14,575 research outputs found

    Quantum many-body models with cold atoms coupled to photonic crystals

    Get PDF
    Using cold atoms to simulate strongly interacting quantum systems represents an exciting frontier of physics. However, as atoms are nominally neutral point particles, this limits the types of interactions that can be produced. We propose to use the powerful new platform of cold atoms trapped near nanophotonic systems to extend these limits, enabling a novel quantum material in which atomic spin degrees of freedom, motion, and photons strongly couple over long distances. In this system, an atom trapped near a photonic crystal seeds a localized, tunable cavity mode around the atomic position. We find that this effective cavity facilitates interactions with other atoms within the cavity length, in a way that can be made robust against realistic imperfections. Finally, we show that such phenomena should be accessible using one-dimensional photonic crystal waveguides in which coupling to atoms has already been experimentally demonstrated

    Approximate gauge symmetry of composite vector bosons

    Get PDF
    It can be shown in a solvable field theory model that the couplings of the composite vector bosons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector boson made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in more an intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.Comment: Correction of typos. The published versio

    Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction

    Get PDF
    This work was supported by a United States Department of Agriculture-Cooperative State Research, Education, and Extension Service grant (no. 2009-35318-05032), a Biotechnology Research grant (no. 2007-BRG-1223) from the North Carolina Biotechnology Center, and a startup fund from the Golden LEAF Foundation to the Biomanufacturing Research Institute and Technology Enterprise (BRITE).Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∌50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∌30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≄2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≄2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.Publisher PDFPeer reviewe

    Using informative behavior to increase engagement in the TAMER framework

    Get PDF

    A new mechanism for a naturally small Dirac neutrino mass

    Get PDF
    A mechanism is proposed in which a right-handed neutrino zero mode and a right-handed charged lepton zero mode can be localized at the same place along an extra compact dimension while having markedly different spreads in their wave functions: a relatively narrow one for the neutrino and a rather broad one for the charged lepton. In their overlaps with the wave function for the left-handed zero modes, this mechanism could produce a natural large hierarchy in the effective Yukawa couplings in four dimensions, and hence a large disparity in masses.Comment: 6 pages (2 with figures), twocolumn forma

    Superradiance for atoms trapped along a photonic crystal waveguide

    Get PDF
    We report observations of superradiance for atoms trapped in the near field of a photonic crystal waveguide (PCW). By fabricating the PCW with a band edge near the D1_1 transition of atomic cesium, strong interaction is achieved between trapped atoms and guided-mode photons. Following short-pulse excitation, we record the decay of guided-mode emission and find a superradiant emission rate scaling as ΓˉSR∝Nˉ⋅Γ1D\bar{\Gamma}_{\rm SR}\propto\bar{N}\cdot\Gamma_{\rm 1D} for average atom number 0.19â‰ČNˉâ‰Č2.60.19 \lesssim \bar{N} \lesssim 2.6 atoms, where Γ1D/Γ0=1.1±0.1\Gamma_{\rm 1D}/\Gamma_0 =1.1\pm0.1 is the peak single-atom radiative decay rate into the PCW guided mode and Γ0\Gamma_{0} is the Einstein-AA coefficient for free space. These advances provide new tools for investigations of photon-mediated atom-atom interactions in the many-body regime.Comment: 11 pages, 10 figure

    Dynamical coupled-channel model of kaon-hyperon interactions

    Full text link
    The pi N --> KY and KY --> KY reactions are studied using a dynamical coupled-channel model of meson-baryon interactions at energies where the baryon resonances are strongly excited. The channels included are: pi N, K \Lambda, and K\Sigma. The resonances considered are: N^* [S_{11}(1650), P_{11}(1710), P_{13}(1720),D_{13}(1700)]; \Delta^* [S_{31}(1900), P_{31}(1910), P_{33}(1920)]; \Lambda ^* [S_{01}(1670), P_{01}(1810)] \Sigma^* [P_{11}(1660), D_{13}(1670)]; and K^*(892). The basic non-resonant \pi N --> KY and KY --> KY transition potentials are derived from effective Lagrangians using a unitary transformation method. The dynamical coupled-channel equations are simplified by parametrizing the pi N -->pi N amplitudes in terms of empirical pi N partial-wave amplitudes and a phenomenological off-shell function. Two models have been constructed. Model A is built by fixing all coupling constants and resonance parameters using SU(3) symmetry, the Particle Data Group values, and results from a constituent quark model. Model B is obtained by allowing most of the parameters to vary around the values of model A in fitting the data. Good fits to the available data for pi^- p to K^0 \Lambda, K^0 \Sigma^0 have been achieved. The investigated kinematics region in the center-of-mass frame goes from threshold to 2.5 GeV. The constructed models can be imbedded into associated dynamical coupled-channel studies of kaon photo- and electro-production reactions.Comment: 35 pages, 11 Figure

    A Study on Tourism Development Strategy of Kaohsiung City in Taiwan after Urban Style Regeneration

    Get PDF
    Urban tourism has gradually been emphasized in past years; especially, it is regarded as a savior of urban regeneration in old industrial cities. When losing the competitive advantages and getting declined, old industrial cities are facing the challenge of transformation. The development of urban tourism is considered as the opportunity of industrial cities in dark recession that they start to involve in the development of tourism. Analytic Hierarchy Process (AHP) is applied in this study to evaluate key success factors in the tourism development strategy of Kaohsiung City after the urban style regeneration. AHP is used for confirming the levels of various evaluation factors. The first hierarchy contains four evaluation dimensions, and 14 evaluation standards are covered in the second hierarchy. The results reveal the important sequence of four evaluation factors in the second hierarchy as (1) marketing activity, (2) management strategy, (3) recreational environment, and (4) infrastructure, where the importance of evaluation factors in the third hierarchy is sequenced as (1) urban attraction, (2) environmental facility maintenance, (3) celebrations, (4) local characteristics, and (5) natural landscape. The research results and suggestions in this study are expected to enhance the tourism development of Kaohsiung City in Taiwan after the urban style regeneration.     Keywords: urban style, tourism development strategy, key success factors, Delphi method, AH

    Entropy production and equilibration in Yang-Mills quantum mechanics

    Get PDF
    The Husimi distribution provides for a coarse grained representation of the phase space distribution of a quantum system, which may be used to track the growth of entropy of the system. We present a general and systematic method of solving the Husimi equation of motion for an isolated quantum system, and we construct a coarse grained Hamiltonian whose expectation value is exactly conserved. As an application, we numerically solve the Husimi equation of motion for two-dimensional Yang-Mills quantum mechanics (the x-y model) and calculate the time evolution of the coarse grained entropy of a highly excited state. We show that the coarse grained entropy saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the system.Comment: 23 pages, 23 figure
    • 

    corecore