2,601 research outputs found
Expression Patterns of Protein Kinases Correlate with Gene Architecture and Evolutionary Rates
Protein kinase (PK) genes comprise the third largest superfamily that occupy ∼2% of the human genome. They encode regulatory enzymes that control a vast variety of cellular processes through phosphorylation of their protein substrates. Expression of PK genes is subject to complex transcriptional regulation which is not fully understood.Our comparative analysis demonstrates that genomic organization of regulatory PK genes differs from organization of other protein coding genes. PK genes occupy larger genomic loci, have longer introns, spacer regions, and encode larger proteins. The primary transcript length of PK genes, similar to other protein coding genes, inversely correlates with gene expression level and expression breadth, which is likely due to the necessity to reduce metabolic costs of transcription for abundant messages. On average, PK genes evolve slower than other protein coding genes. Breadth of PK expression negatively correlates with rate of non-synonymous substitutions in protein coding regions. This rate is lower for high expression and ubiquitous PKs, relative to low expression PKs, and correlates with divergence in untranslated regions. Conversely, rate of silent mutations is uniform in different PK groups, indicating that differing rates of non-synonymous substitutions reflect variations in selective pressure. Brain and testis employ a considerable number of tissue-specific PKs, indicating high complexity of phosphorylation-dependent regulatory network in these organs. There are considerable differences in genomic organization between PKs up-regulated in the testis and brain. PK genes up-regulated in the highly proliferative testicular tissue are fast evolving and small, with short introns and transcribed regions. In contrast, genes up-regulated in the minimally proliferative nervous tissue carry long introns, extended transcribed regions, and evolve slowly.PK genomic architecture, the size of gene functional domains and evolutionary rates correlate with the pattern of gene expression. Structure and evolutionary divergence of tissue-specific PK genes is related to the proliferative activity of the tissue where these genes are predominantly expressed. Our data provide evidence that physiological requirements for transcription intensity, ubiquitous expression, and tissue-specific regulation shape gene structure and affect rates of evolution
AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site
<p>Abstract</p> <p>Background</p> <p>The translation start site plays an important role in the control of translation efficiency of eukaryotic mRNAs. The recognition of the start AUG codon by eukaryotic ribosomes is considered to depend on its nucleotide context. However, the fraction of eukaryotic mRNAs with the start codon in a suboptimal context is relatively large. It may be expected that mRNA should possess some features providing efficient translation, including the proper recognition of a translation start site. It has been experimentally shown that a downstream hairpin located in certain positions with respect to start codon can compensate in part for the suboptimal AUG context and also increases translation from non-AUG initiation codons. Prediction of such a compensatory hairpin may be useful in the evaluation of eukaryotic mRNA translation properties.</p> <p>Results</p> <p>We evaluated interdependency between the start codon context and mRNA secondary structure at the CDS beginning: it was found that a suboptimal start codon context significantly correlated with higher base pairing probabilities at positions 13 – 17 of CDS of human and mouse mRNAs. It is likely that the downstream hairpins are used to enhance translation of some mammalian mRNAs <it>in vivo</it>. Thus, we have developed a tool, <it>AUG_hairpin</it>, to predict local stem-loop structures located within the defined region at the beginning of mRNA coding part. The implemented algorithm is based on the available published experimental data on the CDS-located stem-loop structures influencing the recognition of upstream start codons.</p> <p>Conclusion</p> <p>An occurrence of a potential secondary structure downstream of start AUG codon in a suboptimal context (or downstream of a potential non-AUG start codon) may provide researchers with a testable assumption on the presence of additional regulatory signal influencing mRNA translation initiation rate and the start codon choice. <it>AUG_hairpin</it>, which has a convenient Web-interface with adjustable parameters, will make such an evaluation easy and efficient.</p
Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases
Background: The secondary structure and complexity of mRNA influences its
accessibility to regulatory molecules (proteins, micro-RNAs), its stability and
its level of expression. The mobile elements of the RNA sequence, the wobble
bases, are expected to regulate the formation of structures encompassing coding
sequences.
Results: The sequence/folding energy (FE) relationship was studied by
statistical, bioinformatic methods in 90 CDS containing 26,370 codons. I found
that the FE (dG) associated with coding sequences is significant and negative
(407 kcal/1000 bases, mean +/- S.E.M.) indicating that these sequences are able
to form structures. However, the FE has only a small free component, less than
10% of the total. The contribution of the 1st and 3rd codon bases to the FE is
larger than the contribution of the 2nd (central) bases. It is possible to
achieve a ~ 4-fold change in FE by altering the wobble bases in synonymous
codons. The sequence/FE relationship can be described with a simple algorithm,
and the total FE can be predicted solely from the sequence composition of the
nucleic acid. The contributions of different synonymous codons to the FE are
additive and one codon cannot replace another. The accumulated contributions of
synonymous codons of an amino acid to the total folding energy of an mRNA is
strongly correlated to the relative amount of that amino acid in the translated
protein.
Conclusion: Synonymous codons are not interchangable with regard to their
role in determining the mRNA FE and the relative amounts of amino acids in the
translated protein, even if they are indistinguishable in respect of amino acid
coding.Comment: 14 pages including 6 figures and 1 tabl
A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments
Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals
Reduced stability of mRNA secondary structure near the translation-initiation site in dsDNA viruses
<p>Abstract</p> <p>Background</p> <p>Recent studies have demonstrated a selection pressure for reduced mRNA secondary-structure stability near the start codon of coding sequences. This selection pressure can be observed in bacteria, archaea, and eukaryotes, and is likely caused by the requirement of efficient translation initiation in cellular organism.</p> <p>Results</p> <p>Here, we surveyed the complete genomes of 650 dsDNA virus strains for signals of reduced stability of mRNA secondary structure near the start codon. Our analysis included viruses infecting eukaryotic, prokaryotic, and archaeic hosts. We found that many viruses showed evidence for reduced mRNA secondary-structure stability near the start codon. The effect was most pronounced in viruses infecting prokaryotes, but was also observed in viruses infecting eukaryotes and archaea. The reduction in stability generally increased with increasing genomic GC content. For bacteriophage, the reduction was correlated with a corresponding reduction of stability in the phage hosts.</p> <p>Conclusions</p> <p>We conclude that reduced stability of the mRNA secondary structure near the start codon is a common feature for dsDNA viruses, likely driven by the same selective pressures that cause it in cellular organisms.</p
Experimental evolution of sperm competitiveness in a mammal
<p>Abstract</p> <p>Background</p> <p>When females mate with multiple partners, sperm from rival males compete to fertilise the ova. Studies of experimental evolution have proven the selective action of sperm competition on male reproductive traits. However, while reproductive traits may evolve in response to sperm competition, this does not necessarily provide evidence that sperm competitive ability responds to selection. Indeed, a study of <it>Drosophila </it>failed to observe divergence in sperm competitive ability of males in lines selected for enhanced sperm offence and defence.</p> <p>Results</p> <p>Adopting the naturally polygamous house mouse (<it>Mus domesticus</it>) as our vertebrate model, we performed an experimental evolution study and observed genetic divergence in sperm quality; males from the polygamous selection lines produced ejaculates with increased sperm numbers and greater sperm motility compared to males from the monogamous lines. Here, after 12 generations of experimental evolution, we conducted competitive matings between males from lineages evolving under sperm competition and males from lineages subject to relaxed selection. We reduced variation in paternity arising from embryo mortality by genotyping embryos <it>in utero </it>at 14 days gestation. Our microsatellite data revealed a significant paternity bias toward males that evolved under the selective regime of sperm competition.</p> <p>Conclusion</p> <p>We provide evidence that the sperm competitiveness phenotype can respond to selection, and show that improved sperm quality translates to greater competitive fertilisation success in house mice.</p
Comparing Artificial Neural Networks, General Linear Models and Support Vector Machines in Building Predictive Models for Small Interfering RNAs
Exogenous short interfering RNAs (siRNAs) induce a gene knockdown effect in cells by interacting with naturally occurring RNA processing machinery. However not all siRNAs induce this effect equally. Several heterogeneous kinds of machine learning techniques and feature sets have been applied to modeling siRNAs and their abilities to induce knockdown. There is some growing agreement to which techniques produce maximally predictive models and yet there is little consensus for methods to compare among predictive models. Also, there are few comparative studies that address what the effect of choosing learning technique, feature set or cross validation approach has on finding and discriminating among predictive models.Three learning techniques were used to develop predictive models for effective siRNA sequences including Artificial Neural Networks (ANNs), General Linear Models (GLMs) and Support Vector Machines (SVMs). Five feature mapping methods were also used to generate models of siRNA activities. The 2 factors of learning technique and feature mapping were evaluated by complete 3x5 factorial ANOVA. Overall, both learning techniques and feature mapping contributed significantly to the observed variance in predictive models, but to differing degrees for precision and accuracy as well as across different kinds and levels of model cross-validation.The methods presented here provide a robust statistical framework to compare among models developed under distinct learning techniques and feature sets for siRNAs. Further comparisons among current or future modeling approaches should apply these or other suitable statistically equivalent methods to critically evaluate the performance of proposed models. ANN and GLM techniques tend to be more sensitive to the inclusion of noisy features, but the SVM technique is more robust under large numbers of features for measures of model precision and accuracy. Features found to result in maximally predictive models are not consistent across learning techniques, suggesting care should be taken in the interpretation of feature relevance. In the models developed here, there are statistically differentiable combinations of learning techniques and feature mapping methods where the SVM technique under a specific combination of features significantly outperforms all the best combinations of features within the ANN and GLM techniques
CRPV Genomes with Synonymous Codon Optimizations in the CRPV E7 Gene Show Phenotypic Differences in Growth and Altered Immunity upon E7 Vaccination
Papillomaviruses use rare codons relative to their hosts. Recent studies have demonstrated that synonymous codon changes in viral genes can lead to increased protein production when the codons are matched to those of cells in which the protein is being expressed. We theorized that the immunogenicity of the virus would be enhanced by matching codons of selected viral genes to those of the host. We report here that synonymous codon changes in the E7 oncogene are tolerated in the context of the cottontail rabbit papillomavirus (CRPV) genome. Papilloma growth rates differ depending upon the changes made indicating that synonymous codons are not necessarily neutral. Immunization with wild type E7 DNA yielded significant protection from subsequent challenge by both wild type and codon-modified genomes. The reduction in growth was most dramatic with the genome containing the greatest number of synonymous codon changes
Exploring the gonad transcriptome of two extreme male pigs with RNA-seq
Background: Although RNA-seq greatly advances our understanding of complex transcriptome landscapes, such as those found in mammals, complete RNA-seq studies in livestock and in particular in the pig are still lacking. Here, we used high-throughput RNA sequencing to gain insight into the characterization of the poly-A RNA fraction expressed in pig male gonads. An expression analysis comparing different mapping approaches and detection of allele specific expression is also discussed in this study. Results: By sequencing testicle mRNA of two phenotypically extreme pigs, one Iberian and one Large White, we identified hundreds of unannotated protein-coding genes (PcGs) in intergenic regions, some of them presenting orthology with closely related species. Interestingly, we also detected 2047 putative long non-coding RNA (lncRNA), including 469 with human homologues. Two methods, DEGseq and Cufflinks, were used for analyzing expression. DEGseq identified 15% less expressed genes than Cufflinks, because DEGseq utilizes only unambiguously mapped reads. Moreover, a large fraction of the transcriptome is made up of transposable elements (14500 elements encountered), as has been reported in previous studies. Gene expression results between microarray and RNA-seq technologies were relatively well correlated (r = 0.71 across individuals). Differentially expressed genes between Large White and Iberian showed a significant overrepresentation of gamete production and lipid metabolism gene ontology categories. Finally, allelic imbalance was detected in ~ 4% of heterozygous sites. Conclusions: RNA-seq is a powerful tool to gain insight into complex transcriptomes. In addition to uncovering many unnanotated genes, our study allowed us to determine that a considerable fraction is made up of long non-coding transcripts and transposable elements. Their biological roles remain to be determined in future studies. In terms of differences in expression between Large White and Iberian pigs, these were largest for genes involved in spermatogenesis and lipid metabolism, which is consistent with phenotypic extreme differences in prolificacy and fat deposition between these two breeds
TISs-ST: a web server to evaluate polymorphic translation initiation sites and their reflections on the secretory targets
<p>Abstract</p> <p>Background</p> <p>The nucleotide sequence flanking the translation initiation codon (start codon context) affects the translational efficiency of eukaryotic mRNAs, and may indicate the presence of an alternative translation initiation site (TIS) to produce proteins with different properties. Multi-targeting may reflect the translational variability of these other protein forms. In this paper we present a web server that performs computations to investigate the usage of alternative translation initiation sites for the synthesis of new protein variants that might have different functions.</p> <p>Results</p> <p>An efficient web-based tool entitled TISs-ST (Translation Initiation Sites and Secretory Targets) evaluates putative translation initiation sites and indicates the prediction of a signal peptide of the protein encoded from this site. The TISs-ST web server is freely available to both academic and commercial users and can be accessed at <url>http://ipe.cbmeg.unicamp.br/pub/TISs-ST</url>.</p> <p>Conclusion</p> <p>The program can be used to evaluate alternative translation initiation site consensus with user-specified sequences, based on their composition or on many position weight matrix models. TISs-ST provides analytical and visualization tools for evaluating the periodic frequency, the consensus pattern and the total information content of a sequence data set. A search option allows for the identification of signal peptides from predicted proteins using the PrediSi software.</p
- …