then a buffer tree netlist
graph for N is an arborescence X rooted at s such that T = {z € V(X) : 6% (z) = 0}.
The vertices in V(X) \ N are called buffers, and we associate X with buffer positions
p: V(X)\ N — S, where S is the layered chip area. X defines a set of target nets
Nx = {N, : x € V(X)\ T}, where N, := {z} UT¥ () for z € V(X) \ T is the net
driven by =x.

Basically, the buffer tree netlist graph is a condensed section of the netlist graph from
Section 1.1.3, where pins belonging to the same buffer are contracted into one vertex. A
buffer tree netlist graph is also a graph that is embedded into the layered chip area in
the sense of Definition 2.3, but in this case the embedding is in general not rectilinear.
A common strategy for buffering a given Steiner tree Y for a net N = {s} UT is to

buffer along the route, which corresponds to the following procedure:

(1) Clone vertices v € V(Y') with |dy(v)| > 3 appropriately by introducing new
vertices and zero-length edges.

(2) Subdivide the edges of Y appropriately by inserting Steiner points of degree 2.

(3) Pick a subset B C V(Y') where buffers should be placed. The maximum sub-
trees of Y rooted at some vertex in {s} U B and with leaves in T'U B define the
buffer tree netlist graph X with V(X) = N U B: Each such maximum subtree

144 7. ROUTING BASED OPTIMIZATION

to t3 ty to t3 t4
[
/
2
= \[ba bs
b2
by -
1
bl <
°
S S

FiGUuRrE 7.7. Illustration of buffering along the route: The buffering tool
inserts three buffers by, by and bs on Y (left), which results in the buffer
tree netlist graph X (right). Here, by and b3 are located on different
copies of the same vertex. This situation is shown "under the magnifying
glass” in the middle: v, bo, and by are located on the same position, and
the dotted edges have zero length. After placement legalization, each
buffer b; is moved to a modified location b}, i = 1,2, 3.

of Y corresponds to one net in X, and the driver of the net is the vertex in
{s} U B that is closest to s in Y.

An illustration is given by Figure 7.7. If such a strategy was applied and every buffer
was placed exactly at its position on the route, distributing the wires into the target
nets would be a trivial task. However, in practice, this is not the case: The space on
the placement layer below Y might be largely blocked, and the buffers might end up at
positions that do not coincide with their originally intended positions. At this point,
distributing the wires from the root net into the target nets becomes non-trivial. Based
on this buffering strategy, we only deal with certain kinds of buffer tree netlist graphs

for the rest of this section:

DEFINITION 7.9. Let Y be a Steiner tree for a net N with source s and sinks 7', and X
be a buffer tree netlist graph for N. Then X is said to match the topology of Y if for all
x € V(X) there exists v € V(Y) such that T(X (z)) = T(Y (v)).

7.4. COPY ROUTES 145

A buffer tree netlist graph resulting from buffering along the route naturally matches

the topology of the corresponding routing tree.

7.4.2. The Copy Routes Problem. Before stating our problem formulation, we
first need to define what it means to distribute the wires of the root net among the target

nets:

DEFINITION 7.10. Given a Steiner tree Y and a buffer tree netlist graph X for a net IV,
a wire distribution is a function f: E(Y) — Nx describing the distribution of the wires
corresponding to E(Y) among Nx. Given a target net N, € Nx, we let smt(N,, f)
denote the optimum objective function value of the RECTILINEAR MINIMUM STEINER
TREE WITH PREWIRES PROBLEM (cf. Section 2.3.3) given N, and the Steiner forest
defined by f~!(N,) as input. Moreover, the rectilinear Steiner length of N, (with-
out prewires) is denoted by smt(N,;), and we set smt(Nx) = > n cpr, sSmt(N;) and
Smt(Nx, f) = Y ency SN,).

We would like to compute a wire distribution such that the total additional wire length
required to route each target net is minimum. This leads to the following problem

formulation:

PRrROBLEM 7.11: CoPY ROUTES PROBLEM

Input: A net N, a Steiner tree Y connecting the exact shapes of N, a buffer tree
netlist graph X for N that matches the topology of Y.

Task: Compute a subdivision Y’ of Y and a wire distribution f: E(Y') — Nx
maximizing gain(f) := smt(Nx) — smt(Nx, f).

Maximizing gain(f) is equivalent to minimizing smt(Nx, f), as smt(Nx) is a con-
stant. The reason for maximizing gain(f) as objective function instead of minimiz-
ing smt(Nx, f) is as follows: As we will later see in Section 7.4.4, min{smt(Nx, f) :
f is a wire distribution} is relatively small compared to smt(Ny) on most instances.
Therefore, minimizing smt(Nx, f) is generally not well-behaved with respect to ap-
proximation in practice, as local imperfections can result in significant multiplicative
deviations from the optimum, even though the majority of the wiring may have been
optimally distributed. This is particularly true when comparing experimental results
to lower bounds instead of the optimum, which introduces additional errors. On the
other hand, gain(f) expresses how much newly added wire length we saved by preserv-
ing the old wiring, and from a practical perspective, a high gain that is relatively close
to smt(N) should indicate that the instance has been sucessfully solved. An example
from practice is given by Figure 7.8.

146

7. ROUTING BASED OPTIMIZATION

3 ;

L

FiGURE 7.8. Example of a wire distribution f from practice where
gain(f) is good, but where we cannot prove reasonable bounds for
smt(Nx, f): We start with a routed net with four pins, where the source
pin is colored red, the sink pins are colored black, and the route is col-
ored dark green (left picture). The buffering tool then inserts two buffers
(light green) close to the source pin (upper central picture). Here, the
diagonal black lines indicate the buffer tree netlist graph: The original
source pin connects to the lower buffer and the black sink pin, the lower
buffer connects to the upper buffer, and the upper buffer connects to the
remaining two sink pins of the root net. This results in three target nets
(center, lower center, and right), and most of the wiring is assigned to the
long target net in the right picture. With our bounds from Section 7.4.4
we can prove that gain(f) is less than 1% away from the optimum, but
for smt (N, f) we can only prove that it is within a factor of 2 within the
optimum. In this example, the wire distribution is very close to optimum
for both metrics, and the problem is to compute bounds that prove it.
However, it is easy to see that in similar situations local suboptimalities
can lead to smt(Ny, f) being a large factor away from optimum, although
the majority of the wiring has been successfully assigned, which is what
matters for practical purposes.

7.4. COPY ROUTES 147

A wire distribution assigns every wire to some target net — after all, it would not
be useful anyway to omit assigning certain wires in our theoretical formulation of the
Copy ROUTES PROBLEM. In practice, however, not assigning certain wires can be
beneficial: When Y consists of detailed wires, as it is predominantly the case in DRBO,
distributing wires among the target nets in an unrestricted manner is likely to cause
violations of minimum distance rules between detailed wires assigned to different target
nets. Therefore, we apply a post-optimization routine that cuts away minor parts of
the assigned detailed wiring where it is necessary to avoid violations of distance rules.
As the minimum distance rule violations that are caused during the copy routes process
can generally be resolved by this routine by working only locally, we leave out this
aspect in our formulation of the Cory ROUTES PROBLEM in order to keep the problem
formulation more concise.

7.4.3. The Simplified Copy Routes Problem. Instead of trying to approxi-
mate the Cory ROUTES PROBLEM, we will instead turn to a simpler version. Our
experimental results from Section 7.4.4 will verify that solving the simpler version gives
good approximate solutions for the Cory ROUTES PROBLEM in practice. The first

simplification is to restrict the set of possible wire distributions:

DEFINITION 7.12. Let N be a net, Y be a Steiner tree for N and X be a buffer tree
netlist graph for IV that matches the topology of Y. A buffer mapping is a function
q: V(X) = V(Y) such that

(1) g(r) =m for m € N,
(2) T(Y(q(z))) =T (X (x)) for all z € V(X),
(3) y € V(X(2)) = qly) € V(Y(q(2))) for all (z,y) € V(X)*.

Given a buffer mapping ¢, the wire distribution f, associated with q is defined by
foi(Ne) = B(Y (g@)\ U E(Y(a®),
yel'k (z)

where N, € Nx is the target net rooted at x € V(X)) \ T.

The assumption that X matches the topology of Y makes sure that a buffer mapping
fulfilling (2) and (3) always exists. We note that f;1(N) for N, € Nx always defines
a Steiner tree (as opposed to a more general Steiner forest).

We are now able to define a simplified version of the CoPY ROUTES PROBLEM, where
we ask for a buffer mapping instead of a more general wire distribution, and we also
simplify the objective function:

148 7. ROUTING BASED OPTIMIZATION

PROBLEM 7.13: SIMPLIFIED COPY ROUTES PROBLEM
Input: A net N, a Steiner tree Y connecting the exact shapes of N, a buffer tree
netlist graph X for N that matches the topology of Y.
Task: Compute a subdivision Y’ of Y and a buffer mapping ¢: V(X) — V(Y”) such
that dist(X, q) :== > cv(x) dist(p(x), ¢(x)) is minimized.

In the context of the SIMPLIFIED COPY ROUTES PROBLEM we say that a subdivision Y’
admits an optimum buffer mapping if there exists a buffer mapping ¢: V(X) — V(Y”)
attaining the optimum objective function value of the given instance of the SIMPLIFIED
Cory ROUTES PROBLEM.

The justification for this formulation of the SIMPLIFIED CoPY ROUTES PROBLEM goes
back to the strategy of buffering along the route (cf. Section 7.4.1): We know that the
idealized buffer positions before placement legalization (cf. Section 1.2.1) were fulfilling
the requirements of Definition 7.12. Therefore, our buffer mapping can be seen as a
reconstruction of these idealized buffer positions, although local deviations are possible
and required to adapt to the distortion caused by placement legalization. The objective
function is based on the assumption that given a buffer mapping ¢, the routing of each
target net N, € Nx will often not deviate very much from using Iy L(N,) as trunk and
connecting each y € N, to this trunk in the shortest possible way. Our experimental
results from Section 7.4.4 will prove the validity of our assumptions and show that the
SIMPLIFIED COPY ROUTES PROBLEM is a good approximation of the Cory ROUTES
PROBLEM in practice. An illustration of the SIMPLIFIED COPY ROUTES PROBLEM and
the concept behind buffer mappings is given as Figure 7.9.

Before proceeding with the description of our algorithm, we require a technical property
of Y:

DEFINITION 7.14. Let Y be a Steiner tree for a net with source s and sinks 7. Then
Y is said to have a sufficiently cloned vertex set if the implication dist(v,w) > 0 =
T(Y(v)) =T(Y(w)) holds for all (v,w) € E(Y).

The reasoning behind Definition 7.14 is as follows: As we are not only computing a
buffer mapping in the SIMPLIFIED CoPY ROUTES PROBLEM, but also a subdivision of
Y, we are basically mapping buffers to edges in Y — mapping buffers to vertices of a
subdivision just allows for a more comprehensible description. Requiring that Y has a
sufficiently cloned vertex set then goes back to requirement (2) of Definition 7.12: Given
z € V(X) and (v,w) € E(Y) with dist(v,w) > 0, we can either map z to v and w or
to none of them. This property will simplify our subsequent descriptions, as we will see
later.

7.4. COPY ROUTES 149

bQ b3

| . by
t1 t1
Q(bl) ¢--o0b
¢
S S

FIGURE 7.9. The instance of the SIMPLIFIED COPY ROUTES PROBLEM
that originates from buffering along the route as in Figure 7.7. The buffer
mapping q defines a wire distribution, which is illustrated by the use of
different colors. Note that there are multiple vertices at the location of
q(b3), which are interconnected by edges of length zero.

Any Steiner tree can easily be transformed into one with a sufficiently cloned vertex
set in linear time. Therefore, we assume from here on implicitly that our given routing
tree has a sufficiently cloned vertex set and only mention it where it is required for
correctness.

7.4.3.1. The Simplified Copy Routes Problem on Paths. As it will emerge as a sub-
problem when solving the SIMPLIFIED COPY ROUTES PROBLEM, we first consider the
special case where the buffer tree netlist graph is a path. Here, we first show how to com-
pute a sufficiently fine-grained subdivision of Y. For this we basically use the well-known
Hanan grid [46] induced by the buffer coordinates:

DEFINITION 7.15. Let N be a net and X be a buffer tree netlist graph for N. Then
we call the tuple H(X) = (H,(X), Hy(X)) with Hy(X) := {p(v)q : v € V(X)} for
d € {x,y} the Hanan grid induced by X. Given a Steiner tree Y, the subdivision of Y
through H(X) is the unique subdivision Y’ of Y such that

(1) (min{p(v)4, p(w)a}, max{p(v)q, p(w)q}) N Hy(X) = 0 for all (v,w) € E(Y') and
d € {z,y},
(2) |E(Y”)| is minimum among all subdivisions of Y fulfilling (1).

150 7. ROUTING BASED OPTIMIZATION

t

P T TRV LT PP R PEPELPRTPERE sreeeieiaeas F)
by :

.........................]

5 @ & - ®

FiGURE 7.10. Ilustration of Definition 7.15: Y is an s-t path with three
vertices (blue). X is a path with V(X) = {s, b1, ba, t}, which induces the
Hanan grid depicted by the dotted red lines. At the intersection points
of the Hanan grid and Y we insert new vertices (red), which yields the
subdivision of Y through H(X).

An illustration is given by Figure 7.10. It is easy to compute the subdivision through
the Hanan grid:

PROPOSITION 7.16. Let Y be a Steiner tree and X be a buffer tree netlist graph for a
net N, and let Y' be the subdivision of Y through H(X). Moreover, let n := |V (Y)],
n' = |V(Y')| and k := |V(X)|. Then n’ = O(nk) and Y’ can be computed in O(n’ +
(n+k)logk) = O(nk + klogk) time.

PrOOF. We sort H,(X) and Hy(X) in ascending order in O(klog k) time. Consider
an edge (v,w) € E(Y) and assume p(v), < p(w); without loss of generality. Using
binary search we can determine H (v, w) := (p(v)z, p(w)z)NHz(X) in O(log k+|H (v, w)|)
time and (recursively) subdivide (v, w) appropriately. Applying this procedure for all
e € E(Y) yields the claimed running time. O

The subdivision through the Hanan grid is important as it admits an optimum buffer
mapping:

PROPOSITION 7.17. Consider an instance of the SIMPLIFIED COPY ROUTES PROBLEM
where X is a path, and let Y' be the subdivision of Y through H(X). Then Y’ admits

an optimum buffer mapping.

PROOF. Assume the contrary and let Y* be a subdivision of Y/ with minimum
number of edges that admits an optimum buffer mapping ¢*: V(X) — V(Y™). Let

7.4. COPY ROUTES 151

(v,w) € E(Y') such that the set B := {b € V(X) : ¢*(b) € V(Py+(v,w)) \ {v,w}} is
non-empty — such an edge must exist as otherwise the image of ¢* would be V(Y”).
Without loss of generality we assume p(v), = p(w), and p(v)y, < p(w)y.

For b € B we define f: [0,dist(v,w)] — Rxg by fp(1) := dist(p(b), (p(v)z, p(v)y + 1)).
By definition of Y/ we have p(b), ¢ (p(v)y,p(w)y) for b € B. Therefore, f, for b € B
is a linear function, and so is the sum) ,.p f5. This means that we can either set
q*(b) = v or ¢*(b) = w for all b € B without increasing the objective function value: If
dist(v, w) = 0, then setting ¢*(b) = w suffices. Otherwise, if dist(v, w) > 0, we make this
choice dependent on } ;. f5.

This operation will yield a valid buffer mapping according to Definition 7.12: Prop-
erty (1) is still fulfilled as we clearly have BN N = (). Property (2) is fulfilled as we have
T(Y*(v)) = T(Y*(w)) if dist(v,w) > 0 (cf. Definition 7.14), so mapping all b € B to v
does not violate property (2) (for w this is naturally the case). Finally, property (3) is
fulfilled as we move all b € B at once to the same vertex. This leads to a contradiction to
the choice of Y*, as we could replace Py~(v,w) by a single edge and obtain a subdivision
of Y/ with fewer edges that still admits an optimum buffer mapping. O

We now show how to compute an optimum buffer mapping for a given subdivision.
Together with Proposition 7.17 this will yield an optimal algorithm:

THEOREM 7.18. Consider an instance of the SIMPLIFIED COPY ROUTES PROBLEM
where X is a path, and assume that Y already admits an optimum buffer mapping.
Then we can compute an optimum buffer mapping q: V(X) — V(Y) in O(nk) time,
where n = |V(Y)| and k := |V (X)|.

ProOOF. We show how the above problem can be reduced to finding a shortest path in
an acyclic digraph. As X and Y are paths, we can describe X by a sequence (z1, ..., zk)
and Y by a sequence (v1,...,vy,) of their vertices, where s = z; = v; and t = x = v,,.
Consider the digraph D with V(D) :=V(X) x V(Y) and E(D) := Ex U Ey, where

o Ex ={((z;,v), (zj31,v3)): l=1,...;k—1,i=1,...,n},
o By :={((z,v), (x1,vi41)) : l=1,...,kyi=1,...,n—1}.
An illustration of D is given as Figure 7.11. We define costs ¢: E(D) — R by setting

dist(zj,v;) 2<Ii<k-1,0=1,...,n,
0 l=1,i=1,...,n,

C((.ZL‘[, 'Uz’), ($l+1, v;)) = {

for ((xi,vi), (z141,v:)) € Ex and c(e) = 0 for e € Ey. We note that the edges
((s,v;), (z2,v7)), i = 2,...,n, and ((s,v;),(8,vi4+1)), ¢ = 1,...,n — 1, are superfluous,
but we added them for notational convenience.

152 7. ROUTING BASED OPTIMIZATION

2 o | e | o | o | o | o | 2

I o | 2 § o | 2 § 2 § e § 2

T4 & o | o | o | o | o | o e

T3 o | 2 § o | 2 § 2 § o § 2

S @ g @ g @ @ @ ad
S V2 V3 Vg Vs Vg (Vird

~

Figure 7.11. Illustration of the digraph D from the proof of Theo-
rem 7.18 with £k = 6 and n = 8. Horizontal green edges belong to Ey,
while vertical red edges belong to Fx.

Given an (s, s)-(t,t) path P in D we can derive a buffer mapping ¢: V(X) — V(Y by
setting g(x;) = v for every edge ((x;,v), (z;41,v)) € E(P)N Ex with [> 2. Conversely,
given a buffer mapping ¢: V(X) — V(Y), we can derive an (s, s)-(t,t) path P in D with
B(P) 1 Bx = {((5,5), (22, 9)} U {((21,a(2)), (111, () : L = 2,...., kb — 1} — by the
structure of D, this already defines P. In both cases we have ¢(P) = dist(X, q), and so
we can find an optimum buffer mapping by searching for a shortest (s, s)-(¢,t) path in
D. As D is acyclic, the running time can be bounded by O(|E(D)|) = O(nk) time. O

This yields the following theorem:

THEOREM 7.19. The SIMPLIFIED COPY ROUTES PROBLEM where X is a path can be
solved optimally in O(nk?) time with n := |V (Y)| and k := |V (X)].

PROOF. We compute the subdivision Y’ through H(X) and an optimum buffer
mapping ¢: V(X) — V(Y') as described in Theorem 7.18. As we have |V (Y')| =
O(nk) according to Proposition 7.16, the total running time amounts to O(|V (Y')|k) =
O(nk?). O

7.4.3.2. The General Simplified Copy Routes Problem. We now turn to the general
version of the SIMPLIFIED COPY ROUTES PROBLEM, where X is not restricted to be a

path. We first show how to identify the set of vertices in Y that a buffer may be mapped
to according to (2) of Definition 7.12:

7.4. COPY ROUTES 153

DEFINITION 7.20. Consider an instance of the SIMPLIFIED COPY ROUTES PROBLEM.
We define the allowed path Q(z) of x € V(X)\ N as the path in Y with V(Q(z)) = {v €
V(Y):T(Y(v) = T(X(x))}.

It is easy to see that Q(x) is a path: We just consider the vertex w € {v € V(Y) :
T(Y(v)) = T(X(x))} with maximum distance to s and successively traverse its incoming
edges until s or a vertex u with |8y (u)| > 2 is reached. Note that V(Q(z)) for z € X
is never empty if X matches the topology of Y. We can restrict ourselves to mapping

every buffer to a subdivision of its allowed path:

LEMMA 7.21. Consider an instance of the SIMPLIFIED COPY ROUTES PROBLEM, and
forz e V(X)\ N let Q(z) = Py (q1(z),q2(x)) for some q1(x),q2(x) € V(Y). Then there
exists a subdivision Y' of Y and an optimum buffer mapping q: V(X) — V(Y') such
that q(x) € Py:/(q1(x),q2(x)) for allz € V(X)\ N.

Proor. This follows directly from the fact that we require Y to have a sufficiently
cloned vertex set (cf. Definition 7.14): For z € V(X) \ N we either have ¢;(x) = s or
the incoming edge of ¢; (z) has length zero, and can therefore be assumed to exist in Y’
without being subdivided. The claim then follows. U

We continue with another lemma:

LEMMA 7.22. Consider an instance of the SIMPLIFIED COPY ROUTES PROBLEM and
let (x,y) € E(X) with x,y € V(X)\ N. Then if |0%(z)| = 1, we have Q(z) = Q(y).
Otherwise we have V(Q(z)) NV (Q(y)) = 0 and Q(z) is a subpath of the s-v path in'Y
for any v € V(Q(y).

PROOF. The claim follows directly from the fact that we have T'(X (y)) C T(X (x))
with equality if and only if |§% (z)| = 1. O

We will now partition V(X)) into subsets representing paths in X. This will allow us to

solve independent subproblems on these paths:

DEFINITION 7.23. Let X be a buffer tree netlist graph for a net N. A path partitioning of
X is a decomposition of X into vertex-disjoint subgraphs X, ..., X; such that V(X) =
U'_, V(X;) and each X; is a (directed) path in X such that (:1: €T or |6%(z)| > 2) =
d%,(z) = 0 holds for z € X;.

Clearly, 5;&_ () = 0 holds for exactly one vertex in X;, as X; is a directed path. We note

that it will naturally occur that some of the subgraphs in our path partitioning will only
have one vertex. The path partitioning is unique and easy to compute:

PROPOSITION 7.24. Given a buffer tree netlist graph X for a net N, the path partitioning
of X can be computed in O(|V(X)|) time.

154 7. ROUTING BASED OPTIMIZATION

PROOF. Let R=T U {x € V(X) : |§%(z)| > 2}. For 2 € R we construct a path X,
by traversing the z-s path in X until another vertex in R (which is excluded from X,)
or s (which is included in X, if and only if s ¢ R) is reached. Performing this process
for all x € R will yield the path partitioning. O

The path partitioning partitions V(X)\ N into equivalence classes with regard to allowed
paths:

LEMMA 7.25. Consider an instance of the SIMPLIFIED COPY ROUTES PROBLEM and
let X1,...,X; be the path partitioning of X. Let x € V(X;) \ N and y € V(X;)\ N.
Then we have (2 = j) — (T(X(:L’)) = T(Y(y))) = (Q(aj) = Q(y))

PROOF. The equivalence (T(X(x)) = T(X(y))) = (Q(ac) = Q(y)) follows di-
rectly from Definition 7.20. If i = j, then T (X (z)) = T'(X (y)) follows directly from the
structure of the path partitioning. For the other direction let T (X (z)) = T'(X (y)), and
without loss of generality we can assume y € V(X (x)). Then |6%(2)| = 1 must hold for
all z € V(Px(z,v)) \ {y}, as otherwise we would not have T'(X (z)) = T(X(y)). This
implies ¢ = j by definition of the path partitioning. U

We continue with another lemma. Its statement is illustrated by Figure 7.12:

LEMMA 7.26. Consider an instance of the SIMPLIFIED COPY ROUTES PROBLEM and let
Xi,..., X be the path partitioning of X. Let x € V(X;) \ N andy € V(X;)\ N, i # j,
and let q(z) € V(Q(z)) and q(y) € V(Q(y)). Then we have y € V(X (z)) = q(y) €
V(Y (q(z)))-

PROOF. We first note that we cannot have T'(X (z)) = T(X(y)), as this would imply
1 = j according to Lemma 7.25. Therefore we get

y e V(X(2)) = T(X(y)) & T(X(x))
= T (Y (vy)) & T(Y (v)) V (02, vy) € V(Q(2)) x V(Q(y))
= vy € V(Y (02)) Y (ve,vy) € V(Q(z)) x V(Q(y)),
which proves the claim. O

The above results imply that given the path partitioning Xi,...,X; of X, one can
solve the SIMPLIFIED CoPY ROUTES PROBLEM independently on every path X;, i =
1,...,1, using the algorithm outlined in Theorem 7.19. Requirements (2) and (3) from
Definition 7.12 are then automatically fulfilled due to Lemma 7.25 and 7.26. In addition
to the path partitioning we need the allowed paths Q(z), x € V(X)\ N. We use
Algorithm 6 to compute them:

7.4. COPY ROUTES 155

t to t to
q(bs) 9~ bs by b3 by
[]
L 2 b2
q(ba)
q(b2) ¢---obo
b1 4
q(b1) ¢--9 by
D
S S

Ficure 7.12. Example illustrating Lemma 7.26: We have a route Y
(left) and a corresponding buffer tree netlist graph X (right). The path
partitioning of X encompasses three paths that are highlighted by the
colors red, green and violet, and the corresponding allowed paths in Y
are also colored respectively (blue edges do not belong to any path in the
path partitioning). Hence, each buffer b;, i = 1,...,4, is mapped onto its
allowed path.

This automatically results in g(b;) € V(Y (q(b;))) for j € {3,4} and
i € {1,2}, which is exactly what is claimed by Lemma 7.26. However, it
does not automatically result in ¢(b2) € V(Y (¢(b1))), as by and by belong
to the same path of the path partitioning: If we reversed the mapped
positions of b1 and by, then all buffers would still be mapped onto their
allowed paths, but b; and by would not be mapped correctly according to
Definition 7.12.

Thus, the statement of Lemma 7.26 only holds for pairs of buffers that
belong to different paths in the path partitioning.

THEOREM 7.27. Algorithm 6 computes Q(z) for all x € V(X)\ N correctly.

PRrROOF. We prove it by induction in reverse topological order of X: The statement
can be assumed to be true for all ¢ € T, as the output only consists of Q(z) for x €
V(X)\ N. Therefore, consider (z,y) € E(X) as chosen in line 5, and assume that Q(y)
has already been correctly computed. If [§%(z)| =1 and y ¢ T, then Lemma 7.22 tells
us that Q(z) is set correctly in line 7.

Now consider the case |05 (z)] > 2 or y € T. Here we know that Q(z) is a subpath of
P from line 9: If [0%(x)| > 2, then this follows from Lemma 7.22, and for y € T this
follows from the definition of Q(t), ¢t € T', in line 3. Let P be defined by the sequence

156 7. ROUTING BASED OPTIMIZATION

Algorithm 6 Allowed Path Computation Algorithm

Input: An instance of the SIMPLIFIED COPY ROUTES PROBLEM.
Output: Q(x),z € V(X)\ N.
1: Compute |T(X(x))| for all x € V(X)) and |T'(Y (v))| for all v € V(Y).
2: fort €T do
V(Q(1)) = {t}, E(Q(t)) =0, qi(t) := q2(t) := 1.
4: for x € V(X)) \ N in reverse topological order of X do
5. Let (z,y) € E(X).
6: if [0%(z)|=1and y ¢ T then
7
8
9

@

1
Q(z) == Q(y).
else

Traverse the ¢1(y)-s path P in Y until ¢2(x) and ¢;(x) are found, which are the
first and last vertices in P with |T(Y (¢;i(z)))| = |T(X(z))|, i = 1, 2.

1 Set Q(z) to be the g1(z)-¢g2(x) path in Y.

=

q1(y) = v1,v2,...,uyp = s. Then we have T'(Y (v;)) C T(Y (vj)) for i,j € {1,...,1} with
i <j,and so (|T(Y (v))] = [T(X(2))]) <= (T(Y (v)) = T(X(x))) holds for v € V(P).
It follows that go(x) and ¢ (z) are set correctly in line 10. O

THEOREM 7.28. Algorithm 6 can be implemented in O(n+k) time with n := |V (Y)| and
= [V(X)I.

PROOF. We show that every edge in E(Y) is traversed at most once as part of the
q1(z)-q1(y) path in line 9 during the course of the whole algorithm. The result then
follows, as the rest of the algorithm can obviously be implemented in O(n + k) time.
Consider e = (v,w) € E(Y) that is traversed for the first time as part of the ¢;(x)-¢1(y)
path in line 9 when (z,y) € E(X) is considered in line 5, and assume that e is traversed
a second time as part of the ¢i(2')-¢1(y) path in line 9 for (2/,y') # (z,y). Then we

know
T(X() =T (0(9) € T(Y(v)) €TV (q1(2))) = T(X(2)) (7.2)
for (z,9) € {(z,y),(2',y)}. In particular this gives us T(X(y")) C T(X(x)), and

as we cannot have y' € V(X(z)) \ {z} since x was traversed before 2’ in line 4,
Yy € V(Px(s,z)) and T(X(z)) = T(X(y')) follows. This implies Q(z) = Q(y') due
to Lemma 7.25, and so ¢1(z) = ¢1(y’). But then we have (v,w) € E(Py(q1(z),q1(y)))
and (v,w) € E(Py(q1(2'),q1(x))) by our assumption, which is a contradiction due to
E(Py(qi(z), 1 (y))) N E(Py(q1(2'), q1(2))) = 0. O

We combine our results to derive an algorithm for the SIMPLIFIED COPY ROUTES PROB-
LEM:

7.4. COPY ROUTES 157

THEOREM 7.29. Consider an instance of the SIMPLIFIED COPY ROUTES PROBLEM with
a path partitioning where X1, ..., X; are the paths with V(X;)\ N #0,i=1,...,1. For
i=1,...,0 let Q; :== Q(z;) for some x; € V(X;)\ N, n; := |V (Qi)| and k; := |V (X;)].
Then we can solve the given instance of the SIMPLIFIED COPY ROUTES PROBLEM in a
total of O(n + k + Y\, nik?) = O(nk?) time.

PROOF. We can compute the path partitioning of X and all allowed paths Q(x),z €
V(X)\ N, in O(n + k) time, as stated in Proposition 7.24 and Theorems 7.27 and 7.28.
As every path X;, ¢ =1,...,[, defines an independent instance of the SIMPLIFIED COPY
RoOUTES PROBLEM, we can run the algorithm outlined in Theorem 7.19 on each @; and
X; individually and achieve the desired running time. Combining the buffer mappings
on these individual instances yields a buffer mapping fulfilling the requirements from
Definition 7.12 due to the definition of the allowed paths and Lemma 7.26. Moreover,
Lemma 7.21 tells us that only considering @; for mapping V(X;) is sufficient, and we
indeed arrive at an optimum solution.]

7.4.3.3. A Greedy Heuristic. Theorem 7.29 gives a recipe for solving the SIMPLIFIED
Copy ROUTES PROBLEM, but the running time can theoretically be large if the individ-
ual X; define large instances with many buffers. In practice, this is usually not the case,
in particular not at the stage in the design flow where our tool is used. Still, for running
time reasons and simplicity we use a different approach in our practical implementation:
We proceed as in Theorem 7.29, but instead of solving the arising subproblems on the
paths X;, ¢ = 1,... [, optimally as in Theorem 7.19, we use the heuristic depicted as
Algorithm 7. We use some terminology that is explained in the following definition,

which uses line segments as in Definition 2.13:

DEFINITION 7.30. Let Y be a Steiner tree that is embedded rectilinearly into the layered
chip area S. Then given e € E(Y) and a € S we set dist(e,a) := minyerc dist(a, b).
Moreover, subdividing e at the closest point v to a means subdividing e as in Defini-

tion 2.14 by inserting a new vertex v with dist(v, a) = dist(e, a).

Algorithm 7 Copy Routes on Paths Greedy Algorithm

Input: An instance of the SIMPLIFIED COPY ROUTES PROBLEM where X is a path.
Output: A subdivision Y’ of Y and a buffer mapping ¢: V(X) — V(Y”).

Y =Y.

: Set q(m) :=m for m € N.

: for x € V(X)) \ N in reverse topological order of X do

Let 'l (z) = {y} and e* := arg Milee p(p,, (s,q(y))) dist(e, p(2)).

Subdivide e* at the closest point v to p(x) and set ¢(x) := v.

158 7. ROUTING BASED OPTIMIZATION

® ®
S,bk t,bl,...,bk_l

FIGUurRE 7.13. Ilustration of the instance of the SIMPLIFIED COPY
RouTES PROBLEM used in the proof of Proposition 7.31.

The reasoning behind Algorithm 7 is that most of the time when a path is buffered,
the buffers are just chained up along that path with only local deviations occuring.
However, it is easy to prove that Algorithm 7 does not achieve any satisfactory theoretical

approximation guarantee:

PropoOSITION 7.31. For any k € N there exists an instance of the SIMPLIFIED COPY
ROUTES PROBLEM where X is a path and |V(X)\N| = k, such that Algorithm 7 returns
a buffer mapping q with dist(X,q) > (k — 1)OPT, where OPT is the optimum objective

function value.

ProoOF. Consider the instance of the SIMPLIFIED COPY ROUTES PROBLEM illus-
trated in Figure 7.13. X is a path defined by the sequence s,b1,...,b;,t and Y consists
of a straight wire from s to t. Algorithm 7 will start by setting ¢(bx) = s and conse-
quently must set ¢(b;) = s fori =1,...,k—1 (or achieve the same by creating zero length
edges). However, an optimum buffer mapping ¢* sets ¢*(b;) =t fori =1,..., k. We then
have dist(X, ¢) = (k — 1)dist(s, t) and dist(X, ¢*) = dist(s, t), proving the claim. O

However, the running time is faster than the one outlined in Theorem 7.19:
PROPOSITION 7.32. Algorithm 7 can be implemented in O(nk) time. [

Using Algorithm 7 as a subroutine for the algorithm outlined in Theorem 7.29 yields a
total running time of O(n + k + Y., n;k;) = O(nk) in the notation of the theorem.
In practice it rarely happens that a single path in the route has very many vertices,
and the number of buffers inserted at this stage in the design flow is rather small.
Therefore, Algorithm 7 is sufficiently fast for our purposes. This claim is supported
by our experimental results from Section 7.4.4. Moreover, Section 7.4.4 shows that

Algorithm 7 also produces good results in practice.

7.4.4. Experimental Results. We implemented Algorithm 7 from Section 7.4.3.3
and evaluated the results. The purpose of our experiment is to show that the SIMPLIFIED
Cory ROUTES PROBLEM is a good approximation of the Cory ROUTES PROBLEM in
practice, and that Algorithm 7 provides good approximate solutions for it. As achieving
a high gain in the sense of the objective function of the Copy ROUTES PROBLEM
is more important in DRBO than in GRBO, we run our experiment in a setting that

7.4. COPY ROUTES 159

resembles DRBO. More precisely, we start with fully detailed routed designs and only run
buffering.! For our experiment we disabled the post-optimization routine that cuts away
detailed wires in order to prevent minimum distance rule violations (cf. Section 7.4.2), as
it would artificially reduce the performance of Algorithm 7 with respect to the objective
function of the Copry ROUTES PROBLEM. The experiment is conducted on an Intel
Xeon E5-2667 v2 server running at 3.30 GHz using 16 threads. More information on our
setup and testbed is provided in Appendix A.

Table 7.4 displays various metrics, whose meanings are as follows: We let Z denote the
set of instances of the CopPY ROUTES PROBLEM that are processed in our run. In this
experiment we process all instances that are handed to us by the buffering tool except
the ones where the wire length of the routing tree of the root net is less than three times
the average edge length of the global routing graph. The reason for sorting out these
instances is that on such small instances local issues become the dominating factor in
determining the quality of results in the sense of our metrics, although they are not very
important for practical performance.

We then display |Z| in the column labeled ”"# Inst”, while the column labeled "# Nets”
contains the number of nets before buffering on the given unit. For each I € 7 we
let Y(I), X(I) and f(I) denote the routing tree, buffer tree netlist graph, and wire
distribution computed by application of Algorithm 7 for I, respectively. To evalu-
ate the quality of f(I), we compare gain(f(I)) against an approximate upper bound
gain, (I) := smt(Nx () — smty, (1), where smty,(I) is an approximate lower bound
for min{smt(Nx z), f) : f is wire distribution for I'}. For computing smty,(I) we com-
pute two different approximate lower bounds smtj, (I) and smt3 (I) and set smty, (1) :=
max{smt}, (I),smt3 (I)}. These two lower bounds are defined as follows: For defining
smtf, (I) let fn, for N, € N x (1) denote the wire distribution that assigns all wires in Y'(I)
to Ny, and we set smt} (I) := ZN:L’ENX([) smt(N,, fn,). For defining smt3 (I) we note
that smt(Ny) < smt(Ny, f) + 3y w)ef-1(n,) dist(v, w) holds for any wire distribution f
for I and any N, € Nx(p), and so smtf, (1) := smt(Ny () — > (ww)eB(y (1)) dist(v, w) <
smt(Nx(p), f) follows. Here, all Steiner trees for determining these bounds are com-
puted by solving the RECTILINEAR MINIMUM STEINER TREE PROBLEM and RECTILIN-
EAR MINIMUM STEINER TREE WITH PREWIRES PROBLEM as outlined in Sections 2.3.2
and 2.3.3 (depending on whether prewires are present or not).

We then set 7gain (1) := gain([) / gain,;, (1) for I € Z and denote minsez rgain(f) as "Min.
Tgain” and |Z| 71 Y ;o7 Pgain(I) as "Avg. rgain” in Table 7.4. Moreover, the column labeled
"AVg. Tsm” shows |Z| 71 Y ez reme(I), where ran(I) = smt(Nx gy, f(I)) / smt(Nx(p).

1Buﬂ?ering is actually used in multiple optimization steps during DRBO, e.g. also for correcting electrical
violations. We use the buffer insertion procedure for improving (late mode) timing for our experiment.

160 7. ROUTING BASED OPTIMIZATION

Unit #Nets | #Inst | Min. 7gain AVE. Tgain AVE. Tsmt RT
(7] (%] (%] [sec]

U1 77528 119 80.97 97.83 8.65 0.04

U2 79119 80 88.67 98.70 5.36 0.04

U3 100 827 131 85.06 98.39 8.39 0.04

U4 111140 205 80.62 98.58 7.19 0.07

U5 119228 224 77.83 98.30 7.11 0.09

U6 254208 699 80.98 98.01 10.40 0.18

ur 276799 299 78.10 99.03 7.07 0.21

U8 | 1681671 718 78.35 99.79 1.63 0.22

TABLE 7.4. Experimental results obtained by running Algorithm 7.

Note that these metrics are listed in percent. Finally, the last column shows the accu-
mulated running time of Algorithm 7 on all I € 7.

Table 7.4 demonstrates a strong performance of Algorithm 7 in practice: On average,
the gain of our computed solution is only very few percent away from the upper bound,
and even in the worst cases the gain is still tolerable.

The column labeled ”Avg. rqn:” shows that on average only a relatively small amount of
wire length needs to be added by the global router to complete the routing of the target
nets. This confirms a claim that we made in Section 7.4.2 when defining the Copry
RouTES PROBLEM, which led us to defining the objective function of this problem as
maximizing the gain instead of minimizing the required additional wire length. Lastly,
the running time column shows that our implementation of Algorithm 7 runs very fast:
We did not have to solve a great number of instances in each run, which is in the nature
of post-routing optimization, but extrapolating the numbers also shows that a larger
number of instances could be solved within seconds.

All in all, our data shows that Algorithm 7 achieves good results while being very fast.
This in turn validates our approach of first approximating the Copy ROUTES PROBLEM
by the SIMPLIFIED COPY ROUTES PROBLEM and then solving the SIMPLIFIED COPY
RouTEs PROBLEM with the use of Algorithm 7. To further improve the results at the
cost of a larger running time, one could switch to the algorithm outlined in Theorem 7.29
whenever necessary. However, in consideration of the good results outlined in Table 7.4,

we refrain from this additional effort and complexity for the time being.

7.5. MULTI-THREADED INCREMENTAL ROUTING 161

7.5. Multi-Threaded Incremental Routing

We also provide a multi-threaded implementation of our incremental router, which
is described in this section. An introduction to multi-threading in C++ is given by
Williams [122]. We first describe the basic mechanics of our multi-threaded incremental
routing framework in Section 7.5.1, then turn our attention to the problem of updating
usages during multi-threaded incremental routing in Section 7.5.2, and present experi-
mental results in Section 7.5.3.

7.5.1. The Multi-Threaded Incremental Routing Framework. When run-

ning multi-threaded we use the same transaction framework as described in Section 7.2,
but extend it to a multi-threaded scenario. Here, every thread starts and performs its
own transaction, which is largely independent of the transactions of other threads. This
means that when the incremental router receives a callback for a data model change, it
first checks which thread made the change, and records the change in the transaction
log of this thread. In the same manner, when one of the incremental routing control
functions to start a transaction, implement changes, commit changes, or undo changes
(cf. Figure 7.2), is called, then this function call is ascribed to the calling thread, and
only affects the transaction of this particular thread.
To make this process work, some concurrency issues have to be addressed. To avoid
synchronization problems for data model changes in different threads, the netlist is
divided into netlist sections. For our purposes, a netlist section is a set of nets, and every
thread only works on one netlist section at a time. Moreover, the following conditions
hold:

e If 7| and 7 are threads working on netlist sections S7 and So, respectively, then
S1 NSy =0.

e If a thread 7 is working on a netlist section S and makes a data model change,
then this change must not affect any nets that are not in S.

This way it is ensured that different threads never make simultaneous changes that
affect the same net. Here, the division of the netlist into sections is not fixed, but may
be changed perpetually. It is also possible (and maybe more natural) to define netlist
sections in terms of circuits, but for our purposes, the definition in terms of nets is
sufficient. The concept behind netlist sections is illustrated by Figure 7.14.

Of course there are also intricacies in dividing the netlist into such sections, in particular
changes in one section might very well have effects on timing and slew outside of the
section. In this thesis, we do not elaborate on this any further, as the multi-threaded
incremental routing framework including code to compute and manage netlist sections

is provided by IBM, and we only integrate our incremental router into this framework.

162 7. ROUTING BASED OPTIMIZATION

Cs

Cl Cz 03 C4
Ny > No {>= N3 {>e Ny > N5 > Ns
° °

FIGURE 7.14. A very simple netlist used to illustrate the concept behind
netlist sections from Section 7.5.1: The netlist is divided into two sec-
tions S1 = {N1, N2, N3} (red) and So = {N4, N5, Ng} (green). A thread
working on S7 might modify (e.g. move or resize) C;, i € {1,2}, at the
same time where a thread working on Sy modifies Cj, j € {4,5}. Cs
cannot be modified by any thread, as modifying C'5 would affect N3 € .51
and N4 € So. In order to modify C3, one would need to repartition the
netlist into different sections.

Despite the separation of the netlist into sections, there are concurrency issues to be
addressed. Firstly, our router must support making incremental changes in most of its
core data structures in a multi-threaded context in an efficient way. Secondly, although
netlist sections are disjoint with regard to the nets they contain, they are not disjoint in
a geometric sense. This can be problematic with regard to congestion if multiple threads
are concurrently routing nets in the same area. We address this issue in Section 7.5.2,
where we elaborate on different methods to update edge usages during multi-threaded

incremental routing with the goal of preventing routing overflow caused by concurrency.

7.5.2. Updating Usages During Multi-Threaded Incremental Routing. As
outlined above, the division into netlist sections ensures that different threads never
work simultaneously on the same net, but it is not ensured that different threads are not
routing nets in the same area. Therefore, threads may be competing for edge resources.
For this reason we develop a method for updating edge usages with the goal of minimizing
congestion problems caused by concurrency.

In the following we will use the notion of threads in a theoretical context. For our pur-
poses, a thread is a sequence of elementary machine operations. We assume a total order
of all machine operations of all threads, but do not impose any particular requirements
on the exact order of operations of different threads.? This is of course neither a formal
definition nor does it represent the behavior of modern machines exactly, but it should
be sufficient for our purposes.

In this section we only consider edge resources, although the results of this section can
be applied to any resource type. Here, the notion of edge resources and usages is adopted
from Chapters 2 and 4. Throughout this section, G will always denote the global routing

2In practice, this is not exactly true, as we use synchronization methods like mutexes in order to ensure
an orderly execution of the code. However, we neglect this for the moment in our model.

7.5. MULTI-THREADED INCREMENTAL ROUTING 163

graph and 7 the set of threads. Moreover, we denote the currently open transaction of
any thread 7 € T by ¢(7). For convenience of notation we always assume that every
thread has an open transaction, but the set of changes in this transaction may be empty.
When referring to a (possibly open) transaction, we refer to all data model changes
in this transaction and the routing changes required to implement these changes (cf.
Section 7.2).
The rest of this section is structured as follows: In Section 7.5.2.1 we introduce the
concepts of global and thread-local usages. This allows us to define three different usage
update schemes in Section 7.5.2.2. A theoretical analysis of these update schemes is
given in Section 7.5.2.3, and we evaluate them in practice later in Section 7.5.3.2.
7.5.2.1. Global and Thread-Local Usages. Let e € E(G) and 7 € T. Then we let
Ausg, (¢(7)) be the usage change of e caused by all operations in ¢(7). In our routing
space usage model, Ausg,(¢(7)) only depends on ¢(7), but not on the initial state when
the transaction was started or on concurrent transactions in other threads. We partition
Ausg,(¢(7)) into

Ausg, (¢(7)) = Ausgé(4(7)) + Ausge(¢(7)), (7.3)

where Ausgg(¢(7)) is the global usage difference of ¢(7) that is seen by all threads, while
Ausgt (¢(7)) is the thread-local usage difference of ¢() that is only seen by 7. Different
methods to do this partitioning are presented in Section 7.5.2.2.
Moreover, let usg, denote the base usage of e, which is the usage of e without considering
usage changes in any open transactions. Then a thread 7 sees a thread-local usage of
usg] of e at any given time, which is defined as
usgy = usg, + Ausge(o(r)) + D Ausgt(p(7)).
T'eT

Here, with "see” we mean that whenever the usage of e is queried from 7 (e.g. when
computing edge prices as in Section 7.3.3), usg? is returned.

7.5.2.2. Usage Update Schemes. We examine three different usage update schemes,
i.e. methods to do the partitioning in (7.3):

Fully global update scheme:

o Ausg,(¢(7)) = Ausgg(¢(7)),
Fully thread-local update scheme:

o Ausg,(4(1)) = Ausgl(¢()),

Semi thread-local update scheme:

o Ausg,(¢(7)) = 0 = Ausg,(¢(1)) = Ausgf(4(7)),
o Ausg,(¢(1)) < 0= Ausg.(¢(7)) = Ausgg(¢(7)).

164 7. ROUTING BASED OPTIMIZATION

In our implementation we use the semi thread-local update scheme, which is the most
conservative of the three.

7.5.2.3. Analyzing the Usage Update Schemes. In this section we state propositions
that point out conditions under which certain update schemes are guaranteed to not
cause routing overflow, and give examples that illustrate what can go wrong with other
update schemes. We start with the following proposition:

PROPOSITION 7.33. Assume that every thread T queries routing congestion at the end
of its transaction ¢(1), and undoes the transaction if there is an edge e € E(G) with
Ausg,(¢(1)) > 0 and usgl > 1. Moreover, assume that when one thread T has started
querying congestion at the end of its transaction, then no other thread can do the same
until T has completely committed or undone its transaction. Then routing overflow does
not increase during incremental routing for any edge e € E(G) if the fully thread-local

or the sems thread-local update scheme is used.

PROOF. Assume the contrary and let e € E(G) be an edge where overflow increases
during incremental routing. Consider the first point in time when this happens. Then
there must be a thread 7 committing a transaction ¢(7) such that Ausg,(¢(7)) > 0 and
usg, + Ausg,(¢(7)) > 1 when the commit is being done. We know that usg, cannot
change between the time when 7 commits its transaction and the time when 7 queries
the usage of e, as no other thread is allowed to commit a transaction while 7 is querying
congestion. Therefore, when 7 queries the usage of e, it sees a usage of

usgy = usg, + Ausge(6(1)) + Y Ausgé(4(7'))
T'eT
> usg, + Ausge (¢(7)) + Ausgé(¢(7))

= usg, + Ausg,(¢(7))
> 1.

This is a contradiction to our assumptions, as 7 would have to undo its transaction. [

The assumptions from Proposition 7.33 are reasonable in practice, but not all operating
tools query congestion at the end of their transaction. However, as the router offers
this functionality, it can be incorporated if deemed necessary. Moreover, the congestion
query can be serialized by a mutex to ensure proper synchronization.

Next we want to give an example that shows that Proposition 7.33 does not hold when
the fully global update scheme is used:

EXAMPLE 7.34. Assume we are using the fully global update scheme. Consider the
instance depicted in Figure 7.15: There are two nets N; = {s;,¢;}, i = 1,2, with original
pin positions p: Ny U Ny — V(G), and two threads 7, i = 1,2, each working on N;,

7.5. MULTI-THREADED INCREMENTAL ROUTING 165

p(t1)

p(s2) p(t2)
° ® p(t1)

p(s1)

P(t2)
FiGURE 7.15. Illustration of Example 7.34.

respectively. The initial routes for N1 and Ns are depicted in red and blue, respectively.
We assume that N; and N» use the same amount of routing space on every edge in the
global routing graph. The light red area around p/(t2) is overcongested. The light yellow
area between p(s2) and p(ta) is at exactly 100% congestion when either Ny or Ny are
routed through it, but overcongested when both are. Consider the following sequence of
operations:

(1) 72 moves t9 to p'(t2) and replaces the blue by the green route.

(2) 7 moves t; to p/(t1) and replaces the red by the orange route.

(3) 71 queries congestion and commits its transaction.

(4) 1o undoes its transaction (e.g. because the green route creates additional over-

flow).

Ni is now routed by the orange and Ny by the blue route, and routing overflow is
created in the light yellow area. This constellation is possible because the blue route is
subtracted from the congestion map when 71 implements and commits its transaction

in (2) and (3).

This example is not possible with the fully or the semi thread-local update scheme,
as in that case the blue route would not be subtracted from the congestion map dur-
ing (2) and (3). This would give 71 a chance to work around the congestion or undo its
transaction.

The next proposition presents a way to prevent overflow increase during multi-threaded
incremental routing without relying on the operating tool querying congestion. It only

works with the global or the semi thread-local update scheme:

166 7. ROUTING BASED OPTIMIZATION

PROPOSITION 7.35. Assume that when routing a net N in a thread T during incremental
routing, T proceeds as follows: After computing a route Y for N, T updates Ausg,(¢(7))
for all edges e € E(G) with usgy (Y) > 0. In particular, T makes any update of
Ausgé(¢(7)) visible to all other threads. After each such update, T checks whether usg? >
1, and if so, then T rejects Y and reroutes N. Assume that updating Ausg,(¢(7)) and
checking usgl for a given edge e € E(G) happens in one single operation. Moreover,
assume that this net routing process always terminates, i.e. it never goes on indefinitely.
Then overflow will not increase during incremental routing for any edge e € E(G) if the

global or the semi thread-local update scheme is used.

PROOF. Assume the contrary and let e € E(G) be an edge where overflow increases
during incremental routing. Let x. be the first point in time when this happens, i.e.
when a thread 7* commits a transaction ¢(7*) such that Ausg,(¢(7*)) > 0 and usg, > 1
directly after the commit. Let U := usg, at z.. Consider the last point in time x,
before x. immediately after a thread 7 increases Ausgé(¢(7)) without rejecting the
corresponding route afterwards (possibly 7 = 7%).

For the rest of this proof, we let all notations except U refer to the situation at time x,
(U will still denote usg, at z.). We note that

U < usg, + Z Ausgé(o(1')),
T'eT

which is due to the choice of x, and the choice of our update scheme: By the choice of
zr, no thread 7’ can increase Ausgg(¢(7')) between x, and z.. Therefore, the amount
of usage committed between z, and z. can be at most Y7 Ausgé(¢(7')), as thread-
local usages are never positive with the global or the semi thread-local update scheme.
Moreover, note that Ausgl(¢(7)) = 0 also holds with the semi thread-local update
scheme due to Ausgg(¢(7)) > 0 by our choice of z,.

Therefore, when 7 checks the usage of e at x,, it sees a usage of

usg’ = usg, + Ausg’ (¢ Z Ausgé (o = usg, + Z Ausg(p(7")) > U > 1.
T'eT T'eT
This is a contradiction to our assumptions, as 7 would need to reject its route. O

The assumption that the net routing process from Proposition 7.35 always terminates is

hypothetical, as it is generally not given in practice:

(1) It might happen that a thread cannot find a route for a net without using
overcongested edges even without interference of other threads.

(2) It might happen that a thread 7 needs to reject its route Y multiple times
because another thread 7/ increases usg, or Ausgg(4(7')) between the compu-

tation of Y and the corresponding usage update.

7.5. MULTI-THREADED INCREMENTAL ROUTING 167

* p(t1)
p(s1) l I p'(ta)

p(s2) ¢ e p(ta)

FIGURE 7.16. Illustration of Example 7.36.

(1) certainly happens in practice, but it is rather not a multi-threading problem, but a
general one. (2) might also happen, but it seems unlikely that 7 does not find a route
after several tries, unless (1) occurs at some point.

Therefore, as a recipe derived from Proposition 7.35, one may try a constant number of
reroutes if (2) occurs to reduce the amount of overflow created due to multi-threading.
It is easy to construct an example that shows that Proposition 7.35 does not hold for the
fully thread-local update scheme. The basic idea is that multiple times threads may use

the same edge because usage changes are kept thread-local until they are committed:

EXAMPLE 7.36. Assume we are using the fully thread-local update scheme. Consider
the instance depicted in Figure 7.16: Let N; = {s;,t;}, ¢ = 1,2, be two nets with original
pin positions p: Ny U No — V(G). The initial routes for Ny and N3 are shown in red
and blue, respectively. Assume that routing resources in the light yellow area are almost
completely used. More precisely, they are used to an extent where either N7 or Ny may
use an edge without creating routing overflow, but not both. Let thread 7; be working

on N;, ¢ = 1,2, and consider the following sequence of operations:

(1) 7 moves t; to p/(t1) and replaces the red by the orange route.
(2) 72 moves to to p/(t2) and replaces the blue by the green route.
(3) 71 commits its transaction.

(4) T commits its transaction.

This sequence of operations will create overflow even when the requirements of Proposi-
tion 7.35 are fulfilled: When 7 checks usages in (2), it cannot see the added usage of the
orange route, as this usage is kept thread-local by 7. Consequently, 7 does not reject

its route, which results in overflow later.

Example 7.36 cannot occur with the global or the semi thread-local update scheme,

as with these update schemes 71 would increase Ausgg(¢(71)) for any newly used edge

168 7. ROUTING BASED OPTIMIZATION

e € E(G) in (1). This would give 75 a chance to work around the congestion or reject
its route in (2).

In our implementation we neither use the techniques from Proposition 7.33 nor the ones
from Proposition 7.35. The reason is that our experimental results from Section 7.5.3
suggest that when the semi thread-local update scheme is used, routing congestion due
to multi-threading is not an issue in our current application. Therefore, we keep our
implementation fast and simple. However, should the need arise, Propositions 7.33
and 7.35 demonstrate ways to increase the protection against routing overflow due to
multi-threading during incremental routing.

7.5.3. Experimental Results. In this section we analyze the practical perfor-

mance of our multi-threaded incremental routing implementation. We do this by ex-
amining two different aspects of it separately: In Section 7.5.3.1 we analyze the general
performance of our multi-threading framework by comparing results and running times
with different numbers of threads. Here, we use the semi thread-local update scheme
from Section 7.5.2 as our default choice for updating usages. An evaluation of usage up-
date schemes is then given in Section 7.5.3.2, where we compare the three usage update
schemes from Section 7.5.2 using 64 threads.
We only run GRBO for our experiments, as there are no fundamental differences between
GRBO and DRBO with respect to multi-threading, and optimization is done on a larger
scale in our GRBO flow than in our DRBO flow. The machine used for all experiments
from this section runs two AMD EPYC 7601 32-core processors at 2.2GHz. Our runs
with 64 threads can therefore be considered to run concurrently on the 64 available cores.
As usual, an explanation of our setup and general metrics displayed in subsequent tables
is given in Appendix A.

7.5.3.1. Multi- Threading Performance. We begin with analyzing the general perfor-
mance of our multi-threaded implementation of Incremental BonnRouteGlobal. To do
this, we run GRBO with multiple different thread counts and track general metrics like
timing and running time. These results are given in Table 7.5. As a starting point we use
the output of RC-Aware BonnRouteGlobal (cf. Chapters 4 and 5) on the given designs,
and the "Start” row displays the respective metrics obtained in the single-threaded run.
In addition to general metrics we list the total number of transactions (accumulated over
all threads) in the column labeled "# TA”. As one can see, the number of transactions
can vary between different runs, resulting in some variations in the results. On all units
except U8, these variations can be considered small. On the biggest unit U8, however,
one can see that significantly more transactions are performed when more threads are
used, which leads to better timing results but also smaller running time reductions.

7.5. MULTI-THREADED INCREMENTAL ROUTING
Unit After... WS FOM PWR wACE4 OFtgt # TA RT
(# nets) [ps] [ps] [mW] (%] [100 pitch?] [k] [hmm:ss]

U3 Start -149 -118244 70.71 86.3 0.0 — —
(100 827) 1 thread -75 -85724 71.00 86.8 0.0 497 0:34:18
8 threads | -74 -84577 70.98 86.8 0.0 517 0:09:16
16 threads | -74 -85636 71.03 86.8 0.0 507 0:07:04
64 threads | -74 -86241 71.27 86.8 0.0 493 0:06:08

U4 Start -195 -152110 37.05 89.3 6.6 — —
(111 140) 1 thread | -116 -85581 38.85 88.9 1.9 769 1:05:04
8 threads | -116 -84171 39.02 89.3 5.2 828 0:16:39
16 threads | -117 -85688 39.01 89.3 6.3 830 0:11:36
64 threads | -115 -83890 39.03 89.6 10.1 820 0:09:11

Us Start -62 -27540 34.08 82.0 0.0 — —
(119228) 1 thread -59 -9116 34.23 82.8 0.0 209 0:24:01
8 threads | -59 -8928 34.39 82.9 0.0 221 0:09:20
16 threads | -59 -9540 34.35 82.7 0.0 222 0:08:11
64 threads | -59 -9686 34.49 82.9 0.0 221 0:07:12

U6 Start -121 -226390 198.86 88.6 25.8 — —
(254 208) 1 thread | -104 -192108 189.19 88.9 40.0 1218 2:26:33
8 threads | -101 -189738 193.27 88.8 36.6 1229 0:29:01
16 threads | -105 -191376 194.15 88.9 35.4 1407 0:21:24
64 threads | -106 -192347 195.69 88.8 32.3 1448 0:18:37

U7 Start -58 -66021 100.08 83.7 0.0 — —
(276 799) 1 thread -5 -24599 101.87 84.0 0.0 413 0:55:17
8 threads -55 -22745 102.07 83.9 0.4 410 0:20:00
16 threads | -55 -24389 102.19 83.7 0.0 396 0:16:38
64 threads | -55 -25114 101.95 83.9 0.0 398 0:15:42

U8 Start -85 -840433 729.13 86.2 36.5 — —
(1681671) 1 thread -70 -445934 734.46 86.5 19.4 3334 9:36:29
8 threads | -73 -446434 735.74 86.5 21.5 3371 2:28:43
16 threads | -78 -367789 740.23 86.4 27.7 3490 2:02:20
64 threads | -75 -281910 746.92 86.4 24.1 4015 1:57:26

TABLE 7.5. GRBO results with different numbers of threads. # TA

denotes the total number of transactions that were performed.

170 7. ROUTING BASED OPTIMIZATION

Time per 10% Transactions Wall Time in BRG BRG Waiting
[h:mm::ss] (%] (%]
1 thread 2:52:52 61.30 0.00
4 threads 0:57:40 35.83 0.08
8 threads 0:44:06 25.74 0.18
16 threads 0:35:03 13.67 0.44
24 threads 0:32:19 10.02 0.73
32 threads 0:31:37 8.06 0.97
48 threads 0:30:03 5.81 1.87
64 threads 0:29:14 4.90 3.96

TABLE 7.6. Multi-threaded performance of BonnRouteGlobal (BRG) in
GRBO on U8 (1681671 nets) with different numbers of threads.

A more detailed analysis of the running time performance of multi-threaded Incremen-
tal BonnRouteGlobal on U8 is given by Table 7.6 and Figure 7.17: The first column in
Table 7.6 measures the total running time of our GRBO flow per one million transac-
tions — as one can see in Table 7.5, the total number of transactions can vary between
different runs with different thread counts, so dividing by it allows for a better compar-
ison of running times.

The second column measures the fraction of the running time that is spent in Bonn-
RouteGlobal: We take the total running time spent in BonnRouteGlobal during GRBO
(accumulated over all threads) and divide it by the number of threads to get the average
running time per thread that is spent in BonnRouteGlobal. This average running time
per thread in turn is divided by the GRBO running time and displayed in the table.
Lastly, we display the fraction of the time that BonnRouteGlobal spends waiting on
mutexes in BonnTools code in the third column — mutexes in third-party code that is
used by BonnRouteGlobal (e.g. the memory manager) are not tracked.

The first thing to notice is that using more threads does not negatively impact the
quality of results. In many cases, the opposite is true — as already pointed out earlier,
using more threads often results in more transactions being performed, which can lead
to better results. Except for the unit U8, this effect is not very large. Moreover, the
transaction count is not directly controlled by Incremental BonnRouteGlobal, but by the
timing optimization environment Incremental BonnRouteGlobal is running in. However,
apart from cases where transaction counts differ significantly (e.g. on U8), similar results
are obtained by different thread counts.

7.5. MULTI-THREADED INCREMENTAL ROUTING 171

Running Time [min]

180 +
120 +
60 T
Total
30 1
15 +
5 1 BonnRouteGlobal
1 4 8 16 24 32 48 64 Threads

FI1GURE 7.17. Visualization of the data from Table 7.6: We run GRBO
on U8 (1681671 nets) and measure the total running time of our GRBO
flow and the average running time per thread spent in BonnRouteGlobal.
As in Table 7.6, the running times shown are per million transactions.

When it comes to running time, the data from Table 7.6 and Figure 7.17 shows that
scaling is reasonable when the number of threads is low, but the gain in running time
performance flattens out starting at 16 threads, and almost stalls for thread counts
above 32. However, the fraction of running time spent in BonnRouteGlobal decreases
as the number of threads increases, which indicates that BonnRouteGlobal exhibits a
better scaling than the total GRBO flow. With more than 24 threads, the running
time spent in BonnRouteGlobal even drops below ten percent. Therefore, it seems that

there is not much to gain by speeding up the multi-threaded performance of Incremental

172 7. ROUTING BASED OPTIMIZATION

BonnRouteGlobal at high thread counts. This observation is confirmed by the small
amount of time that BonnRouteGlobal actually spends waiting: It is less than one
percent for up to 32 threads and less than four percent for up to 64 threads, which
makes it negligible for reasonable thread counts.
As a summary, we conclude that running Incremental BonnRouteGlobal with multiple
threads does not negatively impact the quality of results, and its running time perfor-
mance can be considered very satisfactory given its small wait times and significantly
decreasing fraction of the total running time when higher thread counts are used.
7.5.3.2. Comparing Usage Update Schemes. In this section we compare experimental
results for the three usage update schemes from Section 7.5.2. We present two tables:
In Table 7.7 we compare the three update schemes in our default flow that uses minimal
reroutes as presented in Section 7.3. In order to exaggerate the effects of our usage update
schemes, we run a second experiment where we disable the minimal reroute feature from
Section 7.3, i.e. we reroute every modified net from scratch. The results for this second
experiment are presented in Table 7.8. This is a hypothetical scenario, but it amplifies
the effects of our usage update schemes, and is therefore worth investigating. Moreover,
we use 64 threads for all experiments from this section, which can be considered a
comparatively large number of threads for our application.
Again, the "Start” row in our tables represents the start of GRBO, directly after timing-
aware BonnRouteGlobal (cf. Chapters 4 and 5) has been run. Here, we take the metrics of
the run with the semi thread-local update scheme, which is the default in our flow. In the
other experiments, the code used for creating the starting point for GRBO is the same,
so only minor variations should occur. Each of the other rows then shows the results
after GRBO with the respective usage update scheme being used. In addition to columns
displaying general metrics that are explained in Appendix A.4, Tables 7.7 and 7.8 contain
a column labeled "Undo %”, which displays the percentage of transactions that are
undone (cf. Section 7.2). As usual, the congestion target is at 90% in our runs. Therefore,
a wACE4 that is fairly below 90% implies that the unit can be considered uncongested,
while a wACEA4 close to or above 90% implies high congestion.
Looking at the results from both tables, one can make the following central statement:
While the semi thread-local and fully thread-local update schemes both perform roughly
equally well and do not increase overflow by significant amounts, using the fully global
update scheme can result in substantial increases in routing overflow. By the very nature
of minimal reroutes, this effect is weak when minimal reroutes are used, but it can still
be observed on U6 and U8. However, when minimal reroutes are turned off and every
net is rerouted from scratch, then large overflow increases occur on most units with the

fully global update scheme. Moreover, overflow increases are more drastic on larger units

7.5. MULTI-THREADED INCREMENTAL ROUTING
Unit After... WS FOM Undo wACE4 OFtgt RT
(# nets) [ps] [ps] (%] (%] [100 pitch?] [h:mm:ss]

Ul Start -129 -29226 — 88.7 5.5 —
(77528) Fully global -72 -22237 95.51 89.1 6.8 0:05:10
Fully thread-local | -72 -22579 95.52 89.1 6.0 0:04:59
Semi thread-local | -72 -22038 95.49 89.0 7.2 0:05:05

U2 Start -97 -58077 — 87.5 0.0 —
(79119) Fully global -86 -48229 97.11 87.8 0.0 0:04:50
Fully thread-local | -88 -48597 97.13 88.0 0.3 0:05:18
Semi thread-local | -85 -48420 97.11 87.8 0.3 0:05:08

U3 Start -149 -118530 — 86.5 0.0 —
(100827) Fully global -74 -85553 95.27 86.7 0.0 0:06:26
Fully thread-local | -74 -86098 95.27 86.9 0.0 0:06:11
Semi thread-local | -75 -86014 95.27 86.9 0.0 0:06:04

U4 Start -196 -151908 — 89.5 8.7 —
(111 140) Fully global -117 -84846 94.64 89.7 9.6 0:08:59
Fully thread-local | -117 -85079 94.71 89.5 7.1 0:08:54
Semi thread-local | -117 -85725 94.63 89.5 6.4 0:08:48

U5 Start -62 -27955 — 81.9 0.0 —
(119228) Fully global -59 -9920 96.08 82.8 0.0 0:07:24
Fully thread-local | -59 -9703 96.09 82.6 0.0 0:07:42
Semi thread-local | -59 -10089 96.08 83.0 0.0 0:07:54

U6 Start -121 -225122 — 88.6 28.0 —
(254 208) Fully global -105 -193569 96.38 89.2 48.7 0:18:13
Fully thread-local | -105 -190746 96.41 88.9 32.8 0:19:17
Semi thread-local | -107 -187005 96.37 88.9 36.6 0:19:01

u7 Start -62 -65828 — 83.6 0.0 —
(276 799) Fully global -55 -25463 93.55 83.8 1.1 0:16:05
Fully thread-local | -55 -24040 93.60 83.8 0.0 0:15:17
Semi thread-local | -55 -28096 93.54 83.8 0.0 0:16:16

U8 Start -86 -840934 — 86.1 42.0 —
(1681671) Fully global =75 -279623 94.70 86.5 81.1 2:06:38
Fully thread-local | -86 -281313 94.70 86.4 25.7 2:04:35
Semi thread-local | -74 -284244 94.73 86.4 25.1 2:00:18

TABLE 7.7. Comparison of the different usage update schemes from Sec-
tion 7.5.2 running GRBO with 64 threads.

173

174

7. ROUTING BASED OPTIMIZATION

Unit After... WS FOM Undo wACE4 OFtgt RT
(# nets) [ps] [ps] (%] (%] [100 pitch?®] [h:mm:ss)
Ul Start -129 -29700 — 89.0 7.4 —
(77528) Fully global =77 -25832 96.16 91.2 81.1 0:05:39

Fully thread-local | -77 -25054 96.07 89.8 16.3 0:05:15
Semi thread-local | -77 -24150 96.11 89.5 8.4 0:05:20

U2 Start -97 -57375 — 87.6 0.0 —
(79119) Fully global -103 -52803 97.19 88.9 3.1 0:05:16
Fully thread-local | -93 -49153 97.54 88.0 0.2 0:05:59
Semi thread-local | -94 -51004 97.70 88.0 0.0 0:06:05

U3 Start -149 -118438 — 86.3 0.0 —
(100 827) Fully global -83 -91254 95.57 87.8 0.7 0:06:01
Fully thread-local | -81 -90848 95.59 87.4 0.0 0:06:08
Semi thread-local | -82 -91276 95.47 87.4 0.1 0:05:56

U4 Start -195 -152136 — 89.4 74 —
(111 140) Fully global -143 -112105 95.27 92.3 195.7 0:09:48
Fully thread-local | -143 -99436 95.27 90.0 18.2 0:09:07
Semi thread-local | -138 -103014 95.29 90.4 37.7 0:09:34

U5 Start -62 -27949 — 81.8 0.0 —
(119228) Fully global -59 -20109 96.90 85.9 0.0 0:08:30
Fully thread-local | -59 -20531 96.91 85.9 0.0 0:08:18
Semi thread-local | -59 -20408 96.93 85.9 0.0 0:08:15

U6 Start -121 -225830 — 88.6 26.8 —
(254 208) Fully global -115 -225075 97.07 95.7 1363.5 0:23:09
Fully thread-local | -106 -227839 97.18 89.3 46.8 0:23:07
Semi thread-local | -114 -220931 97.13 89.2 41.4 0:20:45

u7 Start -60 -66052 — 83.7 0.0 —
(276 799) Fully global -55 -32178 94.55 91.2 432.0 0:18:25
Fully thread-local | -55 -30329 94.47 85.4 2.8 0:17:55
Semi thread-local | -55 -31867 94.41 85.4 2.7 0:17:42

U8 Start -86 -840612 — 86.1 37.5 —
(1681671) Fully global =73 417696 96.05 88.6 971.5 2:43:01
Fully thread-local | -74 -424260 96.09 87.4 32.9 2:40:28
Semi thread-local | -74 -429837 96.07 87.4 18.1 2:45:55

TABLE 7.8. Comparison of the different usage update schemes from Sec-
tion 7.5.2 running GRBO with 64 threads. The minimal reroute feature
from Section 7.3 has been disabled for this run, i.e. all nets are rerouted
from scratch.

7.6. ROUTING FLOW RESULTS 175

with a full layer stack: For example, U7 with a starting wACE4 of roughly 84% can be
considered quite uncongested, but Table 7.8 still shows large overflow increases with the
fully global update scheme. This can be explained by the fact that U7 has an almost
complete layer stack, containing two of the possible four thickest layers, where very thick
wires can be used. Therefore, congestion problems caused by concurrency can be more
profound, as individual wires on the topmost layers may use up a significant fraction
of the available routing space on a global routing graph edge. In fact, basically all the
overflow on U7 is on the topmost layers.

Our results can be explained as follows: Firstly, the semi-thread local update scheme
is the most conservative of the three, which makes it seem like the natural option for
producing the least amount of overflow. The differences in performance between the
fully global and fully thread-local update schemes may be surprising at first, but can
be explained by looking at the "Undo” columns: As one can see, the vast majority
of transactions is not committed, but undone. This implies a high likelihood of the
situation outlined in Example 7.34, where overflow is created using the fully global
update scheme because one thread 7 undoes its transaction while another thread has
already occupied some of the resources that were freed temporarily in 7’s transaction.
On the other hand, the situation from Example 7.36 is less likely to occur: Using the
fully thread-local update scheme, two threads might use the same resource temporarily
such that overflow is created when both commit their transaction, but looking at the
percentages of transactions that are undone, it is very unlikely that both threads will
actually commit their transactions. As a result, the fully thread-local update scheme
does not produce noticeable more overflow than the more conservative semi thread-local
update scheme. This leads to the conclusion that in our current application, there is no
noticeable difference between the semi thread-local and fully thread-local update scheme,
but the fully global update scheme is prone to producing significant overflow on congested
designs, in particular when rerouting is done on a large scale. We therefore choose to
use the conservative semi-thread local update scheme as a default, although the fully

thread-local update scheme also seems to be a valid choice based on our experiments.

7.6. Routing Flow Results

After providing experimental results measuring the practical performance of the features
presented in Sections 7.3, 7.4 and 7.5 individually, we now provide results that measure
the performance of our overall routing flow. To this end, we run our complete routing
flow on the five largest designs in our testbed and measure general metrics after each
major step. For information regarding our testbed and an explanation of the measured
metrics we refer to Appendix A. Our runs from this section are performed with 16 threads

176 7. ROUTING BASED OPTIMIZATION

on an Intel Xeon E5-2667 v2 server running at 3.30 GHz, and metrics on global routes
are computed after connecting to exact shapes as outlined in Section 6.4.

Our results are given in Table 7.9. Here, the first row labeled Estimates shows the results
that are attained by the routing tree estimates that are used during timing optimization
before routing, which are approximately shortest Steiner trees embedded on the two
lowest layers of the layer assignment of the net, using the wire type assigned to the
net for all segments. Each of the subsequent rows then contains the results after one
of the major steps in our routing flow: We start with global routing using RC-Aware
BonnRouteGlobal from Chapters 4 and 5 (RC-Aware BRG) and then run GRBO from
this chapter on the resulting global routes. This is followed by detailed routing using
BonnRouteDetailed (BRD), our second routing based optimization step DRBO, and a
final detailed routing (BRD after DRBO) that implements the global wires added during
DRBO.

At this point it should be noted that in our flow, BonnRouteDetailed completely routes
all nets and does not leave open connections — if BonnRouteDetailed cannot close a
connection without violating minimum distance rules, then it violates them by using
(usually short) guide wires to close the connection. In our runs, the number of nets
containing guide wires is below 50 in both invocations of BonnRouteDetailed on all
designs except U8, where around 2000 nets need to use guide wires to access pins at large
blockages. All in all, however, the detailed routing on these designs can be considered
essentially complete.

Looking at the results, the first thing to notice is that RC-Aware BonnRouteGlobal
achieves significantly better timing results than the pre-routing estimates, and it does
so in a reasonable running time without creating overcongestion. As the details of this
comparison are already discussed in Section 5.5, we do not elaborate on this any further
in this section. Further large timing improvements can be achieved by running GRBO
after RC-Aware BonnRouteGlobal: Worst slack, FOM and the number of electrical vio-
lations are improved on every design, and often by large amounts. These improvements
come at the expense of a small power increase on most units, but in relation to the
improvements in timing metrics, this power increase can be considered a worthwhile
expenditure. Congestion is also held in check, and does not change significantly dur-
ing GRBO. Running times can be considered small on all but the biggest design US,
where our GRBO flow takes roughly two hours. In light of the large improvements in
quality of results and the detailed routing running time of roughly 18 hours, the GRBO
running time can still be considered tolerable. Moreover, as our data from Table 7.6
from Section 7.5.3.1 shows, less than 15% of the GRBO running time on U8 is spent

7.6. ROUTING FLOW RESULTS

177

Unit After... WS FOM EV PWR wACE4 OFtgt RT
(# nets) [ps] [ps] [mW] (%] [100 pitch?] [hh:mm:ss]
U4 Estimates -245 -214126 149 37.07 — — —
(111 140) RC-Aware BRG | -196 -152541 204 37.05 89.4 7.3 00:03:10

GRBO -116 -84530 144 38.94 89.2 2.7 00:10:45
BRD -130 -138307 364 39.33 95.6 190.0 00:53:55
DRBO -115 -123131 224 41.20 95.3 173.1 00:07:39
BRD after DRBO | -116 -136931 271 41.23 94.9 165.5 00:37:30

U5 Estimates -63 -58267 52 33.88 — — —
(119 228) RC-Aware BRG -62 -27486 5 34.08 81.7 0.0 00:03:03
GRBO -59 -10016 1 34.39 82.6 0.0 00:08:45
BRD -62 -33828 21 34.96 79.1 0.0 00:19:21
DRBO -60 -15024 1 35.50 79.1 0.0 00:08:58
BRD after DRBO | -60 -20632 2 35.51 79.7 0.7 00:07:42

U6 Estimates -122 -325030 237 197.18 — — —
(254 208) RC-Aware BRG | -121 -224967 1410 198.87 88.6 24.2 00:08:15
GRBO -105 -190008 1204 194.19 88.9 41.1 00:23:04
BRD -128 -277386 1619 195.28 98.3 3051.1 01:38:07
DRBO -122 -246809 781 198.88 98.3 3037.1 00:17:56
BRD after DRBO | -133 -270978 808 198.99 99.2 4937.4 01:06:39

u7 Estimates -94 -125151 375 98.98 — — —
(276 799) RC-Aware BRG -61 -64116 781 100.10 83.6 0.0 00:09:15
GRBO -55 -23936 603 101.65 83.8 0.0 00:17:04
BRD -60 -86038 737 103.22 95.7 1295.3 03:13:08
DRBO -60 -36008 670 104.77 95.7 1279.7 00:16:40
BRD after DRBO | -55 -48310 673 104.97 98.6 3375.6 01:00:11

U8 Estimates -109 -1979601 3110 705.87 — — —
(1681671) | RC-Aware BRG -87 -838015 9341 729.19 86.2 34.6 01:01:06
GRBO -82 -358955 2924 740.27 86.5 27.3 02:12:14
BRD -79 -1186585 7436 750.47 95.2 13966.6 18:01:37
DRBO =74 -991936 2271 765.64 95.2 13896.8 02:24:51
BRD after DRBO | -81 -1119024 2553 766.54 96.7 23008.7 06:39:36

TABLE 7.9. Experimental results of our new routing flow consisting
of multiple invocations of BonnRouteGlobal (BRG) and BonnRoute-
Detailed (BRD) and timing optimization with Incremental BonnRoute-
Global (GRBO and DRBO). For comparison, pre-routing estimates are
also listed.

178 7. ROUTING BASED OPTIMIZATION

in BonnRouteGlobal when using 16 threads, and the number drops further when more
threads are used.

After detailed routing, timing metrics take a hit. To some extent, this is expected,
as detailed routing is a hard problem in practice, and detailed routes are expected to
contain more (mainly local) detours than our global routes due to the nature of the
detailed routing problem. This is particularly true as we apply local optimizations to
our global routes, as described in Chapter 6. However, improving the interplay between
the global and the detailed router and possibly using track assignment (cf. Section 1.3.3)
can certainly help reducing the gap.

When comparing congestion metrics, one can observe a discontinuity between the GRBO
and BRD rows, which is due to the way congestion is measured in these two steps:
When running RC-Aware BonnRouteGlobal and GRBO, we are global routing a basi-
cally empty design, and the global router distributes the global wiring in order to obey
routing capacity constraints. These routing capacity constraints are always expressed
with respect to our congestion target of 90%. Therefore, BonnRouteGlobal attempts
to keep congestion below 90%, which can also be observed by looking at the wACE4
numbers.

After detailed routing, however, routing space usages are measured based on space that
is left empty by the detailed wires, as described in Section 7.1.3. This can naturally
result in large OFtgt values, as the congestion target is 90%, and the detailed router
may easily use more than 90% of the available routing space in certain regions. This
is also the reason for increases in the wACE4 metric, which can easily be dominated
by a relatively small fraction of heavily used global routing graph edges after detailed
routing. Therefore, based on the methods used to measure congestion, the discontinuity
in congestion metrics between the GRBO and BRD step is expected. An illustration
of this is given by Figure 7.18. Based on these observations, it is fair to say that the
wACE4 and OFtgt metrics, which are useful for predicting routability before detailed
routing, do not provide reliable congestion assessments after detailed routing with the
current methods of measuring congestion after detailed routing.

The results in the DRBO row can be described in a similar way as the results in the
GRBO row: Timing numbers and electrical violations are improved at the expense of
a higher power consumption, the running time is reasonable, and congestion does not
increase. However, the improvements are smaller compared to GRBO, which has two
main reasons: Firstly, global routes have already been optimized during GRBO, which
leaves less room for improvement in DRBO. Secondly, changes during DRBO are gener-
ally more restricted than during GRBO (e.g. only small pin movements are allowed in
DRBO), as large changes after detailed routing are generally tried to be avoided. We note

7.6. ROUTING FLOW RESULTS 179

FiGURE 7.18. Congestion plots on U8 directly after RC-Aware Bonn-
RouteGlobal (left) and BonnRouteDetailed (right): Naturally, Bonn-
RouteGlobal distributes the wiring in order to meet the congestion target
of 90%, which results in widespread yellow and orange areas where con-
gestion is just below the congestion target. After BonnRouteDetailed,
the plot shows less congestion for the most part, but some heavily con-
gested edges scattered around the chip area result in large wACE4 and
OFtgt values (cf. Table 7.9).

that as already described in Section 7.1.2, we use the same RICE [95] timing extraction
method after all steps in our routing flow, which makes timing results comparable. In
VLSI design production flows, however, things can be different: Here, one can use more
precise timing models after detailed routing which take coupling capacitances based on
the actual locations of detailed wires into account. In that case, detailed routing based
optimization can lead to much bigger timing improvements, as the timing model change
can cause the netlist to be inferior from a timing perspective.

Finally, we run BonnRouteDetailed a second time after DRBO. Compared to the results
after the first invocation of BonnRouteDetailed, timing numbers and electrical violations
are generally noticeably better. Here, one can again observe some degree of timing
degradation compared to the DRBO numbers, although it is much smaller than the one
occuring between GRBO and BRD. Naturally, this is due to the fact that DRBO changes
are typically local, and most nets are not touched during DRBO. However, there is still
room for improvement, as speaking of today, BonnRouteDetailed cannot properly handle
nets that contain a mix of global and detailed wires, which occur naturally after running
DRBO. Therefore, we convert all wires in nets containing a mix of global and detailed
wires to global wires, which allows BonnRouteDetailed to route those nets. This can
result in unnecessarily large routing changes, as whole nets are rerouted even in cases

where closing only very short connections would suffice. Here, a proper support for

180 7. ROUTING BASED OPTIMIZATION

handling such mixed nets in BonnRouteDetailed is likely to result in a better quality of
results and smaller running times in the second invocation of BonnRouteDetailed.

All in all, the results achieved by our new routing flow are convincing: RC-Aware Bonn-
RouteGlobal achieves significantly better timing results than the pre-routing estimates,
and these results are further improved by our routing based optimization steps. This
allows us to generate global and detailed wires whose timing properties outperform the
ones of the pre-routing estimates by a substantial amount, which gives practical valida-

tion to the theoretical approaches and results devised in this thesis.

APPENDIX A

Experimental Results

This appendix contains additional information regarding our experimental results pre-
sented throughout this thesis. It can be used as a reference when looking at the various
experimental results sections, in particular if the meaning of some of the evaluated met-

rics is unclear (cf. Section A.4).

A.1. Our Testbed

Our testbed consists of state-of-the-art microprocessor units from the 14nm technology
node. They are part of recent high-performance processor units that are designed and
brought to market by IBM. As such, they should reflect the current state of technology
when it comes to the design of high-performance integrated circuits. For our runs we use
snapshots from the IBM design flow that are taken at a point directly before routing.

A.2. Our Platform

Apart from their Tcl interface, our tools are implemented in C++ using a Linux environ-
ment. Our experiments are then conducted under Linux on x86 server workstations. The
exact workstation used varies from experiment to experiment, and we give the processor

specifications in the various experimental results sections.

A.3. Metric Evaluation

The metrics in our tables are either evaluated directly by our router, or by IBM tools
that are used for the evaluation of the respective metric in the IBM design flow. In
particular, timing results are reported by IBM EinsTimer, which is the timing engine
used throughout the IBM design flow. Although we optimize Elmore delays throughout
this thesis, we use more accurate RICE [95] extractions for timing computations in our
experimental results, the reason being that this is the timing extraction method used at

the stage in the IBM design flow where our global router is used.

A.4. Metrics

Our tables in this thesis contain various metrics, and we explain the most general ones
shortly in this section. They are identified and sorted alphabetically by the abbreviation

181

182

A. EXPERIMENTAL RESULTS

that we use for them throughout this thesis. Some result tables contain metrics that are

specific to the section containing the results. These metrics are then explained in the

respective section and not listed here. The metrics are:

EV: The number of electrical violations, i.e. the sum of the numbers of slew
and capacitance limit violations, as described in Section 3.5.

FOM: The figure of merit as defined in Section 3.3.2. In our runs, the slack
target is a design specific parameter between five and ten picoseconds.
OFtgt: The routing overflow with respect to the congestion target. In our runs,
this is the same as OF90 (see definition of OFz below), as we use a congestion
target of 90% in our runs. Here, a congestion target of 90% means that the
estimated routing capacities are scaled by 90%, and the actual global routing
algorithm regards these reduced capacities as routing capacity constraints.
OFz: The routing overflow with respect to edge capacities scaled by %, ex-
pressed as a wire area with a unit of 100p?, where p is the minimum track pitch
(cf. Section 1.3) across all routing layers (often just called tracks). The formula
for OFz is

OFx = Z max {usg’(e) —0.01z - u(e), 0} -1(e)

e€E(G)

=100p*

e€E(GQ)

max {usg'(e) —0.01z - u(e), 0} I(e)
P " 100p°

where G is the global routing graph, usg’(e) and u(e) are the (not-normalized)
usage and capacity of e € E(G) expressed in length units, and /(e) is the length
of e. Here, the traditional one-dimensional routing overflow is scaled by the
length of the corresponding edge, which for example makes the metric more
stable when changing tile sizes.

With uniform tile sizes of 100p, this definition of routing overflow coincides
with the traditional one-dimensional definition, where the unit is tracks. In our
experiments we use non-uniform tile sizes (cf. Section 1.3.2), which are oriented
towards a mean tile size of 70p.

PWR: The power consumption of the chip.

RT: The running time for the experiment. We use the wall time as a measure-
ment for the running time.

wACE4: The average of the four ACE metrics ACE(0.5), ACE(1), ACE(2)
and ACE(5) defined by Wei et al. [120]. Basically, ACE(x) for = € (0,100] is
the average congestion of the 2% most congested edges. As we use a congestion

A.4. METRICS 183

target of 90% in our runs, the boundary between easy-to-route and hard-to-
route designs can be marked by a wACE4 of around 90%.

e WL: The total wire length on the chip (accumulated over all nets).

o WS: The worst slack as defined in Section 3.3.2.

Summary

In this thesis we consider the global routing problem, which arises as one of the major
subproblems during the physical design step in VLSI design. In this problem, a coarse
layout of the wires on the chip has to be computed, which is then given to the detailed
router as a guideline for computing the actual wiring on the chip. As such, during global
routing, we are given a three-dimensional grid graph G with edge capacities, called the
global routing graph, and a set of nets, where each net consists of a set of pins associated
with vertices in G. In each net, one pin is the sender of signals, while all other pins are
receivers. The task in global routing is then to connect all nets without overusing the
routing capacity on any of the edges in G.

The global routing problem has been studied extensively in the past, both from a the-
oretical and practical standpoint. Traditionally, next to obeying all routing capacity
constraints, the objective has been to minimize wire length and possibly via (edges in
z-direction) count. However, for a chip to function properly at its designated speed,
timing constraints have to be fulfilled. In the traditional approach, this was attempted
indirectly within the limits of the available means, e.g. by forcing timing-critical nets
to be routed within a certain layer range (range of z-coordinates in G) or imposing up-
per bounds on the wire length of such nets. In Chapter 4 we present a new approach,
where timing constraints are modeled directly during global routing: In joint work with
Stephan Held, Dirk Miiller, Daniel Rotter, Vera Traub and Jens Vygen [53], we extend
the modeling of global routing as a MIN-MAX RESOURCE SHARING PROBLEM to also
incorporate timing constraints. For measuring signal delays, we use the well-established
Elmore delay model [35, 99] throughout this thesis.

In our timing-aware global routing framework, the key subproblem to be solved is the
following: Given a net N, compute a Steiner tree connecting /N that minimizes a weighted
sum of prices for routing space usages and signal delays. For k pins, this problem is N P-
hard to approximate within o(log k) [106], and even the special case k = 2 is N P-hard,
as was shown by Héhnle and Rotter [97]. We therefore first present a fast approximation
algorithm for the case k = 2, and the approximation bounds turn out to be very strong in
practice. For nets with more than two pins we use a multi-stage approach that consists
of solving the well-known MINIMUM STEINER TREE PROBLEM, modifying the topology

185

186 SUMMARY

of the computed tree as in [108], and using a slightly modified version of our algorithm
for the two-pin case for computing new connections.

We evaluate the practical performance of our timing-aware global routing framework by
running it as part of BonnRouteGlobal from the BonnTools program suite, which is used
extensively by IBM for the development of state-of-the-art microprocessor units. We can
show that compared to the traditional global routing method presented above, our new
timing-aware global router achieves significantly better results on recent microprocessor
units from the 14nm technology node.

A refinement of the global routing model is then presented in Chapter 6: Instead of
only working on the global routing graph GG, where each vertex represents a rectangular
area on a given layer on the chip, we present an additional step that connects to the
actual metal shapes of the pins (without obeying manufacturing rules such as minimum
distance rules between wires). This allows for more precise timing computations and a
better modeling of local routing space usages. The key part here is a layer assignment
algorithm again minimizing a weighted sum of prices for routing space usages and signal
delays, i.e. an algorithm that assigns z-coordinates — which have a profound impact
on timing properties — to the edges of a two-dimensional input Steiner tree. In our
layer assignment algorithm we use similar techniques as in Chapter 5 and derive similar
bounds. Although this algorithm is designed for application in the context of Chapter 6,
it can be used in a general global routing context as an addition to the timing-aware
Steiner tree algorithm from Chapter 5.

At last, we discuss the topic of routing based optimization in Chapter 7. Here, the
starting point is a complete global or detailed routing, and timing optimization tools
make changes like moving circuits, adding repeaters and resizing circuits in order to
improve timing. The task for the global router is then to adapt to these changes by
incrementally updating the underlying routing. We investigate several aspects of this
problem: We consider the problem of completing an almost complete routing for a net,
which can for example arise when a circuit is moved or resized; we deal with the situa-
tion where an already routed net is subdivided by insertion of repeaters, and the wiring
has to be distributed to the resulting subnets; and we deal with problems arising in
multi-threaded contexts and evaluate the performance of the multi-threaded implemen-
tation of our incremental router. This enables a new routing flow, which consists of the
sequence timing-aware global routing — routing based optimization — detailed routing
— routing based optimization — detailed routing. On our 14nm microprocessor test
cases from IBM we can demonstrate a strong performance of individual features of our

incremental global router, and a strong performance of the resulting overall routing flow.

1]

2]

8]

[4]

[5]

[6]

[7]
8]

[9]

(10]

(11]

(12]

Bibliography

M. AHRENS, M. GESTER, N. KLEWINGHAUS, D. MULLER, S. PEYER, C. SCHULTE, AND
G. TELLEZ, Detailed Routing Algorithms for Advanced Technology Nodes, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 34 (2015), pp. 563-576. (Cited on
page 25.)

C. ALBRECHT, Global Routing by New Approximation Algorithms for Multicommodity Flow, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20 (2001), pp. 622—
632. (Cited on page 35.)

C. ALBRECHT, A. B. KAHNG, I. MANDOIU, AND A. ZELIKOVSKY, Floorplan Evaluation with
Timing-Driven Global Wireplanning, Pin Assignment, and Buffer/Wire Sizing, in Proceedings of
ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15th
International Conference on VLSI Design, 2002, pp. 580-587. (Cited on page 48.)

N. ALoN, D. MOSHKOVITZ, AND S. SAFRA, Algorithmic Construction of Sets for K-Restrictions,
ACM Trans. Algorithms, 2 (2006), pp. 153-177. (Cited on page 76.)

C. J. ALPERT, D. P. MEHTA, AND S. S. SAPATNEKAR, eds., Handbook of Algorithms for Physical
Design Automation, Auerbach Publications, Boston, USA, 2008. (Cited on pages 10 and 11.)

J. Ao, S. DoNG, S. CHEN, AND S. GOTO, Delay-Driven Layer Assignment in Global Routing
Under Multi-Tier Interconnect Structure, in Proceedings of the ACM International Symposium on
Physical Design, 2013, pp. 101-107. (Cited on page 22.)

S. ARORA, Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and Other
Geometric Problems, Journal of the ACM, 45 (1998), pp. 753-782. (Cited on page 36.)

C. BARTOSCHEK, Fast Repeater Tree Construction, PhD thesis, University of Bonn, 2014. (Cited
on page 12.)

S. BATTERYWALA, N. SHENOY, W. NICHOLLS, AND H. Znou, Track Assignment: A Desir-
able Intermediate Step Between Global Routing and Detailed Routing, in Proceedings of the 2002
IEEE/ACM International Conference on Computer-Aided Design, ACM, 2002, pp. 59-66. (Cited
on page 24.)

T. BIHLER, Rounding Fractional Global Routings, Master’s thesis, University of Bonn, 2017. (Cited
on page 50.)

D. BILO, New Algorithms for Steiner Tree Reoptimization, in 45th International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2018), I. Chatzigiannakis, C. Kaklamanis, D. Marx,
and D. Sannella, eds., Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2018, pp. 19:1-19:14.
(Cited on page 128.)

D. BILO, H.-J. BOCKENHAUER, J. HROMKOVIC, R. KRALOVIC, T. MOMKE, P. WIDMAYER, AND
A. ZYCH, Reoptimization of Steiner Trees, in Algorithm Theory — SWAT 2008, J. Gudmundsson,
ed., Berlin, Heidelberg, 2008, Springer Berlin Heidelberg, pp. 258-269. (Cited on page 128.)

187

188

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

D. BILO AND A. ZycH, New Advances in Reoptimizing the Minimum Steiner Tree Problem, in
Mathematical Foundations of Computer Science 2012: 37th International Symposium, MFCS 2012,
Bratislava, Slovakia, August 27 — 31, B. Rovan, V. Sassone, and P. Widmayer, eds., Springer, 2012,
pp. 184-197. (Cited on page 128.)

A. Bock, S. HELD, N. KAMMERLING, AND U. SCHORR, Local Search Algorithms for Timing-Driven
Placement Under Arbitrary Delay Models, in Proceedings of the 52nd Annual Design Automation
Conference, DAC ’15, ACM, 2015, pp. 29:1-29:6. (Cited on page 13.)

H.-J. BOCKENHAUER, J. HROMKOVIC, R. KRALOVIC, T. MOMKE, AND P. ROSSMANITH, Reopti-
mization of Steiner Trees: Changing the Terminal Set, Theoretical Computer Science, 410 (2009),
pp. 3428 — 3435. (Cited on page 127.)

K. D. Boesg, A. B. KannG, B. A. McCoy, AND G. ROBINS, Fidelity and Near-Optimality
of Elmore-Based Routing Constructions, in IEEE International Conference on Computer Design,
1993, pp. 81-84. (Cited on page 44.)

[17] ——, Rectilinear Steiner Trees with Minimum Elmore Delay, in Proceedings of the 31st Annual

Design Automation Conference, New York, 1994, ACM, pp. 381-386. (Cited on page 65.)

[18] ———, Near-Optimal Critical Sink Routing Tree Constructions, IEEE Transactions on Computer-

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

Aided Design of Integrated Circuits and Systems, 14 (1995), pp. 1417-1436. (Cited on page 65.)
K. D. BOEsg, A. B. KaAuNG, AND G. ROBINS, High-Performance Routing Trees with Identified
Critical Sinks, in Proceedings of the 30th International Design Automation Conference, 1993,
pp. 182-187. (Cited on page 65.)

U. BRENNER, M. STRUZYNA, AND J. VYGEN, BonnPlace: Placement of Leading-FEdge Chips by
Advanced Combinatorial Algorithms, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27 (2008), pp. 1607-1620. (Cited on page 11.)

J. BYRKA, F. GRANDONI, T. ROTHVOSS, AND L. SANITA, Steiner Tree Approzimation via Iterative
Randomized Rounding, J. ACM, 60 (2013), pp. 6:1-6:33. (Cited on pages 35 and 128.)

R. C. CARDEN, J. L1, AND C.-K. CHENG, A Global Router with a Theoretical Bound on the Optimal
Solution, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15
(1996), pp. 208-216. (Cited on page 34.)

M. CELIK, L. PILEGGI, AND A. ODABASIOGLU, IC Interconnect Analysis, Kluwer Academic Pub-
lishers, Boston, 2002. (Cited on page 45.)

C.-C. Cuanc AND J. CoNG, Pseudo Pin Assignment with Crosstalk Noise Control, in Proceed-
ings of the 2000 International Symposium on Physical Design, ACM, 2000, pp. 41-47. (Cited on
page 24.)

Y.-J. CHANG, Y.-T. LEE, J.-R. Gao, P.-C. Wu, anD T.-C. WANG, NTHU-Route 2.0: A Robust
Global Router for Modern Designs, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 29 (2010), pp. 1931-1944. (Cited on page 34.)

M. CHo, K. Lu, K. YuaN, AND D. Z. PAN, BozRouter 2.0: A Hybrid and Robust Global Router
with Layer Assignment for Routabilityy, ACM Transactions on Design Automation of Electronic
Systems, 14 (2009), pp. 32:1-32:21. (Cited on page 34.)

C. CHU AND Y. C. WoNG, FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal Tree
Algorithm for VLSI Design, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27 (2008), pp. 70-83. (Cited on page 36.)

J. Cona, An Interconnect-Centric Design Flow for Nanometer Technologies, Proceedings of the
IEEE, 89 (2001), pp. 505-528. (Cited on page 21.)

29]

(30]
(31]
(32]
(33]
(34]
(35]
(36]
37]

(38]

BIBLIOGRAPHY 189

J. Cong, K.-S. LEUNG, AND D. ZHOU, Performance-Driven Interconnect Design Based on Dis-
tributed RC Delay Model, in Proceedings of the 30th International Design Automation Conference,
ACM, 1993, pp. 606-611. (Cited on page 65.)

P. Coussy AND A. MORAWIEC, High-Level Synthesis, Springer, 2008. (Cited on page 8.)

P. CREMER, Algorithms for Cell Layout, PhD thesis, University of Bonn, 2019. (Cited on page 9.)
S. DABoUL, S. HELD, J. VYGEN, AND S. WITTKE, An Approximation Algorithm for Threshold
Voltage Optimization, ACM Transactions on Design Automation of Electronic Systems, 23 (2018),
pp. 68:1-68:16. (Cited on page 13.)

S. DEVADAS, A. GHOSH, AND K. KEUTZER, Logic Synthesis, McGraw-Hill, Inc., New York, 1994.
(Cited on page 8.)

E. W. DUKSTRA, A Note on Two Problems in Connexion with Graphs, Numerische Mathematik,
1 (1959), pp. 269-271. (Cited on pages 16, 24, 67, and 68.)

W. ELMORE, The Transient Response of Damped Linear Networks with Particular Regard to Wide-
band Amplifiers, Journal of Applied Physics, 19 (1948), pp. 55-63. (Cited on pages 11, 42, and 185.)
B. ESCOFFIER, M. MILANIC, AND V. PAscHOS, Simple and Fast Reoptimizations for the Steiner
Tree Problem, Algorithmic Operations Research, 4 (2009), pp. 86-94. (Cited on page 128.)

M. R. GAREY AND D. S. JOHNSON, The Rectilinear Steiner Tree Problem is NP-Complete, STAM
Journal on Applied Mathematics, 32 (1977), pp. 826-834. (Cited on pages 33 and 36.)

N. GARG AND J. KONEMANN, Faster and Simpler Algorithms for Multicommodity Flow and Other
Fractional Packing Problems, in Proceedings of the 39th Annual Symposium on Foundations of
Computer Science, FOCS 98, IEEE Computer Society, 1998, pp. 300-309. (Cited on page 35.)

[39] ——, Faster and Simpler Algorithms for Multicommodity Flow and Other Fractional Packing

(40]

(41]

42]

(43]

(44]

(45]
[46]

(47]

Problems, STAM Journal on Computing, 37 (2007), pp. 630-652. (Cited on page 35.)

M. GESTER, VLSI Routing for Advanced Technology, PhD thesis, University of Bonn, 2015. (Cited
on pages 16 and 25.)

M. GESTER, D. MULLER, T. NIEBERG, C. PANTEN, C. SCHULTE, AND J. VYGEN, BonnRoute:
Algorithms and Data Structures for Fast and Good VLSI Routing, ACM Transactions on Design
Automation of Electronic Systems, 18 (2013), pp. 32:1-32:24. (Cited on pages 7, 25, and 88.)

C. GOTTSCHALK, Berechnung Optimaler Global Routing Graphen, Bachelor’s thesis (in German),
University of Bonn, 2010. (Cited on page 17.)

K. GoyaL AND T. MOMKE, Robust Reoptimization of Steiner Trees, in LIPIcs 45, H. Prahladh
and G. Ramalingam, eds., Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2015, pp. 10-24.
(Cited on page 128.)

R. Gupta, B. TuTtuiANU, AND L. PILEGGI, The Elmore Delay as a Bound for RC Trees with
Generalized Input Signals, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 16 (1997), pp. 95-104. (Cited on page 45.)

N. HABNLE AND P. SACCARDI, Global Routing with Exact Pin Positions, tech. rep., University of
Bonn, 2016. (Cited on pages 92, 93, and 135.)

M. HANAN, On Steiner’s Problem with Rectilinear Distance, SIAM Journal on Applied Mathemat-
ics, 14 (1966), pp. 255-265. (Cited on pages 33, 36, 65, and 149.)

P. E. Hart, N. J. NILSSON, AND B. RAPHAEL, A Formal Basis for the Heuristic Determination of
Minimum Cost Paths, IEEE Transactions on Systems Science and Cybernetics, 4 (1968), pp. 100
107. (Cited on page 142.)

190

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

BIBLIOGRAPHY

S. HASSOUN AND T. SASAO, eds., Logic Synthesis and Verification, Kluwer Academic Publishers,
Norwell, USA, 2002. (Cited on page 8.)

K. HEEGER, Congestion-Aware Steiner Trees with Small Elmore Delay, Master’s thesis, University
of Bonn, 2018. (Cited on pages 83 and 86.)

S. HELD, Timing Closure in Chip Design, PhD thesis, University of Bonn, 2008. (Cited on page 13.)
S. HELD AND J. Hu, Gate Sizing, in Electronic Design Automation for IC Implementation, Circuit
Design, and Process Technology, L. Lavagno, I. Markov, G. Martin, and L. Scheffer, eds., CRC
Press, 2016, pp. 245-260. (Cited on page 12.)

S. HELD, B. KORTE, D. RAUTENBACH, AND J. VYGEN, Combinatorial Optimization in VLSI
Design, in Combinatorial Optimization: Methods and Applications, V. Chvatal, ed., IOS Press,
Amsterdam, 2011, pp. 33-96. (Cited on page 7.)

S. HELD, D. MULLER, D. ROTTER, R. SCHEIFELE, V. TRAUB, AND J. VYGEN, Global Routing
with Timing Constraints, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37 (2018), pp. 406-419. (Cited on pages 47, 51, 59, 63, 66, 76, 92, and 185.)

S. HELD, D. MULLER, D. ROTTER, V. TRAUB, AND J. VYGEN, Global Routing with Inherent Static
Timing Constraints, in Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, ICCAD ’15, IEEE Press, 2015, pp. 102-109. (Cited on page 47.)

S. HELD AND S. T. SPIRKL, Binary Adder Circuits of Asymptotically Minimum Depth, Linear
Size, and Fan-Out Two, ACM Transactions on Algorithms, 14 (2018), pp. 4:1-4:18. (Cited on
page 13.)

D. HENKE, Pfadsuche im Detailed Routing, Bachelor’s thesis (in German), University of Bonn,
2016. (Cited on page 69.)

X. Hong, T. Xug, J. Huang, C.-K. CHENG, AND E. S. Kun, TIGER: An Efficient Timing-
Driven Global Router for Gate Array and Standard Cell Layout Design, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 16 (1997), pp. 1323-1331. (Cited on
page 47.)

S. HOUGARDY, T. NIEBERG, AND J. SCHNEIDER, BonnCell: Automatic Layout of Leaf Cells, in
18th Asia and South Pacific Design Automation Conference (ASP-DAC), 2013, pp. 453-460. (Cited
on page 9.)

S. HOUGARDY, J. SILVANUS, AND J. VYGEN, Dijkstra Meets Steiner: A Fast FExact Goal-Oriented
Steiner Tree Algorithm, Mathematical Programming Computation, 9 (2017), pp. 135-202. (Cited
on page 83.)

J. Hu, Z. L1, AND S. Hu, Buffer Insertion Basics, in Handbook of Algorithms for Physical Design
Automation, C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, eds., Auerbach Publications, Boston,
USA, 2008, pp. 535-556. (Cited on page 12.)

J. Hu AND S. S. SAPATNEKAR, A Survey on Multi-Net Global Routing for Integrated Clircuits,
Integration, the VLSI Journal, 31 (2001), pp. 1-49. (Cited on page 34.)

[62] ——, A Timing-Constrained Simultaneous Global Routing Algorithm, IEEE Transactions on

[63]

Computer-Aided Design of Integrated Circuits and Systems, 21 (2002), pp. 1025-1036. (Cited
on page 48.)

S. Hu, Z. Li, anDp C. J. ALPERT, A Polynomial Time Approximation Scheme for Timing
Constrained Minimum Cost Layer Assignment, in 2008 IEEE/ACM International Conference on
Computer-Aided Design, 2008, pp. 112-115. (Cited on page 22.)

(64]

(65]
(66]
(67]

(68]

[69]

[70]

(71]
(72]

(73]

[74]

(75]
[76]
[77]

(78]

[79]

(80]

(81]

BIBLIOGRAPHY 191

J. Huang, X.-L. HonGg, C.-K. CHENG, AND E. S. KuH, An Efficient Timing-Driven Global
Routing Algorithm, in 30th ACM/IEEE Design Automation Conference, 1993, pp. 596-600. (Cited
on page 47.)

F. HWANG, On Steiner Minimal Trees with Rectilinear Distance, STAM Journal on Applied Math-
ematics, 30 (1976), pp. 104-114. (Cited on pages 36 and 37.)

ISPD 2007 Global Routing Contest. http://www.ispd.cc/contests/07/contest.html, 2007.
(Cited on pages 20 and 34.)

ISPD 2008 Global Routing Contest. http://www.ispd.cc/contests/08/ispd08rc.html, 2008.
(Cited on pages 20 and 34.)

T. KaDoDI, Steiner Routing Based on Elmore Delay Model for Minimizing Mazimum Propagation
Delay, Master’s thesis, Japan Advanced Institute of Science and Technology, 1999. (Cited on
page 65.)

A. KAHNG AND G. ROBINS, On Optimal Interconnections for VLSI, Kluwer Academic Publishers,
Boston, 1995. (Cited on page 65.)

R. KARP, Reducibility Among Combinatorial Problems, in Complexity of Computer Computations,
R. Miller and J. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103. (Cited on pages 35,
66, and 112.)

A. K. KIEFNER, Minimizing Path Lengths in Rectilinear Steiner Minimum Trees with Fized Topol-
ogy, Operations Research Letters, 44 (2016), pp. 835 — 838. (Cited on pages 94, 95, and 96.)

N. KLEWINGHAUS, Efficient Detailed Routing, Diploma’s thesis, University of Bonn, 2013. (Cited
on page 25.)

B. KORTE, D. RAUTENBACH, AND J. VYGEN, BonnTools: Mathematical Innovation for Layout
and Timing Closure of Systems on a Chip, in Proceedings of the IEEE 95, 2007, pp. 555-572.
(Cited on page 7.)

B. KoRTE AND J. VYGEN, Combinatorial Problems in Chip Design, in Building Bridges: Between
Mathematics and Computer Science, M. Grétschel, G. O. H. Katona, and G. Sagi, eds., Springer
Berlin Heidelberg, 2008, pp. 333-368. (Cited on page 7.)

——, Combinatorial Optimization: Theory and Algorithms, Springer, 6th ed., 2018. (Cited on
pages 7, 35, and 65.)

M. KRAMER AND J. VAN LEEUWEN, Wire-Routing is NP-Complete, tech. rep., University of
Utrecht, 1982. (Cited on page 15.)

——, The Complexity of Wirerouting and Finding Minimum Area Layouts for Arbitrary VLSI
Clircuits, Advances in Computing Research, 2 (1984), pp. 129-146. (Cited on page 15.)

T. LEE AND T. WANG, Congestion-Constrained Layer Assignment for Via Minimization in Global
Routing, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27
(2008), pp. 1643-1656. (Cited on page 92.)

T.-H. LEE AND T.-C. WANG, Robust Layer Assignment for Via Optimization in Multi- Layer Global
Routing, in Proceedings of the 2009 International Symposium on Physical Design, ISPD 09, ACM,
2009, pp. 159-166. (Cited on page 92.)

F. MicHAELIS, Capacity Estimation in Global Routing, Master’s thesis, University of Bonn, 2017.
(Cited on page 105.)

M. D. MoOFrFITT, MaizeRouter: Engineering an Effective Global Router, in Proceedings of the
2008 Asia and South Pacific Design Automation Conference, IEEE Computer Society Press, 2008,
pp. 226-231. (Cited on page 34.)

http://www.ispd.cc/contests/07/contest.html
http://www.ispd.cc/contests/08/ispd08rc.html

192 BIBLIOGRAPHY

[82] ——, Global Routing Revisited, in Proceedings of the 2009 International Conference on Computer-
Aided Design, ACM, 2009, pp. 805-808. (Cited on page 34.)

[83] M. D. MorrFITT, J. A. ROY, AND I. L. MARKOV, The Coming of Age of (Academic) Global
Routing, in Proceedings of the 2008 International Symposium on Physical Design, ACM, 2008,
pp. 148-155. (Cited on page 34.)

[84] D. MULLER, Bestimmung der Verdrahtungskapazititen im Global Routing von VLSI-Chips,
Diploma’s thesis (in German), University of Bonn, 2002. (Cited on page 20.)

[85] D. MULLER, Optimizing Yield in Global Routing, in 2006 IEEE/ACM International Conference on
Computer-Aided Design, 2006, pp. 480-486. (Cited on pages 35 and 51.)

[86] D. MULLER, Fast Resource Sharing in VLSI Design, PhD thesis, University of Bonn, 2009. (Cited
on pages 35, 51, and 82.)

[87] D. MULLER, K. RADKE, AND J. VYGEN, Faster Min-Mazx Resource Sharing in Theory and Practice,
Mathematical Programming Computation, 3 (2011), pp. 1-35. (Cited on pages 21, 32, 33, 35, 47,
48, 49, 50, 51, and 58.)

[88] M. NEUWOHNER, Trackless TrackAssignment, Bachelor’s thesis (in German), University of Bonn,
2018. (Cited on page 24.)

[89] M. M. OzpaL AND M. D. F. WoNaG, Archer: A History-Based Global Routing Algorithm, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28 (2009), pp. 528—
540. (Cited on page 34.)

[90] S. PEYER, Elmore-Delay-Optimale Steinerbdume im VLSI-Design, Diploma’s thesis (in German),
University of Bonn, 2000. (Cited on pages 45 and 65.)

[91] S. PEYER, M. ZACHARIASEN, AND D. G. J@RGENSEN, Delay-Related Secondary Objectives for
Rectilinear Steiner Minimum Trees, Discrete Applied Mathematics, 136 (2004), pp. 271-298. (Cited
on page 65.)

[92] P. RAGHAVAN AND C. D. THOMPSON, Randomized Rounding: A Technique for Provably Good
Algorithms and Algorithmic Proofs, Combinatorica, 7 (1987), pp. 365-374. (Cited on pages 34
and 50.)

[93] ——, Multiterminal Global Routing: A Deterministic Approximation Scheme, Algorithmica, 6
(1991), pp. 73-82. (Cited on page 34.)

[94] S. B. Rao AND W. D. SMITH, Approzimating Geometrical Graphs via "Spanners” and "Banyans”,
in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, New York,
1998, ACM, pp. 540-550. (Cited on page 36.)

[95] C. L. RATZLAFF AND L. T. PILLAGE, RICE: Rapid Interconnect Circuit Fvaluation Using AWE,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13 (1994),
pp. 763-776. (Cited on pages 119, 179, and 181.)

[96] R. RAZ AND S. SAFRA, A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant
Error-Probability PCP Characterization of NP, in Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, STOC 97, ACM, 1997, pp. 475-484. (Cited on page 76.)

[97] D. ROTTER, Timing-Constrained Global Routing with Buffered Steiner Trees, PhD thesis, Univer-
sity of Bonn, 2017. (Cited on pages 12, 47, 64, 65, 66, 67, 68, 111, and 185.)

[98] J. A. Roy aND 1. L. MARKOV, High-Performance Routing at the Nanometer Scale, IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 27 (2008), pp. 1066-1077.
(Cited on page 34.)

(99]

[100]

[101]

[102]

[103]

[104]
[105]

[106]

BIBLIOGRAPHY 193

J. RUBINSTEIN, P. PENFIELD, AND M. A. HorowITZ, Signal Delay in RC Tree Networks, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2 (1983), pp. 202-211.
(Cited on pages 11, 42, 43, and 185.)

P. SaccArDI, Global Routing with Exact Pin Positions, Master’s thesis, University of Bonn, 2015.
(Cited on pages 92, 93, and 135.)

J. S. SALOWE, Rip-Up and Reroute, in Handbook of Algorithms for Physical Design Automation,
C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, eds., Auerbach Publications, Boston, USA, 2008,
pp. 615-626. (Cited on page 24.)

R. SamanTA, A. I. ERZIN, S. RAHA, Y. V. SHAMARDIN, I. I. TAKHONOV, AND V. V. ZA-
LYUBOVSKIY, A Provably Tight Delay-Driven Concurrently Congestion Mitigating Global Routing
Algorithm, Applied Mathematics and Computation, 255 (2015), pp. 92-104. (Cited on page 47.)
D. SANKOFF AND P. ROUSSEAU, Locating the Vertices of a Steiner Tree in an Arbitrary Metric
Space, Mathematical Programming, 9 (1975), pp. 240-246. (Cited on page 95.)

S. SAPATNEKAR, Timing, Springer, Berlin, Heidelberg, 2004. (Cited on pages 39 and 42.)

P. SAXENA, R. S. SHELAR, AND S. SAPATNEKAR, Routing Congestion in VLSI Circuits: Estima-
tion and Optimization, Springer, 2007. (Cited on page 20.)

R. SCHEIFELE, Steiner Trees with Bounded Elmore Delay, Master’s thesis, University of Bonn,
2013. (Cited on pages 65, 76, and 185.)

[107] ——, RC-Aware Global Routing, in Proceedings of the 35th International Conference on

Computer-Aided Design, ICCAD ’16, ACM, 2016, pp. 21:1-21:8. (Cited on pages 47, 63, 66,
and 76.)

[108] ——, Steiner Trees with Bounded RC-Delay, Algorithmica, 78 (2017), pp. 86-109. (Cited on

[109)]
[110]
[111]
[112]
[113]
[114]
[115]

[116]

[117]

[118]

pages 42, 63, 65, 76, 78, 79, 80, and 186.)

J. SCHNEIDER, Transistor-Level Layout of Integrated Circuits, PhD thesis, University of Bonn,
2014. (Cited on page 9.)

U. SCHORR, Algorithms for Circuit Sizing in VLSI Design, PhD thesis, University of Bonn, 2015.
(Cited on pages 12 and 13.)

C. SCHULTE, Design Rules in VLSI Routing, PhD thesis, University of Bonn, 2012. (Cited on
pages 16 and 25.)

W. SCHWARZLER, On the Complezity of the Planar Edge-Disjoint Paths Problem with Terminals
on the Outer Boundary, Combinatorica, 29 (2009), pp. 121-126. (Cited on page 33.)

E. SHRAGOWITZ AND S. KEEL, A Global Router Based on a Multicommodity Flow Model, Integr.
VLSI J., 5 (1987), pp. 3-16. (Cited on page 34.)

M. STRUZYNA, Flow-Based Partitioning and Fast Global Placement in Chip Design, PhD thesis,
University of Bonn, 2010. (Cited on page 11.)

J. UYEMURA, Introduction to VLSI Circuits and Systems, Wiley, 2002. (Cited on page 7.)

A. VITTAL AND M. MAREK-SADOWSKA, Minimal Delay Interconnect Design Using Alphabetic
Trees, in Proceedings of the 31st Annual Design Automation Conference, ACM, 1994, pp. 392—
396. (Cited on page 65.)

J. VYGEN, Near-Optimum Global Routing with Coupling, Delay Bounds, and Power Consumption,
in Integer Programming and Combinatorial Optimization: 10th International IPCO Conference,
New York, USA, June 7-11, 2004. Proceedings, D. Bienstock and G. Nemhauser, eds., Springer,
Berlin, Heidelberg, 2004, pp. 308-324. (Cited on pages 21, 35, 47, and 51.)

J. VYGEN, Chip Design. Lecture Notes, 2016. (Cited on page 33.)

194

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

BIBLIOGRAPHY

Y. WEI, Z. L1, C. Szg, S. Hu, C. J. ALPERT, AND S. S. SAPATNEKAR, CATALYST: Plan-
ning Layer Directives for Effective Design Closure, in Proceedings of the Conference on Design,
Automation and Test in Europe, 2013, pp. 1873-1878. (Cited on pages 21 and 22.)

Y. WEI, C. Sz, N. VISWANATHAN, Z. L1, C. J. ALPERT, L. REDDY, A. D. HUBER, G. E.
TELLEZ, D. KELLER, AND S. S. SAPATNEKAR, Techniques for Scalable and Effective Routability
Evaluation, ACM Trans. Des. Autom. Electron. Syst., 19 (2014), pp. 17:1-17:37. (Cited on pages 20,
141, and 182.)

J. WERBER, Logic Restructuring for Timing Optimization in VLSI Design, PhD thesis, University
of Bonn, 2007. (Cited on page 13.)

A. WiLLIAMS, C++ Concurrency in Action: Practical Multithreading, Manning, 2012. (Cited on
page 161.)

T. Wu, A. Davoobpi, AND J. T. LINDEROTH, GRIP: Global Routing via Integer Programming,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30 (2011),
pp. 72-84. (Cited on page 34.)

Y. Xu, Y. ZHANG, AND C. CHU, FastRoute 4.0: Global Router with Efficient Via Minimization, in
2009 Asia and South Pacific Design Automation Conference, 2009, pp. 576-581. (Cited on page 34.)
J.-T. YAN, Y.-H. CHEN, C.-F. LEE, AND M.-C. HUANG, Multilevel Timing-Constrained Full-Chip
Routing in Hierarchical Quad-Grid Model, in 2006 IEEE International Symposium on Circuits and
Systems, 2006, pp. 5439 — 5442. (Cited on page 48.)

J.-T. YAN AND S.-H. LIN, Timing-Constrained Congestion-Driven Global Routing, in Proceedings
of the 2004 Asia and South Pacific Design Automation Conference, 2004, pp. 683-686. (Cited on
page 48.)

A. ZycH AND D. BILO, New Reoptimization Techniques Applied to Steiner Tree Problem, Electronic
Notes in Discrete Mathematics, 37 (2011), pp. 387 — 392. (Cited on page 128.)

	Acknowledgements
	Chapter 1. Introduction
	1.1. Specification and Logic Design
	1.2. Physical Design
	1.3. Routing
	1.4. Thesis Overview

	Chapter 2. Global Routing Basics
	2.1. Basic Concepts and Definitions
	2.2. The Traditional Global Routing Problem
	2.3. The Minimum Steiner Tree Problem

	Chapter 3. VLSI Timing Basics
	3.1. Signals
	3.2. The Timing Graph
	3.3. Timing Constraints
	3.4. The Elmore Delay Model
	3.5. Slew and Capacitance Limits

	Chapter 4. Global Routing with Timing Constraints
	4.1. Previous Work
	4.2. Global Routing as Min-Max Resource Sharing Problem
	4.3. Incorporating Timing Constraints

	Chapter 5. The RC-Aware Routing Oracle
	5.1. Problem Formulation
	5.2. Previous Work
	5.3. RC-Aware Paths
	5.4. RC-Aware Steiner Trees
	5.5. Experimental Results

	Chapter 6. Connecting to Exact Shapes
	6.1. From Projected to Exact Shapes
	6.2. Optimizing x- and y-Coordinates
	6.3. Assigning Layers
	6.4. Implementation in BonnRouteGlobal

	Chapter 7. Routing Based Optimization
	7.1. GRBO and DRBO
	7.2. The Incremental Routing Framework
	7.3. Minimal Reroutes
	7.4. Copy Routes
	7.5. Multi-Threaded Incremental Routing
	7.6. Routing Flow Results

	Appendix A. Experimental Results
	A.1. Our Testbed
	A.2. Our Platform
	A.3. Metric Evaluation
	A.4. Metrics

	Summary
	Bibliography

