467 research outputs found

    Molecular line probes of activity in galaxies

    Full text link
    The use of specific tracers of the dense molecular gas phase can help to explore the feedback of activity on the interstellar medium (ISM) in galaxies. This information is a key to any quantitative assessment of the efficiency of the star formation process in galaxies. We present the results of a survey devoted to probe the feedback of activity through the study of the excitation and chemistry of the dense molecular gas in a sample of local universe starbursts and active galactic nuclei (AGNs). Our sample includes also 17 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). From the analysis of the LIRGs/ULIRGs subsample, published in Gracia-Carpio et al.(2007) we find the first clear observational evidence that the star formation efficiency of the dense gas, measured by the L_FIR/L_HCN ratio, is significantly higher in LIRGs and ULIRGs than in normal galaxies. Mounting evidence of overabundant HCN in active environments would even reinforce the reported trend, pointing to a significant turn upward in the Kennicutt-Schmidt law around L_FIR=10^11 L_sun. This result has major implications for the use of HCN as a tracer of the dense gas in local and high-redshift luminous infrared galaxies.Comment: 4 pages, 2 figures, contributed paper to Far-Infrared Workshop 07 (FIR 2007

    Jet-disturbed molecular gas near the Seyfert 2 nucleus in M51

    Full text link
    Previous molecular gas observations at arcsecond-scale resolution of the Seyfert 2 galaxy M51 suggest the presence of a dense circumnuclear rotating disk, which may be the reservoir for fueling the active nucleus and obscures it from direct view in the optical. However, our recent interferometric CO(3-2) observations show a hint of a velocity gradient perpendicular to the rotating disk, which suggests a more complex structure than previously thought. To image the putative circumnuclear molecular gas disk at sub-arcsecond resolution to better understand both the spatial distribution and kinematics of the molecular gas. We carried out CO(2-1) and CO(1-0) line observations of the nuclear region of M51 with the new A configuration of the IRAM Plateau de Bure Interferometer, yielding a spatial resolution lower than 15 pc. The high resolution images show no clear evidence of a disk, aligned nearly east-west and perpendicular to the radio jet axis, as suggested by previous observations, but show two separate features located on the eastern and western sides of the nucleus. The western feature shows an elongated structure along the jet and a good velocity correspondence with optical emission lines associated with the jet, suggesting that this feature is a jet-entrained gas. The eastern feature is elongated nearly east-west ending around the nucleus. A velocity gradient appears in the same direction with increasingly blueshifted velocities near the nucleus. This velocity gradient is in the opposite sense of that previously inferred for the putative circumnuclear disk. Possible explanations for the observed molecular gas distribution and kinematics are that a rotating gas disk disturbed by the jet, gas streaming toward the nucleus, or a ring with another smaller counter- or Keplarian-rotating gas disk inside.Comment: 5 pages, 4 figures, to appear in A&A Letters Special Issue for the new extended configuration at the IRAM PdB

    Molecular gas chemistry in AGN. II. High-resolution imaging of SiO emission in NGC1068: shocks or XDR?

    Get PDF
    This paper is part of a multi-species survey of line emission from the molecular gas in the circum-nuclear disk (CND) of the Seyfert 2 galaxy NGC1068. Single-dish observations have provided evidence that the abundance of silicon monoxide(SiO) in the CND of NGC1068 is enhanced by 3-4 orders of magnitude with respect to the values typically measured in quiescent molecular gas in the Galaxy. We aim at unveiling the mechanism(s) underlying the SiO enhancement. We have imaged with the IRAM Plateau de Bure interferometer the emission of the SiO(2-1) and CN(2--1) lines in NGC1068 at 150pc and 60pc spatial resolution, respectively. We have also obtained complementary IRAM 30m observations of HNCO and methanol (CH3OH) lines. SiO is detected in a disk of 400pc size around the AGN. SiO abundances in the CND of (1-5)xE-09 are about 1-2 orders of magnitude above those measured in the starburst ring. The overall abundance of CN in the CND is high: (0.2-1)xE-07. The abundances of SiO and CN are enhanced at the extreme velocities of gas associated with non-circular motions close to the AGN (r<70pc). Abundances measured for CN and SiO, and the correlation of CN/CO and SiO/CO ratios with hard X-ray irradiation, suggest that the CND of NGC1068 has become a giant X-ray dominated region (XDR). The extreme properties of molecular gas in the circum-nuclear molecular disk of NGC1068 result from the interplay between different processes directly linked to nuclear activity. Whereas XDR chemistry offers a simple explanation for CN and SiO in NGC1068, the relevance of shocks deserves further scrutiny. The inclusion of dust grain chemistry would help solve the controversy regarding the abundances of other molecular species, like HCN, which are under-predicted by XDR models.Comment: 18 pages, 13 figures, 2 tables; accepted for publication in A&

    Widespread HCO emission in the M82's nuclear starburst

    Get PDF
    We present a high-resolution (~ 5'') image of the nucleus of M82 showing the presence of widespread emission of the formyl radical (HCO). The HCO map, the first obtained in an external galaxy, reveals the existence of a structured disk of ~ 650 pc full diameter. The HCO distribution in the plane mimics the ring morphology displayed by other molecular/ionized gas tracers in M82. More precisely, rings traced by HCO, CO and HII regions are nested, with the HCO ring lying in the outer edge of the molecular torus. Observations of HCO in galactic clouds indicate that the abundance of HCO is strongly enhanced in the interfaces between the ionized and molecular gas. The surprisingly high overall abundance of HCO measured in M82 (X(HCO) ~ 4x10^{-10}) indicates that its nuclear disk can be viewed as a giant Photon Dominated Region (PDR) of ~ 650 pc size. The existence of various nested gas rings, with the highest HCO abundance occurring at the outer ring (X(HCO) ~ 0.8x10^{-9}), suggests that PDR chemistry is propagating in the disk. We discuss the inferred large abundances of HCO in M82 in the context of a starburst evolutionary scenario, picturing the M82 nucleus as an evolved starburst.Comment: 13 pages, 3 figures, to appear in ApJ Letters; corrected list of author

    Integral Field Spectroscopy based H\alpha\ sizes of local Luminous and Ultraluminous Infrared Galaxies. A Direct Comparison with high-z Massive Star Forming Galaxies

    Full text link
    Aims. We study the analogy between local U/LIRGs and high-z massive SFGs by comparing basic H{\alpha} structural characteristics, such as size, and luminosity (and SFR) surface density, in an homogeneous way (i.e. same tracer and size definition, similar physical scales). Methods. We use Integral Field Spectroscopy based H{\alpha} emission maps for a representative sample of 54 local U/LIRGs (66 galaxies). From this initial sample we select 26 objects with H{\alpha} luminosities (L(H{\alpha})) similar to those of massive (i.e. M\ast \sim 10^10 M\odot or larger) SFGs at z \sim 2, and observed on similar physical scales. Results. The sizes of the H{\alpha} emitting region in the sample of local U/LIRGs span a large range, with r1/2(H{\alpha}) from 0.2 to 7 kpc. However, about 2/3 of local U/LIRGs with Lir > 10^11.4 L\odot have compact H{\alpha} emission (i.e. r1/2 < 2 kpc). The comparison sample of local U/LIRGs also shows a higher fraction (59%) of objects with compact H{\alpha} emission than the high-z sample (25%). This gives further support to the idea that for this luminosity range the size of the star forming region is a distinctive factor between local and distant galaxies of similar SF rates. However, when using H{\alpha} as a tracer for both local and high-z samples, the differences are smaller than the ones recently reported using a variety of other tracers. Despite of the higher fraction of galaxies with compact H{\alpha} emission, a sizable group (\sim 1/3) of local U/LIRGs are large (i.e. r1/2 > 2 kpc). These are systems showing pre-coalescence merger activity and they are indistinguishable from the massive high-z SFGs galaxies in terms of their H{\alpha} sizes, and luminosity and SFR surface densities.Comment: Accepted for publication in A&A. (!5 pages, 7 figures, 2 tables

    Photodissociation chemistry footprints in the Starburst galaxy NGC 253

    Full text link
    We report the first detection of PDR molecular tracers, namely HOC+, and CO+, and confirm the detection of the also PDR tracer HCO towards the starburst galaxy NGC 253, claimed to be mainly dominated by shock heating and in an earlier stage of evolution than M 82, the prototypical extragalactic PDR. Our CO+ detection suffers from significant blending to a group of transitions of 13CH3OH, tentatively detected for the first time in the extragalactic interstellar medium. These species are efficiently formed in the highly UV irradiated outer layers of molecular clouds, as observed in the late stage nuclear starburst in M 82. The molecular abundance ratios we derive for these molecules are very similar to those found in M 82. This strongly supports the idea that these molecules are tracing the PDR component associated with the starburst in the nuclear region of NGC 253. A comparison with the predictions of chemical models for PDRs shows that the observed molecular ratios are tracing the outer layers of UV illuminated clouds up to two magnitudes of visual extinction. Chemical models, which include grain formation and photodissociation of HNCO, support the scenario of a photo-dominated chemistry as an explanation to the abundances of the observed species. From this comparison we conclude that the molecular clouds in NGC 253 are more massive and with larger column densities than those in M 82, as expected from the evolutionary stage of the starbursts in both galaxies.Comment: 32 pages, 4 figures, Published in Ap

    Discovery of High-Latitude CO in a HI Supershell in NGC 5775

    Full text link
    We report the discovery of very high latitude molecular gas in the edge-on spiral galaxy, NGC 5775. Emission from both the J=1-0 and 2-1 lines of 12CO is detected up to 4.8 kpc away from the mid-plane of the galaxy. NGC 5775 is known to host a number of HI supershells. The association of the molecular gas M(H2,F2) = 3.1x10^7 solar masses reported here with one of the HI supershells (labeled F2) is clear, which suggests that molecular gas may have survived the process which originally formed the supershell. Alternatively, part of the gas could have been formed in situ at high latitude from shock-compression of pre-existing HI gas. The CO J=2-1/J=1-0 line ratio of 0.34+-40% is significantly lower than unity, which suggests that the gas is excited subthermally, with gas density a few times 100 cubic cm. The molecular gas is likely in the form of cloudlets which are confined by magnetic and cosmic rays pressure. The potential energy of the gas at high latitude is found to be 2x10^56 ergs and the total (HI + H2) kinetic energy is 9x10^53 ergs. Based on the energetics of the supershell, we suggest that most of the energy in the supershell is in the form of potential energy and that the supershell is on the verge of falling and returning the gas to the disk of the galaxy.Comment: Accept by ApJL, 4 pages, 3 ps figure

    Tracing high density gas in M 82 and NGC 4038

    Full text link
    We present the first detection of CS in the Antennae galaxies towards the NGC 4038 nucleus, as well as the first detections of two high-J (5-4 and 7-6) CS lines in the center of M 82. The CS(7-6) line in M 82 shows a profile that is surprisingly different to those of other low-J CS transitions we observed. This implies the presence of a separate, denser and warmer molecular gas component. The derived physical properties and the likely location of the CS(7-6) emission suggests an association with the supershell in the centre of M 82.Comment: 10 pages, 3 figures, ApJ Letter - ACCEPTE

    Molecular gas in NUclei of GAlaxies (NUGA) VII. NGC4569, a large scale bar funnelling gas into the nuclear region

    Full text link
    This work is part of the NUGA survey of CO emission in nearby active galaxies. We present observations of NGC4569, a member of the Virgo Cluster. We analyse the molecular gas distribution and kinematics in the central region and we investigate a possible link to the strong starburst present at the nucleus. 70% of the 1.1x10^9 Msolar of molecular gas detected in the inner 20" is found to be concentrated within the inner 800 pc and is distributed along the large scale stellar bar seen in near-infrared observations. A hole in the CO distribution coincides with the nucleus where most of the Halpha emission and blue light are emitted. The kinematics are modelled in three different ways, ranging from the purely geometrical to the most physical. This approach allows us to constrain progressively the physical properties of the galaxy and eventually to emerge with a reasonable fit to an analytical model of orbits in a barred potential. Fitting an axisymmetric model shows that the non-circular motions must be comparable in amplitude to the circular motions (120 km/s). Fitting a model based on elliptical orbits allows us to identify with confidence the single inner Lindblad resonance (ILR) of the large scale bar. Finally, a model based on analytical solutions for the gas particle orbits in a weakly barred potential constrained by the ILR radius reproduces the observations well. The mass inflow rate is then estimated and discussed based on the best fit model solution. The gravitational torques implied by this model are able to efficiently funnel the gas inside the ILR down to 300 pc, although another mechanism must take over to fuel the nuclear starburst inside 100 pc.Comment: accepted for publication in A&
    corecore