7,111 research outputs found
Ultrastable CO2 Laser Trapping of Lithium Fermions
We demonstrate an ultrastable CO2 laser trap that provides tight confinement
of neutral atoms with negligible optical scattering and minimal laser-noise-
induced heating. Using this method, fermionic 6Li atoms are stored in a 0.4 mK
deep well with a 1/e trap lifetime of 300 sec, consistent with a background
pressure of 10^(-11) Torr. To our knowledge, this is the longest storage time
ever achieved with an all-optical trap, comparable to the best reported
magnetic traps.Comment: 4 pages using REVTeX, 1 eps figur
Fourfold oscillations and anomalous magnetic irreversibility of magnetoresistance in the non-metallic regime of Pr1.85Ce0.15CuO4
Using magnetoresistance measurements as a function of applied magnetic field
and its direction of application, we present sharp angular-dependent
magnetoresistance oscillations for the electron-doped cuprates in their
low-temperature non-metallic regime. The presence of irreversibility in the
magnetoresistance measurements and the related strong anisotropy of the field
dependence for different in-plane magnetic field orientations indicate that
magnetic domains play an important role for the determination of electronic
properties. These domains are likely related to the stripe phase reported
previously in hole-doped cuprates.Comment: 11 pages, 5 figure
Anharmonic parametric excitation in optical lattices
We study both experimentally and theoretically the losses induced by
parametric excitation in far-off-resonance optical lattices. The atoms confined
in a 1D sinusoidal lattice present an excitation spectrum and dynamics
substantially different from those expected for a harmonic potential. We
develop a model based on the actual atomic Hamiltonian in the lattice and we
introduce semiempirically a broadening of the width of lattice energy bands
which can physically arise from inhomogeneities and fluctuations of the
lattice, and also from atomic collisions. The position and strength of the
parametric resonances and the evolution of the number of trapped atoms are
satisfactorily described by our model.Comment: 7 pages, 5 figure
Double-beta decay Q values of 130Te, 128Te, and 120Te
The double-beta decay Q values of 130Te, 128Te, and 120Te have been
determined from parent-daughter mass differences measured with the Canadian
Penning Trap mass spectrometer. The 132Xe-129Xe mass difference, which is
precisely known, was also determined to confirm the accuracy of these results.
The 130Te Q value was found to be 2527.01(32) keV which is 3.3 keV lower than
the 2003 Atomic Mass Evaluation recommended value, but in agreement with the
most precise previous measurement. The uncertainty has been reduced by a factor
of 6 and is now significantly smaller than the resolution achieved or foreseen
in experimental searches for neutrinoless double-beta decay. The 128Te and
120Te Q values were found to be 865.87(131) keV and 1714.81(125) keV,
respectively. For 120Te, this reduction in uncertainty of nearly a factor of 8
opens up the possibility of using this isotope for sensitive searches for
neutrinoless double-electron capture and electron capture with positron
emission.Comment: 5 pages, 2 figures, submitted to Physical Review Letter
Position-sensitive ion detection in precision Penning trap mass spectrometry
A commercial, position-sensitive ion detector was used for the first time for
the time-of-flight ion-cyclotron resonance detection technique in Penning trap
mass spectrometry. In this work, the characteristics of the detector and its
implementation in a Penning trap mass spectrometer will be presented. In
addition, simulations and experimental studies concerning the observation of
ions ejected from a Penning trap are described. This will allow for a precise
monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure
- …