33 research outputs found
Conditional truncation of the FUS protein in mice : a new animal model of the ALS/FTD continuum
Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia (FTLD) are now considered
as a unique clinicopathological spectrum referred to as ALS/FTLD. Cytoplasmic aggregation of the
physiologically nuclear FUS protein is a hallmark feature of a subset of ALS/FTLD. It remains
unknonwn whether the critical pathogenic event relies on a loss of FUS normal nuclear functions, a
toxic gain of function of FUS in the cytoplasm, or a combination of both.
To answer this question we have generated a conditional mouse model expressing truncated
FUS without nuclear localization signal - FusΔNLS. Our data showed that complete cytoplasmic
mislocalization of truncated FUS protein within spinal motor neurons is a major determinant of motor
neuron degeneration via toxic gain of function. A partial mislocalization of truncated FUS protein was
sufficient to trigger key features of ALS and of FTLD.These studies allowed the elucidation of
mechanisms underlying FUS role in ALS/FTLD, and will hopefully lead to development of therapies
for these devastating diseases
Conditional truncation of the FUS protein in mice : a new animal model of the ALS/FTD continuum
Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia (FTLD) are now considered
as a unique clinicopathological spectrum referred to as ALS/FTLD. Cytoplasmic aggregation of the
physiologically nuclear FUS protein is a hallmark feature of a subset of ALS/FTLD. It remains
unknonwn whether the critical pathogenic event relies on a loss of FUS normal nuclear functions, a
toxic gain of function of FUS in the cytoplasm, or a combination of both.
To answer this question we have generated a conditional mouse model expressing truncated
FUS without nuclear localization signal - FusΔNLS. Our data showed that complete cytoplasmic
mislocalization of truncated FUS protein within spinal motor neurons is a major determinant of motor
neuron degeneration via toxic gain of function. A partial mislocalization of truncated FUS protein was
sufficient to trigger key features of ALS and of FTLD.These studies allowed the elucidation of
mechanisms underlying FUS role in ALS/FTLD, and will hopefully lead to development of therapies
for these devastating diseases
Troncation conditionnelle de la protéine FUS chez la souris : un nouveau modèle animal du continuum sclérose latérale amyotrophique/démence fronto-temporale
Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia (FTLD) are now considered as a unique clinicopathological spectrum referred to as ALS/FTLD. Cytoplasmic aggregation of the physiologically nuclear FUS protein is a hallmark feature of a subset of ALS/FTLD. It remains unknonwn whether the critical pathogenic event relies on a loss of FUS normal nuclear functions, a toxic gain of function of FUS in the cytoplasm, or a combination of both.To answer this question we have generated a conditional mouse model expressing truncated FUS without nuclear localization signal - FusΔNLS. Our data showed that complete cytoplasmic mislocalization of truncated FUS protein within spinal motor neurons is a major determinant of motor neuron degeneration via toxic gain of function. A partial mislocalization of truncated FUS protein was sufficient to trigger key features of ALS and of FTLD.These studies allowed the elucidation of mechanisms underlying FUS role in ALS/FTLD, and will hopefully lead to development of therapies for these devastating diseases.La sclérose latérale amyotrophique (SLA) et la démence fronto-temporale (DFT) sont deux maladies qui constituent un continuum clinico-pathologique. La mutation de FUS, une protéine nucléaire à fonctions multiples, provoque des cas familaux de SLA, et ces mutations provoquent une redistribution sub-cellulaire de FUS, du noyau vers le cytoplasme. Certains cas de DFT présentent une telles distribution anormale en l’absence de mutations de FUS. Il n’est pas connu si la maladie est provoquée par une perte de la fonction nucléaire de FUS et/ou un gain de fonction cytoplasmique.Nous avons généré et caractérisé une lignée de souris exprimant une forme cytoplasmique de FUS (Fus-ΔNLS). La localisation exclusive de FUS dans le cytoplasme provoque la mort des motoneurones via un gain de fonction dans les motoneurones eux-mêmes. Une localisation cytoplasmique partielle de FUS est suffisante pour développer un phénotype de la SLA et de DFT. Les mécanismes élucidés permettront de comprendre les bases des SLA/DFT
Conditional truncation of the FUS protein in mice : a new animal model of the ALS/FTD continuum
La sclérose latérale amyotrophique (SLA) et la démence fronto-temporale (DFT) sont deux maladies qui constituent un continuum clinico-pathologique. La mutation de FUS, une protéine nucléaire à fonctions multiples, provoque des cas familaux de SLA, et ces mutations provoquent une redistribution sub-cellulaire de FUS, du noyau vers le cytoplasme. Certains cas de DFT présentent une telles distribution anormale en l’absence de mutations de FUS. Il n’est pas connu si la maladie est provoquée par une perte de la fonction nucléaire de FUS et/ou un gain de fonction cytoplasmique.Nous avons généré et caractérisé une lignée de souris exprimant une forme cytoplasmique de FUS (Fus-ΔNLS). La localisation exclusive de FUS dans le cytoplasme provoque la mort des motoneurones via un gain de fonction dans les motoneurones eux-mêmes. Une localisation cytoplasmique partielle de FUS est suffisante pour développer un phénotype de la SLA et de DFT. Les mécanismes élucidés permettront de comprendre les bases des SLA/DFT.Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia (FTLD) are now considered as a unique clinicopathological spectrum referred to as ALS/FTLD. Cytoplasmic aggregation of the physiologically nuclear FUS protein is a hallmark feature of a subset of ALS/FTLD. It remains unknonwn whether the critical pathogenic event relies on a loss of FUS normal nuclear functions, a toxic gain of function of FUS in the cytoplasm, or a combination of both.To answer this question we have generated a conditional mouse model expressing truncated FUS without nuclear localization signal - FusΔNLS. Our data showed that complete cytoplasmic mislocalization of truncated FUS protein within spinal motor neurons is a major determinant of motor neuron degeneration via toxic gain of function. A partial mislocalization of truncated FUS protein was sufficient to trigger key features of ALS and of FTLD.These studies allowed the elucidation of mechanisms underlying FUS role in ALS/FTLD, and will hopefully lead to development of therapies for these devastating diseases
Upper and Lower Motor Neuron Degenerations Are Somatotopically Related and Temporally Ordered in the Sod1 Mouse Model of Amyotrophic Lateral Sclerosis
International audienceAmyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease arising from the combined degeneration of upper motor neurons (UMN) in the motor cortex, and lower motor neurons (LMN) in the brainstem and spinal cord. This dual impairment raises two major questions: (i) are the degenerations of these two neuronal populations somatotopically related? and if yes (ii), where does neurodegeneration start? If studies carried out on ALS patients clearly demonstrated the somatotopic relationship between UMN and LMN degenerations, their temporal relationship remained an unanswered question. In the present study, we took advantage of the well-described Sod1G86R model of ALS to interrogate the somatotopic and temporal relationships between UMN and LMN degenerations in ALS. Using retrograde labelling from the cervical or lumbar spinal cord of Sod1G86R mice and controls to identify UMN, along with electrophysiology and histology to assess LMN degeneration, we applied rigorous sampling, counting, and statistical analyses, and show that UMN and LMN degenerations are somatotopically related and that UMN depletion precedes LMN degeneration. Together, the data indicate that UMN degeneration is a particularly early and thus relevant event in ALS, in accordance with a possible cortical origin of the disease, and emphasize the need to further elucidate the molecular mechanisms behind UMN degeneration, towards new therapeutic avenues
Cortical Circuit Dysfunction as a Potential Driver of Amyotrophic Lateral Sclerosis
International audienceAmyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects selected cortical and spinal neuronal populations, leading to progressive paralysis and death. A growing body of evidences suggests that the disease may originate in the cerebral cortex and propagate in a corticofugal manner. In particular, transcranial magnetic stimulation studies revealed that ALS patients present with early cortical hyperexcitability arising from a combination of increased excitability and decreased inhibition. Here, we discuss the possibility that initial cortical circuit dysfunction might act as the main driver of ALS onset and progression, and review recent functional, imaging and transcriptomic studies conducted on ALS patients, along with electrophysiological, pathological and transcriptomic studies on animal and cellular models of the disease, in order to evaluate the potential cellular and molecular origins of cortical hyperexcitability in ALS
VAPB/ALS8 MSP Ligands Regulate Striated Muscle Energy Metabolism Critical for Adult Survival in <i>Caenorhabditis elegans</i>
<div><p>Mutations in VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), two motor neuron diseases that often include alterations in energy metabolism. We have shown that <i>C. elegans</i> and Drosophila neurons secrete a cleavage product of VAPB, the N-terminal major sperm protein domain (vMSP). Secreted vMSPs signal through Roundabout and Lar-like receptors expressed on striated muscle. The muscle signaling pathway localizes mitochondria to myofilaments, alters their fission/fusion balance, and promotes energy production. Here, we show that neuronal loss of the <i>C. elegans</i> VAPB homolog triggers metabolic alterations that appear to compensate for muscle mitochondrial dysfunction. When vMSP levels drop, cytoskeletal or mitochondrial abnormalities in muscle induce elevated DAF-16, the Forkhead Box O (FoxO) homolog, transcription factor activity. DAF-16 promotes muscle triacylglycerol accumulation, increases ATP levels in adults, and extends lifespan, despite reduced muscle mitochondria electron transport chain activity. Finally, <i>Vapb</i> knock-out mice exhibit abnormal muscular triacylglycerol levels and FoxO target gene transcriptional responses to fasting and refeeding. Our data indicate that impaired vMSP signaling to striated muscle alters FoxO activity, which affects energy metabolism. Abnormalities in energy metabolism of ALS patients may thus constitute a compensatory mechanism counterbalancing skeletal muscle mitochondrial dysfunction.</p></div
Effect of Arp2/3 inactivation on muscle fat levels.
<p>DIC and fluorescent images of muscle in live 3-day-old hermaphrodite worms fed Bodipy-FAs. <i>arx-2</i> encodes the Arp2 component of the Arp2/3 complex. Arrowheads indicate Bodipy-FA-stained fat droplets. Bar, 5 µm.</p