Using cold atoms to simulate strongly interacting quantum systems represents
an exciting frontier of physics. However, as atoms are nominally neutral point
particles, this limits the types of interactions that can be produced. We
propose to use the powerful new platform of cold atoms trapped near
nanophotonic systems to extend these limits, enabling a novel quantum material
in which atomic spin degrees of freedom, motion, and photons strongly couple
over long distances. In this system, an atom trapped near a photonic crystal
seeds a localized, tunable cavity mode around the atomic position. We find that
this effective cavity facilitates interactions with other atoms within the
cavity length, in a way that can be made robust against realistic
imperfections. Finally, we show that such phenomena should be accessible using
one-dimensional photonic crystal waveguides in which coupling to atoms has
already been experimentally demonstrated