This paper is part of a multi-species survey of line emission from the
molecular gas in the circum-nuclear disk (CND) of the Seyfert 2 galaxy NGC1068.
Single-dish observations have provided evidence that the abundance of silicon
monoxide(SiO) in the CND of NGC1068 is enhanced by 3-4 orders of magnitude with
respect to the values typically measured in quiescent molecular gas in the
Galaxy. We aim at unveiling the mechanism(s) underlying the SiO enhancement. We
have imaged with the IRAM Plateau de Bure interferometer the emission of the
SiO(2-1) and CN(2--1) lines in NGC1068 at 150pc and 60pc spatial resolution,
respectively. We have also obtained complementary IRAM 30m observations of HNCO
and methanol (CH3OH) lines. SiO is detected in a disk of 400pc size around the
AGN. SiO abundances in the CND of (1-5)xE-09 are about 1-2 orders of magnitude
above those measured in the starburst ring. The overall abundance of CN in the
CND is high: (0.2-1)xE-07. The abundances of SiO and CN are enhanced at the
extreme velocities of gas associated with non-circular motions close to the AGN
(r<70pc). Abundances measured for CN and SiO, and the correlation of CN/CO and
SiO/CO ratios with hard X-ray irradiation, suggest that the CND of NGC1068 has
become a giant X-ray dominated region (XDR). The extreme properties of
molecular gas in the circum-nuclear molecular disk of NGC1068 result from the
interplay between different processes directly linked to nuclear activity.
Whereas XDR chemistry offers a simple explanation for CN and SiO in NGC1068,
the relevance of shocks deserves further scrutiny. The inclusion of dust grain
chemistry would help solve the controversy regarding the abundances of other
molecular species, like HCN, which are under-predicted by XDR models.Comment: 18 pages, 13 figures, 2 tables; accepted for publication in A&