82 research outputs found

    Characterization of the properties and trafficking of an anchorless form of the prion protein

    Get PDF
    Conversion of PrP(C) into PrP(Sc) is the central event in the pathogenesis of transmissible prion diseases. Although the molecular basis of this event and the intracellular compartment where it occurs are not yet understood, the association of PrP with cellular membranes and in particular its presence in detergent-resistant microdomains appears to be of critical importance. In addition it appears that scrapie conversion requires membrane-bound glycosylphosphatidylinositol (GPI)-linked PrP. The GPI anchor may affect either the conformation, the intracellular localization, or the association of the prion protein with specific membrane domains. However, how this occurs is not known. To understand the relevance of the GPI anchor for the cellular behavior of PrP, we have studied the biosynthesis and localization of a PrP version which lacks the GPI anchor attachment signal (PrP Delta GPI). We found that PrP Delta GPI is tethered to cell membranes and associates to membrane detergent-resistant microdomains but does not assume a transmembrane topology. Differently to PrP(C), this protein does not localize at the cell surface but is mainly released in the culture media in a fully glycosylated soluble form. The cellular behavior of anchorless PrP explains why PrP Delta GPI Tg mice can be infected but do not show the classical signs of the disorder, thus indicating that the plasma membrane localization of PrP(C) and/or of the converted scrapie form might be necessary for the development of a symptomatic disease

    Lipid Rafts and Clathrin Cooperate in the Internalization of PrPC in Epithelial FRT Cells

    Get PDF
    The cellular prion protein (PrP(C)) plays a key role in the pathogenesis of Transmissible Spongiform Encephalopathies in which the protein undergoes post-translational conversion to the infectious form (PrP(Sc)). Although endocytosis appears to be required for this conversion, the mechanism of PrP(C) internalization is still debated, as caveolae/raft- and clathrin-dependent processes have all been reported to be involved. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the mechanism of PrP(C) endocytosis in Fischer Rat Thyroid (FRT) cells, which lack caveolin-1 (cav-1) and caveolae, and in FRT/cav-1 cells which form functional caveolae. We show that PrP(C) internalization requires activated Cdc-42 and is sensitive to cholesterol depletion but not to cav-1 expression suggesting a role for rafts but not for caveolae in PrP(C) endocytosis. PrP(C) internalization is also affected by knock down of clathrin and by the expression of dominant negative Eps15 and Dynamin 2 mutants, indicating the involvement of a clathrin-dependent pathway. Notably, PrP(C) co-immunoprecipitates with clathrin and remains associated with detergent-insoluble microdomains during internalization thus indicating that PrP(C) can enter the cell via multiple pathways and that rafts and clathrin cooperate in its internalization. CONCLUSIONS/SIGNIFICANCE: These findings are of particular interest if we consider that the internalization route/s undertaken by PrP(C) can be crucial for the ability of different prion strains to infect and to replicate in different cell lines

    Doppel and PrPC co-immunoprecipitate in detergent-resistant membrane domains of epithelial FRT cells

    Get PDF
    Dpl (doppel) is a paralogue of the PrPC (cellular prion protein), whose misfolded conformer (the scrapie prion protein, PrPSc) is responsible for the onset of TSEs (transmissible spongiform encephalopathies) or prion diseases. It has been shown that the ectopic expression of Dpl in the brains of some lines of PrP-knockout mice provokes cerebellar ataxia, which can be rescued by the reintroduction of the PrP gene, suggesting a functional interaction between the two proteins. It is, however, still unclear where, and under which conditions, this event may occur. In the present study we addressed this issue by analysing the intracellular localization and the interaction between Dpl and PrPC in FRT (Fischer rat thyroid) cells stably expressing the two proteins separately or together. We show that both proteins localize prevalently on the basolateral surface of FRT cells, in both singly and doubly transfected clones. Interestingly we found that they associate with DRMs (detergent-resistant membranes) or lipid rafts, from where they can be co-immunoprecipitated in a cholesterol-dependent fashion. Although the interaction between Dpl and PrPC has been suggested before, our results provide the first clear evidence that this interaction occurs in rafts and is dependent on the integrity of these membrane microdomains. Furthermore, both Dpl and PrPC could be immunoprecipitated with flotillin-2, a raft protein involved in endocytosis and cell signalling events, suggesting that they share the same lipid environment

    An ancestral host defence peptide within human beta-defensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule

    Get PDF
    Host defence peptides (HDPs) are critical components of innate immunity. Despite their diversity, they share common features including a structural signature, designated “γ-core motif”. We reasoned that for each HDPs evolved from an ancestral γ-core, the latter should be the evolutionary starting point of the molecule, i.e. it should represent a structural scaffold for the modular construction of the full-length molecule, and possess biological properties. We explored the γ-core of human β-defensin 3 (HBD3) and found that it: (a) is the folding nucleus of HBD3; (b) folds rapidly and is stable in human serum; (c) displays antibacterial activity; (d) binds to CD98, which mediates HBD3 internalization in eukaryotic cells; (e) exerts antiviral activity against human immunodeficiency virus and herpes simplex virus; and (f) is not toxic to human cells. These results demonstrate that the γ-core within HBD3 is the ancestral core of the full-length molecule and is a viable HDP per se,since it is endowed with the most important biological features of HBD3. Notably, the small, stable scaffold of the HBD3 γ-core can be exploited to design disease-specific antimicrobial agents

    Molecular determinants of ER-Golgi contacts identified through a new FRET-FLIM system

    Get PDF
    ER-TGN contact sites (ERTGoCS) have been visualized by electron microscopy, but their location in the crowded perinuclear area has hampered their analysis via optical microscopy as well as their mechanistic study. To overcome these limits we developed a FRET-based approach and screened several candidates to search for molecular determinants of the ERTGoCS. These included the ER membrane proteins VAPA and VAPB and lipid transfer proteins possessing dual (ER and TGN) targeting motifs that have been hypothesized to contribute to the maintenance of ERTGoCS, such as the ceramide transfer protein CERT and several members of the oxysterol binding proteins. We found that VAP proteins, OSBP1, ORP9, and ORP10 are required, with OSBP1 playing a redundant role with ORP9, which does not involve its lipid transfer activity, and ORP10 being required due to its ability to transfer phosphatidylserine to the TGN. Our results indicate that both structural tethers and a proper lipid composition are needed for ERTGoCS integrity.Peer reviewe

    Attempt to untangle the prion-like misfolding mechanism for neurodegenerative diseases

    No full text
    The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer’s disease, Parkinson’s disease, and prion diseases. It is believed that misfolded and abnormal β-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer’s disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the “prion-like” properties of amyloid-β and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer’s disease

    New insights into the molecular bases of familial alzheimer’s disease

    No full text
    Like several neurodegenerative disorders, such as Prion and Parkinson diseases, Alzheimer’s disease (AD) is characterized by spreading mechanism of aggregated proteins in the brain in a typical “prion-like” manner. Recent genetic studies have identified in four genes associated with inherited AD (amyloid precursor protein-APP, Presenilin-1, Presenilin-2 and Apolipoprotein E), rare mutations which cause dysregulation of APP processing and alterations of folding of the derived amyloid beta peptide (Aβ). Accumulation and aggregation of Aβ in the brain can trigger a series of intracellular events, including hyperphosphorylation of tau protein, leading to the pathological features of AD. However, mutations in these four genes account for a small of the total genetic risk for familial AD (FAD). Genome-wide association studies have recently led to the identification of additional AD candidate genes. Here, we review an update of well-established, highly penetrant FAD-causing genes with correlation to the protein misfolding pathway, and novel emerging candidate FAD genes, as well as inherited risk factors. Knowledge of these genes and of their correlated biochemical cascade will provide several potential targets for treatment of AD and aging-related disorder
    corecore