508 research outputs found
Taking stock of SLSN and LGRB host galaxy comparison using a complete sample of LGRBs
Long gamma-ray bursts (LGRBs) and superluminous supernovae (SLSNe) are both
explosive transients with very massive progenitor stars. Clues about the nature
of the progenitors can be found by investigating environments in which such
transients occur. While studies of LGRB host galaxies have a long history,
dedicated observational campaigns have only recently resulted in a high enough
number of photometrically and spectroscopically observed SLSN hosts to allow
statistically significant analysis of their properties. In this paper we make a
comparison of the host galaxies of hydrogen-poor (H-poor) SLSNe and the
Swift/BAT6 sample of LGRBs. In contrast to previous studies we use a complete
sample of LGRBs and we address a special attention to the comparison
methodology and the selection of SLSN sample whose data have been compiled from
the available literature. At intermediate redshifts (0.3 < z < 0.7) the two
classes of transients select galaxies whose properties (stellar mass,
luminosity, star-formation rate, specific star-formation rate and metallicity)
do not differ on average significantly. Moreover, the host galaxies of both
classes of objects follow the fundamental metallicity relation and the
fundamental plane of metallicity. In contrast to previous studies we show that
at intermediate redshifts the emission line equivalent widths of the two
populations are essentially the same and that the previous claims regarding the
higher fraction of SLSN hosts among the extreme emission line galaxies with
respect to LGRBs are mostly due to a larger fraction of strong-line emitters
among SLSN hosts at z < 0.3, where samples of LGRB hosts are small and poorly
defined.Comment: 7 pages, 4 figures, accepted to Astronomy & Astrophysic
WebMon: piccola interfaccia web della stazione sismica digitale GAIA2
WEBMON: PICCOLA INTERFACCIA WEB DELLA
STAZIONE SISMICA DIGITALE GAIA
Il progetto TN-1
Descrione hardware e software della scheda Transmission Node 1 (modulo della stazione sismica GAIA1), sua installazione ed utilizzo
Lyman Alpha Emitter Evolution in the Reionization Epoch
Combining cosmological SPH simulations with a previously developed Lyman
Alpha production/transmission model and the Early Reionization Model (ERM,
reionization ends at redshift z~7), we obtain Lyman Alpha and UV Luminosity
Functions (LFs) for Lyman Alpha Emitters (LAEs) for redshifts between 5.7 and
7.6. Matching model results to observations at z~5.7 requires escape fractions
of Lyman Alpha, f_alpha=0.3, and UV (non-ionizing) continuum photons, f_c=0.22,
corresponding to a color excess, E(B-V)=0.15. We find that (i) f_c increases
towards higher redshifts, due the decreasing mean dust content of galaxies,
(ii) the evolution of f_alpha/f_c hints at the dust content of the ISM becoming
progressively inhomogeneous/clumped with decreasing redshift. The clustering
photoionization boost is important during the initial reionization phases but
has little effect on the Lyman Alpha LF for a highly ionized IGM. Halo
(stellar) masses are in the range 10.0 < \log M_h < 11.8 (8.1 < \log M_* <
10.4) with M_h \propto M_*^{0.64}. The star formation rates are between 3-120
solar masses per year, mass-weighted mean ages are greater than 20 Myr at all
redshifts, while the mean stellar metallicity increases from Z=0.12 to 0.22
solar metallicity from z~7.6 to z~5.7; both age and metallicity positively
correlate with stellar mass. The brightest LAEs are all characterized by large
star formation rates and intermediate ages (~200 Myr), while objects in the
faint end of the Lyman Alpha LF show large age and star formation rate spreads.
With no more free parameters, the Spectral Energy Distributions of three LAE at
z~5.7 observed by Lai et al. (2007) are well reproduced by an intermediate age
(182-220 Myr) stellar population and the above E(B-V) value.Comment: 13 pages, 9 figures, accepted to MNRA
Supergiant Fast X-ray Transients uncovered by the EXTraS project: flares reveal the development of magnetospheric instability in accreting neutron stars
The low luminosity, X-ray flaring activity, of the sub-class of high mass
X-ray binaries called Supergiant Fast X-ray Transients, has been investigated
using XMM-Newton public observations, taking advantage of the products made
publicly available by the EXTraS project. One of the goals of EXTraS was to
extract from the XMM-Newton public archive information on the aperiodic
variability of all sources observed in the soft X-ray range with EPIC (0.2-12
keV). Adopting a Bayesian block decomposition of the X-ray light curves of a
sample of SFXTs, we picked out 144 X-ray flares, covering a large range of soft
X-ray luminosities (1e32-1e36 erg/s). We measured temporal quantities, like the
rise time to and the decay time from the peak of the flares, their duration and
the time interval between adjacent flares. We also estimated the peak
luminosity, average accretion rate and energy release in the flares. The
observed soft X-ray properties of low-luminosity flaring activity from SFXTs is
in qualitative agreement with what is expected by the application of the
Rayleigh-Taylor instability model in accreting plasma near the neutron star
magnetosphere. In the case of rapidly rotating neutron stars, sporadic
accretion from temporary discs cannot be excluded.Comment: Accepted for publication in MNRAS (accepted 2019 May 1; received 2019
April 30; in original form 2019 February 25). 22 pages, 16 figures, 3 tables
- …