645 research outputs found
Effect of Fermi Surface Topology on Inter-Layer Magnetoresistance in Layered Multiband Systems: Application to LaFeAsO1-xFx
In layered single band systems, the interlayer conductivity depends on the
orientation of the in-plane magnetic field and takes maximum values when the
magnetic field is perpendicular to flat regions of the Fermi surface. Extending
this known results to multi-band systems, we propose an experiment to extract
information about their Fermi surface topology. We discuss application of the
formula to a FeAs-based superconductor, LaFeAsOF. We show that the
magnetically ordered state in the parent compound is clearly distinguished from
the paramagnetic state by the oscillation period in the interlayer
conductivity. We demonstrate that evolution of the Fermi surface topology by
changing the doping concentration is reflected to the interlayer conductivity
oscillation patterns.Comment: 12 pages, 6 figures, corrected Fig.6, added clarifications and refs,
to appear in J. Phys. Soc. Jp
Seletividade de herbicidas pós-emergentes para a cultura do Pinhão Manso.
bitstream/item/78646/1/Boletim-142-.pd
Chiral perturbation theory
The main elements and methods of chiral perturbation theory, the effective
field theory of the Standard Model below the scale of spontaneous chiral
symmetry breaking, are summarized. Applications to the interactions of mesons
and baryons at low energies are reviewed, with special emphasis on developments
of the last three years. Among the topics covered are the strong,
electromagnetic and semileptonic weak interactions of mesons at and beyond
next--to--leading order in the chiral expansion, nonleptonic weak interactions
of mesons, virtual photon corrections and the meson--baryon system. The
discussion is limited to processes at zero temperature, for infinite volume and
with at most one baryon.Comment: 84 pages, Latex, 11 PostScript figures (in separate file) embedded
with epsfig.sty, complete ps file (compressed, uuencoded, 0.6 MB) available
via email on request; to appear in Progr. Part. Nucl. Phys., vol. 3
The superstring Hagedorn temperature in a pp-wave background
The thermodynamics of type IIB superstring theory in the maximally
supersymmetric plane wave background is studied. We compute the thermodynamic
partition function for non-interacting strings exactly and the result differs
slightly from previous computations. We clarify some of the issues related to
the Hagedorn temperature in the limits of small and large constant RR 5-form.
We study the thermodynamic behavior of strings in the case of geometries in the presence of NS-NS and RR 3-form backgrounds. We
also comment on the relationship of string thermodynamics and the thermodynamic
behavior of the sector of Yang-Mills theory which is the holographic dual of
the string theory.Comment: 22 pages, JHEP style, minor misprints corrected, some comments adde
First direct observation of Dirac fermions in graphite
Originating from relativistic quantum field theory, Dirac fermions have been
recently applied to study various peculiar phenomena in condensed matter
physics, including the novel quantum Hall effect in graphene, magnetic field
driven metal-insulator-like transition in graphite, superfluid in 3He, and the
exotic pseudogap phase of high temperature superconductors. Although Dirac
fermions are proposed to play a key role in these systems, so far direct
experimental evidence of Dirac fermions has been limited. Here we report the
first direct observation of massless Dirac fermions with linear dispersion near
the Brillouin zone (BZ) corner H in graphite, coexisting with quasiparticles
with parabolic dispersion near another BZ corner K. In addition, we report a
large electron pocket which we attribute to defect-induced localized states.
Thus, graphite presents a novel system where massless Dirac fermions,
quasiparticles with finite effective mass, and defect states all contribute to
the low energy electronic dynamics.Comment: Nature Physics, in pres
Kerr/CFT, dipole theories and nonrelativistic CFTs
We study solutions of type IIB supergravity which are SL(2,R) x SU(2) x
U(1)^2 invariant deformations of AdS_3 x S^3 x K3 and take the form of products
of self-dual spacelike warped AdS_3 and a deformed three-sphere. One of these
backgrounds has been recently argued to be relevant for a derivation of
Kerr/CFT from string theory, whereas the remaining ones are holographic duals
of two-dimensional dipole theories and their S-duals. We show that each of
these backgrounds is holographically dual to a deformation of the DLCQ of the
D1-D5 CFT by a specific supersymmetric (1,2) operator, which we write down
explicitly in terms of twist operators at the free orbifold point. The
deforming operator is argued to be exactly marginal with respect to the
zero-dimensional nonrelativistic conformal (or Schroedinger) group - which is
simply SL(2,R)_L x U(1)_R. Moreover, in the supergravity limit of large N and
strong coupling, no other single-trace operators are turned on. We thus propose
that the field theory duals to the backgrounds of interest are nonrelativistic
CFTs defined by adding the single Schroedinger-invariant (1,2) operator
mentioned above to the original CFT action. Our analysis indicates that the
rotating extremal black holes we study are best thought of as finite
right-moving temperature (non-supersymmetric) states in the above-defined
supersymmetric nonrelativistic CFT and hints towards a more general connection
between Kerr/CFT and two-dimensional non-relativistic CFTs.Comment: 48+8 pages, 4 figures; minor corrections and references adde
Nucleon-Nucleon Interaction: A Typical/Concise Review
Nearly a recent century of work is divided to Nucleon-Nucleon (NN)
interaction issue. We review some overall perspectives of NN interaction with a
brief discussion about deuteron, general structure and symmetries of NN
Lagrangian as well as equations of motion and solutions. Meanwhile, the main NN
interaction models, as frameworks to build NN potentials, are reviewed
concisely. We try to include and study almost all well-known potentials in a
similar way, discuss more on various commonly used plain forms for two-nucleon
interaction with an emphasis on the phenomenological and meson-exchange
potentials as well as the constituent-quark potentials and new ones based on
chiral effective field theory and working in coordinate-space mostly. The
potentials are constructed in a way that fit NN scattering data, phase shifts,
and are also compared in this way usually. An extra goal of this study is to
start comparing various potentials forms in a unified manner. So, we also
comment on the advantages and disadvantages of the models and potentials partly
with reference to some relevant works and probable future studies.Comment: 85 pages, 5 figures, than the previous v3 edition, minor changes, and
typos fixe
Chiral two-pion exchange and proton-proton partial-wave analysis
The chiral two-pion exchange component of the long-range pp interaction is
studied in an energy-dependent partial-wave analysis. We demonstrate its
presence and importance, and determine the chiral parameters c_i (i=1,3,4). The
values agree well with those obtained from pion-nucleon amplitudes.Comment: 13 pages, no figure
Boundary States for D-branes with Traveling Waves
We construct boundary states for D-branes which carry traveling waves in the
covariant formalism. We compute their vacuum amplitudes to investigate their
interactions. In non-compact space, the vacuum amplitudes become trivial as is
common in plane wave geometries. However, we found that if they are
compactified in the traveling direction, then the amplitudes are affected by
non-trivial time dependent effects. The interaction between D-branes with waves
traveling in the opposite directions (`pulse-antipulse scattering') are also
computed. Furthermore, we apply these ideas to open string tachyon condensation
with traveling waves.Comment: 30 pages. 1 figure, Latex, minor corrections, references adde
Recommended from our members
In-street wind direction variability in the vicinity of a busy intersection in central London
We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges
- …