21 research outputs found

    Recolección y análisis de datos en el ámbito de la eficiencia energética eléctrica

    Get PDF
    The growth of the use of electricity consumption measurement systems new technologies has made possible the emergence of great opportunities to improve energy management. The project aims to study the application of these technologies, in order to collaborate with the diversification of this type of devices through economic technical solutions that can be easily included in the houses. In this way, people will be able to know their consumption patterns and detect savings opportunities. As a result of this work, an open and low-cost technical prototype is presented, including the necessary components to collect home electrical consumption data and upload it to a cloud computing system in order to allow the users access to daily used devices consumption detailed information.El crecimiento en el uso de nuevas tecnologías en los sistemas de medición de consumo eléctrico ha hecho posible el surgimiento de grandes oportunidades de mejora en la gestión energética. En este proyecto se ha realizado un estudio de aplicación de estas tecnologías con el objeto de colaborar con la diversificación de este tipo de dispositivos a través de soluciones técnicas económicas que puedan ser incorporadas en las viviendas de manera sencilla. De esta forma las personas podrán conocer sus patrones de consumo y detectar oportunidades de ahorro. Como resultado del trabajo se presenta un prototipo técnico abierto y de bajo costo, que incluye los componentes necesarios para recolectar datos de consumo residencial y volcarlos a un sistema informático de nube, donde los usuarios pueden acceder a información detallada del consumo de los dispositivos que utiliza a diario

    Interfaz natural de usuario para el control de robot móvil con gestos faciales y movimientos del rostro usando cámara RGB

    Get PDF
    Actualmente existen muchos esfuerzos por parte de grupos de investigación en acelerar el desarrollo de algoritmos y técnicas que faciliten la cotidianidad de las personas a través de una interacción más natural con los dispositivos. La disciplina que busca mejorar la experiencia del usuario en el manejo de computadoras se la conoce como Interacción Humano Computadora (HCI - Human Computer Interaction), y en algunos de sus campos se pueden encontrar las Interfaces Cerebro Computadora (BCI - Brain Computer Interface) que permiten una interacción mediante nuestro pensamiento, realizando la adquisición de las ondas cerebrales, que luego son procesadas para generar las acciones en el entorno. También se encuentran las Interfaces Naturales de Usuario (NUI - Natural User Interface) con las cuales se ofrece la posibilidad de control a través de gestos, posturas y movimientos con el cuerpo. La utilización de recursos de visión artificial para reconocer los movimientos y gestos del rostro de las personas constituye un tema de interés para el desarrollo de las Interfaces Naturales de Usuario. El objetivo de este proyecto, además de contribuir con el avance de técnicas para el reconocimiento de gestos del rostro, es diseñar una interfaz de usuario compuesta por una pantalla de visualización y una cámara RGB estándar que permita controlar dispositivos a través de los movimientos de la cabeza y los gestos faciales, emulando gráficamente en la pantalla un conjunto de botones de control para facilitar al usuario reconocer con exactitud el comando que se está realizando. Este trabajo también hace hincapié en la Interacción Humano Robot (HRI - Human RobotInteraction) para implementar las técnicas de visión artificial en el control del desplazamiento de un robot móvil.Eje: Computación Gráfica, Imágenes y Visualización.Red de Universidades con Carreras en Informática (RedUNCI

    Interfaz natural de usuario para el control de robot móvil con gestos faciales y movimientos del rostro usando cámara RGB

    Get PDF
    Actualmente existen muchos esfuerzos por parte de grupos de investigación en acelerar el desarrollo de algoritmos y técnicas que faciliten la cotidianidad de las personas a través de una interacción más natural con los dispositivos. La disciplina que busca mejorar la experiencia del usuario en el manejo de computadoras se la conoce como Interacción Humano Computadora (HCI - Human Computer Interaction), y en algunos de sus campos se pueden encontrar las Interfaces Cerebro Computadora (BCI - Brain Computer Interface) que permiten una interacción mediante nuestro pensamiento, realizando la adquisición de las ondas cerebrales, que luego son procesadas para generar las acciones en el entorno. También se encuentran las Interfaces Naturales de Usuario (NUI - Natural User Interface) con las cuales se ofrece la posibilidad de control a través de gestos, posturas y movimientos con el cuerpo. La utilización de recursos de visión artificial para reconocer los movimientos y gestos del rostro de las personas constituye un tema de interés para el desarrollo de las Interfaces Naturales de Usuario. El objetivo de este proyecto, además de contribuir con el avance de técnicas para el reconocimiento de gestos del rostro, es diseñar una interfaz de usuario compuesta por una pantalla de visualización y una cámara RGB estándar que permita controlar dispositivos a través de los movimientos de la cabeza y los gestos faciales, emulando gráficamente en la pantalla un conjunto de botones de control para facilitar al usuario reconocer con exactitud el comando que se está realizando. Este trabajo también hace hincapié en la Interacción Humano Robot (HRI - Human RobotInteraction) para implementar las técnicas de visión artificial en el control del desplazamiento de un robot móvil.Eje: Computación Gráfica, Imágenes y Visualización.Red de Universidades con Carreras en Informática (RedUNCI

    Interfaz natural de usuario para el control de robot móvil con gestos faciales y movimientos del rostro usando cámara RGB

    Get PDF
    Actualmente existen muchos esfuerzos por parte de grupos de investigación en acelerar el desarrollo de algoritmos y técnicas que faciliten la cotidianidad de las personas a través de una interacción más natural con los dispositivos. La disciplina que busca mejorar la experiencia del usuario en el manejo de computadoras se la conoce como Interacción Humano Computadora (HCI - Human Computer Interaction), y en algunos de sus campos se pueden encontrar las Interfaces Cerebro Computadora (BCI - Brain Computer Interface) que permiten una interacción mediante nuestro pensamiento, realizando la adquisición de las ondas cerebrales, que luego son procesadas para generar las acciones en el entorno. También se encuentran las Interfaces Naturales de Usuario (NUI - Natural User Interface) con las cuales se ofrece la posibilidad de control a través de gestos, posturas y movimientos con el cuerpo. La utilización de recursos de visión artificial para reconocer los movimientos y gestos del rostro de las personas constituye un tema de interés para el desarrollo de las Interfaces Naturales de Usuario. El objetivo de este proyecto, además de contribuir con el avance de técnicas para el reconocimiento de gestos del rostro, es diseñar una interfaz de usuario compuesta por una pantalla de visualización y una cámara RGB estándar que permita controlar dispositivos a través de los movimientos de la cabeza y los gestos faciales, emulando gráficamente en la pantalla un conjunto de botones de control para facilitar al usuario reconocer con exactitud el comando que se está realizando. Este trabajo también hace hincapié en la Interacción Humano Robot (HRI - Human RobotInteraction) para implementar las técnicas de visión artificial en el control del desplazamiento de un robot móvil.Eje: Computación Gráfica, Imágenes y Visualización.Red de Universidades con Carreras en Informática (RedUNCI

    Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    Get PDF
    [EN] We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.DGD is supported by the Ramon y Cajal program (Spain) under contract number RYC-2015-18820. The authors want to acknowledge the RD51 collaboration for encouragement and support during the elaboration of this work, and in particular discussions with F. Resnati, A. Milov, V. Peskov, M. Suzuki and A. F. Borghesani. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROM-ETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A& and the University of Texas at Arlington.Azevedo, C.; Gonzalez-Diaz, D.; Biagi, SF.; Oliveira, CAB.; Henriques, CAO.; Escada, J.; Monrabal, F.... (2018). Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 877:157-172. https://doi.org/10.1016/j.nima.2017.08.049S15717287

    Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range similar to 8 km to similar to 190 km, corresponding to pressure levels from 9 mu bar down to a few nanobars. Results. (i) A pressure of 1.18 +/- 0.03 mu bar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 mu bar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude.J.M.O. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Social Fund (ESF) through the PhD grant SFRH/BD/131700/2017. The work leading to these results has received funding from the European Research Council under the European Community's H2020 2014-2021 ERC grant Agreement nffi 669416 "Lucky Star". We thank S. Para who supported some travels to observe the 5 October 2017 occultation. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-Doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. We acknowledge useful exchanges with Mark Gurwell on the ALMA CO observations. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. J.L.O., P.S.-S., N.M. and R.D. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and the Proyecto de Excelencia de la Junta de Andalucia J.A. 2012-FQM1776. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 687378, as part of the project "Small Bodies Near and Far" (SBNAF). P.S.-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 "LEO-SBNAF". The work was partially based on observations made at the Laboratorio Nacional de Astrofisica (LNA), Itajuba-MG, Brazil. The following authors acknowledge the respective CNPq grants: F.B.-R. 309578/2017-5; R.V.-M. 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3 and 305917/2019-6; M.A. 427700/20183, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). G.B.R. acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016 and CAPES-PRINT/UNESP grant 88887.571156/2020-00, M.A. FAPERJ grant E26/111.488/2013 and A.R.G.Jr. FAPESP grant 2018/11239-8. B.E.M. thanks CNPq 150612/2020-6 and CAPES/Cofecub-394/2016-05 grants. Part of the photometric data used in this study were collected in the frame of the photometric observations with the robotic and remotely controlled telescope at the University of Athens Observatory (UOAO; Gazeas 2016). The 2.3 m Aristarchos telescope is operated on Helmos Observatory by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. Observations with the 2.3 m Aristarchos telescope were carried out under OPTICON programme. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730890. This material reflects only the authors views and the Commission is not liable for any use that may be made of the information contained therein. The 1. 2m Kryoneri telescope is operated by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the "Unite des Communes valdotaines Mont-Emilius". The 0.81 m Main Telescope at the OAVdA was upgraded thanks to a Shoemaker NEO Grant 2013 from The Planetary Society. D.C. and J.M.C. acknowledge funds from a 2017 'Research and Education' grant from Fondazione CRT-Cassa di Risparmio di Torino. P.M. acknowledges support from the Portuguese Fundacao para a Ciencia e a Tecnologia ref. PTDC/FISAST/29942/2017 through national funds and by FEDER through COMPETE 2020 (ref. POCI010145 FEDER007672). F.J. acknowledges Jean Luc Plouvier for his help. S.J.F. and C.A. would like to thank the UCL student support observers: Helen Dai, Elise Darragh-Ford, Ross Dobson, Max Hipperson, Edward Kerr-Dineen, Isaac Langley, Emese Meder, Roman Gerasimov, Javier Sanjuan, and Manasvee Saraf. We are grateful to the CAHA, OSN and La Hita Observatory staffs. This research is partially based on observations collected at Centro Astronomico HispanoAleman (CAHA) at Calar Alto, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofisica de Andalucia (CSIC). This article is also based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Partially based on observations made with the Tx40 and Excalibur telescopes at the Observatorio Astrofisico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Tecnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA). Tx40 and Excalibur are funded with the Fondos de Inversiones de Teruel (FITE). A.R.R. would like to thank Gustavo Roman for the mechanical adaptation of the camera to the telescope to allow for the observation to be recorded. R.H., J.F.R., S.P.H. and A.S.L. have been supported by the Spanish projects AYA2015-65041P and PID2019-109467GB-100 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT1366-19. Our great thanks to Omar Hila and their collaborators in Atlas Golf Marrakech Observatory for providing access to the T60cm telescope. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate

    Constraints on the structure and seasonal variations of Triton’s atmosphere from the 5 October 2017 stellar occultation and previous observations⋆

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range ∼8 km to ∼190 km, corresponding to pressure levels from 9 μbar down to a few nanobars. Results. (i) A pressure of 1.18 ± 0.03 μbar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 μbar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude

    Simulation of an Ultrafast Charging Station Operating in Steady State

    No full text
    This report presents the analysis, study, and simulation of an ultrafast charging station (UFCS) for electric vehicles (EVs) operating in steady state. The electrical architecture of the charging station uses an ac bus plus two dc buses and it is supported by a storage system based on batteries and super-capacitors. The power demand of the EVs is established taking into account the electric characteristics of their batteries and the availability of the station charging points. The analysis introduces a supervisory control based on a state machine description for different operating modes, which eventually facilitates fault detection in the electrical architecture. In addition, the study proposes different methods to handle the required energy for the charging demand and a procedure for the correct sizing of both the energy storage system and the input transformer. In laboratory experiments in a reduced-scale storage system, a SCADA supervision with CAN communication has proved successful in gathering data corresponding to modes of charge and discharge in batteries and super-capacitors, and subsequently displaying them on a computer screen
    corecore