99 research outputs found

    Probing the Neutrino Mass Hierarchy with Super-Kamiokande

    Get PDF
    We show that for recently discovered large values of theta(13), a superbeam with an average neutrino energy of ~ 5 GeV, such as those being proposed at CERN, if pointing to Super-Kamiokande (L = 8770 km), could reveal the neutrino mass hierarchy at 5 sigma in less than two years irrespective of the true hierarchy and CP phase. The measurement relies on the near resonant matter effect in the numu to nue oscillation channel, and can be done counting the total number of appearance events with just a neutrino beam.Comment: 16 pages, 7 pdf figures, 2 tables. Format changed and text extended. Four new pdf figures added. Dependency of the result on 1-3 mixing angle discussed. Conclusions unchanged. Accepted in JHE

    Precision on leptonic mixing parameters at future neutrino oscillation experiments

    Get PDF
    We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta_{13} and the CP phase, delta, assuming that theta_{13} is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta_{13} and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta_{13} below 3% and an error on delta of < 7^{\circ} at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.Comment: Minor changes, matches version accepted in JHEP. 30 pages, 9 figure

    Potential of optimized NOvA for large theta(13) & combined performance with a LArTPC & T2K

    Full text link
    NOvA experiment has reoptimized its event selection criteria in light of the recently measured moderately large value of theta(13). We study the improvement in the sensitivity to the neutrino mass hierarchy and to leptonic CP violation due to these new features. For favourable values of deltacp, NOvA sensitivity to mass hierarchy and leptonic CP violation is increased by 20%. Addition of 5 years of neutrino data from T2K to NOvA more than doubles the range of deltacp for which the leptonic CP violation can be discovered, compared to stand alone NOvA. But for unfavourable values of deltacp, the combination of NOvA and T2K are not enough to provide even a 90% C.L. hint of hierarchy discovery. Therefore, we further explore the improvement in the hierarchy and CP violation sensitivities due to the addition of a 10 kt liquid argon detector placed close to NOvA site. The capabilities of such a detector are equivalent to those of NOvA in all respects. We find that combined data from 10 kt liquid argon detector (3 years of nu + 3 years of nubar run), NOvA (6 years of nu + 6 years of nubar run) and T2K (5 years of nu run) can give a close to 2 sigma hint of hierarchy discovery for all values of deltacp. With this combined data, we can achieve CP violation discovery at 95% C.L. for roughly 60% values of deltacp.Comment: 22 pages, 24 pdf figures, 5 tables. In the appendix, new results are presented with conservative choices of central values of oscillation parameters. New references are added. Accepted in JHE

    Constraining Non-Standard Interactions of the Neutrino with Borexino

    Full text link
    We use the Borexino 153.6 ton.year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainty in the 7Be solar neutrino flux, and backgrounds due to 85Kr and 210Bi beta-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the 85Kr background.Comment: 21 pages, 16 pdf figures, 2 tables. Analysis updated including the uncertainty in sin^2\theta_{23}. Accepted in JHE

    Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors

    Full text link
    Large mass ice/water Cherenkov experiments, optimized to detect low energy (1-20 GeV) atmospheric neutrinos, have the potential to discriminate between normal and inverted neutrino mass hierarchies. The sensitivity depends on several model and detector parameters, such as the neutrino flux profile and normalization, the Earth density profile, the oscillation parameter uncertainties, and the detector effective mass and resolution. A proper evaluation of the mass hierarchy discrimination power requires a robust statistical approach. In this work, the Toy Monte Carlo, based on an extended unbinned likelihood ratio test statistic, was used. The effect of each model and detector parameter, as well as the required detector exposure, was then studied. While uncertainties on the Earth density and atmospheric neutrino flux profiles were found to have a minor impact on the mass hierarchy discrimination, the flux normalization, as well as some of the oscillation parameter (\Delta m^2_{31}, \theta_{13}, \theta_{23}, and \delta_{CP}) uncertainties and correlations resulted critical. Finally, the minimum required detector exposure, the optimization of the low energy threshold, and the detector resolutions were also investigated.Comment: 23 pages, 16 figure
    corecore