16 research outputs found

    Circulating microRNAs as biomarkers - True Blood?

    Get PDF
    MicroRNAs are post-transcriptional regulators that are involved in many physiological and pathophysiological conditions. A recent study compared the expression profiles of hundreds of blood-borne microRNAs across a variety of nonmalignant and malignant diseases to identify disease-specific expression patterns. The resulting microRNA expression data could be used to discriminate disease samples with a high level of accuracy, demonstrating the potential for using microRNA signatures for the blood-based diagnosis of disease

    Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS

    Get PDF
    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin

    Characterization and Modeling of Nano Wear for Molybdenum-Based Lubrication Layer Systems

    Get PDF
    As a result of global economic and environmental change, the demand for innovative, environmentally-friendly technologies is increasing. Employing solid lubricants in rolling contacts can reduce the use of environmentally harmful greases and oils. The aim of the current research was the development of a solid lubricant system with regenerative properties. The layer system consisted of a molybdenum (Mo) reservoir and a top layer of molybdenum trioxide (MoO3). After surface wear, Mo is supposed to react with atmospheric oxygen and form a new oxide. The determination of the wear volume of thin layers cannot be measured microscopically, which is why the wear behavior is initially determined on the nano level. In this work, single Mo and MoO3 coatings prepared by physical vapor deposition (PVD) are characterized by nano testing. The main objective was to determine the wear volume of the single coatings using a newly developed method considering the initial topology. For this purpose, nano-wear tests with different wear paths and normal forces were carried out and measured by in situ scanning probe microscopy (SPM). Based on the characteristic values determined, the coefficient of wear was determined for wear modeling according to Sarkar. The validation of the wear model developed was carried out by further wear tests on the respective mono layers

    Human Adult White Matter Progenitor Celts Are Multipotent Neuroprogenitors Similar to Adult Hippocampal Progenitors

    No full text
    Adult neural progenitor cells (aNPC) are a potential autologous cell source for cell replacement in neurologic diseases or for cell-based gene therapy of neurometabolic diseases. Easy accessibility, long-term expandability, and detailed characterization of neural progenitor cell (NPC) properties are important requisites for their future translational/clinical applications. aNPC can be isolated from different regions of the adult human brain, including the accessible subcortical white matter (aNPC_(WM)), but systematic studies comparing long-term expanded aNPC_(WM) with aNPC from neurogenic brain regions are not available. Freshly isolated cells from subcortical white matter and hippocampus expressed oligodendrocyte progenitor cell markers such as A2B5, neuron-glial antigen 2 (NG2), and oligodendrocyte transcription factor 2 (OLIG2) in ∼20% of cells but no neural stem cell (NSC) markers such as CD133 (Prominin1), Nestin, SOX2, or PAX6. The epidermal growth factor receptor protein was expressed in 18% of aNPC_(WM) and 7% of hippocampal aNPC (aNPC_(HIP)), but only a small fraction of cells, 1 of 694 cells from white matter and 1 of 1,331 hippocampal cells, was able to generate neurospheres. Studies comparing subcortical aNPC_(WM) with their hippocampal counterparts showed that both NPC types expressed mainly markers of glial origin such as NG2, A2B5, and OLIG2, and the NSC/NPC marker Nestin, but no pericyte markers. Both NPC types were able to produce neurons, astrocytes, and oligodendrocytes in amounts comparable to fetal NSC. Whole transcriptome analyses confirmed the strong similarity of aNPC_(WM) to aNPC_(HIP). Our data show that aNPC_(WM) are multipotent NPC with long-term expandability similar to NPC from hippocampus, making them a more easily accessible source for possible autologous NPC-based treatment strategies

    Immune Responses to SARS-CoV-2 Infection and Vaccination in Dialysis Patients and Kidney Transplant Recipients

    No full text
    Dialysis patients and kidney transplant (KTX) recipients suffer from an impaired immune system and show a decreased response to the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) vaccination. We performed a retrospective analysis of 1505 serological SARS-CoV-2 measurements obtained from 887 dialysis patients and 86 KTX recipients. The results were separated by patient subgroups (dialysis/KTX) as well as SARS-CoV-2 status. The latter criterion included SARS-CoV-2-naïve patients with or without COVID-19 vaccination and convalescent patients receiving a booster shot. Serologies of 27 vaccinated healthy individuals served as the reference group. Vaccine-induced cellular immune response was quantified by an interferon-γ release assay in 32 KTX recipients. We determined seroconversion rates of 92.6%, 93.4%, and 71.4% in dialysis patients vaccinated with either BNT162b2, mRNA-1273, or AZD1222, respectively. Vaccination-induced anti-SARS-CoV-2 antibody titers were lower in dialysis patients compared to healthy individuals, and vaccination with mRNA-1273 induced higher titers than BNT162b2. The initial seroconversion rate was 39.5% in KTX recipients vaccinated with BNT162b2. A linear regression model identified medication with mycophenolate-mofetil/mycophenolic acid as an independent risk factor for missing seroconversion. Within a cohort of 32 KTX recipients, cellular and humoral immune reactivity to SARS-CoV-2 was detectable in three patients only. Conclusively, vaccine-induced seroconversion rates were similar in dialysis patients compared to healthy individuals but were strongly impaired in KTX recipients. Anti-SARS-CoV-2 IgG titers elicited by double active immunization were significantly lower in both cohorts compared to healthy individuals, and immune responses to vaccination vanished quickly

    DNA-binding factors shape the mouse methylome at distal regulatory regions

    No full text
    Methylation of cytosines is an essential epigenetic modification in mammalian genomes, yet the rules that govern methylation patterns remain largely elusive. To gain insights into this process, we generated base-pair-resolution mouse methylomes in stem cells and neuronal progenitors. Advanced quantitative analysis identified low-methylated regions (LMRs) with an average methylation of 30%. These represent CpG-poor distal regulatory regions as evidenced by location, DNase I hypersensitivity, presence of enhancer chromatin marks and enhancer activity in reporter assays. LMRs are occupied by DNA-binding factors and their binding is necessary and sufficient to create LMRs. A comparison of neuronal and stem-cell methylomes confirms this dependency, as cell-type-specific LMRs are occupied by cell-type-specific transcription factors. This study provides methylome references for the mouse and shows that DNA-binding factors locally influence DNA methylation, enabling the identification of active regulatory regions
    corecore