55 research outputs found

    General Practice - The New Rules in Bankruptcy

    Get PDF

    Differential Signaling Profiles of MC4R Mutations with Three Different Ligands

    Get PDF
    The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin-melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and β-arrestin2 recruitment, using the two endogenous agonists, α- and β-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations

    Differential signaling profiles of MC4R mutations with three different ligands

    Get PDF
    Funding: This research was funded by SPARK BIH Validation Fund 2. P.S., P.K., H.B., P.A. and M.J.L. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1423, project number 421152132, subprojects A1, A05, Z03 to P.S.; B02 to P.K. and H.B.; C03 to P.A. and M.J.L.The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin–melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosinemonophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and β-arrestin2 recruitment, using the two endogenous agonists, α- and β-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.Publisher PDFPeer reviewe

    MicroRNA-100-5p and microRNA-298-5p released from apoptotic cortical neurons are endogenous Toll-like receptor 7/8 ligands that contribute to neurodegeneration

    Get PDF
    Background: MicroRNA (miRNA) expression in the brain is altered in neurodegenerative diseases. Recent studies demonstrated that selected miRNAs conventionally regulating gene expression at the post-transcriptional level can act extracellularly as signaling molecules. The identity of miRNA species serving as membrane receptor ligands involved in neuronal apoptosis in the central nervous system (CNS), as well as the miRNAs' sequence and structure required for this mode of action remained largely unresolved. Methods. Using a microarray-based screening approach we analyzed apoptotic cortical neurons of C56BL/6 mice and their supernatant with respect to alterations in miRNA expression/presence. HEK-Blue Toll-like receptor (TLR) 7/8 reporter cells, primary microglia and macrophages derived from human and mouse were employed to test the potential of the identified miRNAs released from apoptotic neurons to serve as signaling molecules for the RNA-sensing receptors. Biophysical and bioinformatical approaches, as well as immunoassays and sequential microscopy were used to analyze the interaction between candidate miRNA and TLR. Immunocytochemical and -histochemical analyses of murine CNS cultures and adult mice intrathecally injected with miRNAs, respectively, were performed to evaluate the impact of miRNA-induced TLR activation on neuronal survival and microglial activation. Results: We identified a specific pattern of miRNAs released from apoptotic cortical neurons that activate TLR7 and/or TLR8, depending on sequence and species. Exposure of microglia and macrophages to certain miRNA classes released from apoptotic neurons resulted in the sequence-specific production of distinct cytokines/chemokines and increased phagocytic activity. Out of those miRNAs miR-100-5p and miR-298-5p, which have consistently been linked to neurodegenerative diseases, entered microglia, located to their endosomes, and directly bound to human TLR8. The miRNA-TLR interaction required novel sequence features, but no specific structure formation of mature miRNA. As a consequence of miR-100-5p- and miR-298-5p-induced TLR activation, cortical neurons underwent cell-autonomous apoptosis. Presence of miR-100-5p and miR-298-5p in cerebrospinal fluid led to neurodegeneration and microglial accumulation in the murine cerebral cortex through TLR7 signaling. Conclusion: Our data demonstrate that specific miRNAs are released from apoptotic cortical neurons, serve as endogenous TLR7/8 ligands, and thereby trigger further neuronal apoptosis in the CNS. Our findings underline the recently discovered role of miRNAs as extracellular signaling molecules, particularly in the context of neurodegeneration

    Light- and temperature-dependent dynamics of chromophore and protein structural changes in bathy phytochrome Agp2

    Get PDF
    Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.DFG, 221545957, SFB 1078: Protonation Dynamics in Protein FunctionTU Berlin, Open-Access-Mittel – 202

    From Saussure to sociology and back to linguistics

    Get PDF
    The article highlights a semiotically relevant aspect of Niklas Luhmann’s Theory of Social Systems: its reception of the Saussurean dichotomies signifiant/signifié and langue/parole. Luhmann’s position is weighted against the Cours as well as Saussure’s original writings, sampling their approaches to form, meaning, the sign’s two-sidedness, and the relation of linguistic structure and speech events. Ultimately, the article proposes a social ontology of linguistic abstraction in line with general semiology that explains the motility of language through communication, thereby accounting for variability and optionality. It also indicates as to how the theoretical framework can feed into a model of linguistic description.Peer Reviewe

    Toxic effects of phenothiazines on the eye

    Get PDF
    Publications about the retinotoxic action of phenothiazine derivatives led the author to undertake an ophthalmological investigation in two psychiatric hospitals in The Netherlands. The pharmacological actions of phenothiazine preparations are listed and a survey of the phenothiazine derivatives which are at present in use is given. Some retinotoxic substances are discussed and a survey is given of the literature on the ocular complications of phenothiazine therapy. The eyes of 561 patients were examined. of whom 541 are included in this study. 343 of these patients(63.4 %) were found to have retinopathy. The correlation between the retinopathy and the total dose of phenothiazine preparations taken. and between the retinopathy and the duration of treatment. was highly significant. The correlation between the retinopathy and the average daily dose taken was significant. The retinopathy was associated with a reduced standing potential of the eye. as determined by electro-oculography. It was possibly responsible for diminished visual acuity in some cases, and for an abnormally large proportion of protans in the group of patients with colour defects. It was not possible to ascribe a more severe retinotoxic action to one or more specific phenothiazine derivatives than to others. In the author's opinion regular examination of the eyes of patients who are being treated with phenothiazine preparations in high dosage and for for a long period of time is indicated
    • …
    corecore