250 research outputs found

    Employee Innovation in the Hospitality Industry: the Mediating Role of Psychological Safety

    Get PDF
    In the current turbulent and highly competitive environment, innovation can be considered a strategic weapon that enables hotels to survive, compete, and succeed. Innovation has been advocated to enhance hotels’ products, services, productions, processes, and overall performance. Innovation activities can take place as a result of employees’ behaviour, hence there is a call for greater attention to employees, in order to enhance hotel performance. Since innovation activities may involve uncertainty and risk, it is crucial to understand what makes employees feel safe, also referred to in literature as psychological safety, and encouraged to engage in the innovative behaviour. This conceptual paper presents an exploration of the factors that could encourage employee innovation in the hospitality industry. This relationship is supposedly mediated by psychological safety of the employees. The model propose seven essential elements that can promote innovative behaviour in the hospitality industry. Support and motivation from the management, high-quality relationships amongst members at work, autonomy, role expectation, and proactive personality, as an interpersonal trait, are all proposed to be positively associated with psychological safety and employee innovation, whereas openness to experiences and challenges at work are suggested to be positively associated only with employee innovation. Thus, understanding what promotes innovative behaviour will help hoteliers to cultivate and encourage the innovative behaviour amongst hotels’ employees, which can, in turn, enhance hotels’ services quality and performance

    Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons

    Get PDF
    Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell-types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using cell-type specific metabolic labelling of isolated neurites, we demonstrated that the processes of Glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation is a general property of neurons

    Quantum symmetric pairs and representations of double affine Hecke algebras of type C∨CnC^\vee C_n

    Get PDF
    We build representations of the affine and double affine braid groups and Hecke algebras of type C∨CnC^\vee C_n, based upon the theory of quantum symmetric pairs (U,B)(U,B). In the case U=Uq(glN)U=U_q(gl_N), our constructions provide a quantization of the representations constructed by Etingof, Freund and Ma in arXiv:0801.1530, and also a type BCBC generalization of the results in arXiv:0805.2766.Comment: Final version, to appear in Selecta Mathematic

    The switch-like expression of heme-regulated kinase 1 mediates neuronal proteostasis following proteasome inhibition

    Get PDF
    We examined the feedback between the major protein degradation pathway, the ubiquitin-proteasome system (UPS), and protein synthesis in rat and mouse neurons. When protein degradation was inhibited, we observed a coordinate dramatic reduction in nascent protein synthesis in neuronal cell bodies and dendrites. The mechanism for translation inhibition involved the phosphorylation of eIF2alpha, surprisingly mediated by eIF2alpha kinase 1, or heme-regulated kinase inhibitor (HRI). Under basal conditions, neuronal expression of HRI is barely detectable. Following proteasome inhibition, HRI protein levels increase owing to stabilization of HRI and enhanced translation, likely via the increased availability of tRNAs for its rare codons. Once expressed, HRI is constitutively active in neurons because endogenous heme levels are so low; HRI activity results in eIF2alpha phosphorylation and the resulting inhibition of translation. These data demonstrate a novel role for neuronal HRI that senses and responds to compromised function of the proteasome to restore proteostasis

    The translatome of neuronal cell bodies, dendrites,and axons

    Get PDF
    To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of messenger RNAs (mRNAs) near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally. It is not generally known, however, if, how, and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies (somata) as well as dendrites and axons (neuropil). Thousands of transcripts were differentially translated between somatic and synaptic regions, with many scaffold and signaling molecules displaying increased translation levels in the neuropil. Most translational changes between compartments could be accounted for by differences in RNA abundance. Pervasive translational regulation was observed in both somata and neuropil influenced by specific mRNA features (e.g., untranslated region [UTR] length, RNA-binding protein [RBP] motifs, and upstream open reading frames [uORFs]). For over 800 mRNAs, the dominant source of translation was the neuropil. We constructed a searchable and interactive database for exploring mRNA transcripts and their translation levels in the somata and neuropil [MPI Brain Research, The mRNA translation landscape in the synaptic neuropil. https://public.brain.mpg.de/dashapps/localseq/ Accessed 5 October 2021]. Overall, our findings emphasize the substantial contribution of local translation to maintaining synaptic protein levels and indicate that on-site translational control is an important mechanism to control synaptic strength

    Multiple solutions to a magnetic nonlinear Choquard equation

    Full text link
    We consider the stationary nonlinear magnetic Choquard equation [(-\mathrm{i}\nabla+A(x))^{2}u+V(x)u=(\frac{1}{|x|^{\alpha}}\ast |u|^{p}) |u|^{p-2}u,\quad x\in\mathbb{R}^{N}%] where A A\ is a real valued vector potential, VV is a real valued scalar potential,, N≥3N\geq3, α∈(0,N)\alpha\in(0,N) and 2−(α/N)<p<(2N−α)/(N−2)2-(\alpha/N) <p<(2N-\alpha)/(N-2). \ We assume that both AA and VV are compatible with the action of some group GG of linear isometries of RN\mathbb{R}^{N}. We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition u(gx)=τ(g)u(x)   for allg∈G,x∈RN, u(gx)=\tau(g)u(x)\text{\ \ \ for all}g\in G,\text{}x\in\mathbb{R}^{N}, where τ:G→S1\tau:G\rightarrow\mathbb{S}^{1} is a given group homomorphism into the unit complex numbers.Comment: To appear on ZAM

    Metaverse for service industries: Future applications, opportunities, challenges and research directions

    Get PDF
    Although the metaverse is still in the early stages of development and implementation, it has the potential to revolutionize the way how businesses can interact with customers through both the virtual and real world. In particular, service industries are already exploring the opportunity to utilize the metaverse to provide more immersive, interactive and engaging customer experiences. However, the holistic overview of the future applications, opportunities, and challenges of a metaverse in the context of service industries from academic and expert perspectives is limited. By employing a multi-perspective approach, this study looks into these unexplored aspects of the metaverse in the context of service industries through informed and multifaceted narratives by leading academics and experts from cross-disciplinary backgrounds from media and communication, education, hospitality, financial services, retail, tourism and healthcare. The main opportunities identified include the development of new experiences, the introduction of novel inter-world interactions, and new business-consumer relations within the metaverse. The key challenges covered include current technological boundaries, limitations of the experiences in the metaverse, health issues, and data privacy, security, and legal issues. The paper concludes with formulating future research agendas and presenting contributions to literature and implications for practice.info:eu-repo/semantics/acceptedVersio

    Active zone proteins are dynamically associated with synaptic ribbons in rat pinealocytes

    Get PDF
    Synaptic ribbons (SRs) are prominent organelles that are abundant in the ribbon synapses of sensory neurons where they represent a specialization of the cytomatrix at the active zone (CAZ). SRs occur not only in neurons, but also in neuroendocrine pinealocytes where their function is still obscure. In this study, we report that pinealocyte SRs are associated with CAZ proteins such as Bassoon, Piccolo, CtBP1, Munc13–1, and the motorprotein KIF3A and, therefore, consist of a protein complex that resembles the ribbon complex of retinal and other sensory ribbon synapses. The pinealocyte ribbon complex is biochemically dynamic. Its protein composition changes in favor of Bassoon, Piccolo, and Munc13–1 at night and in favor of KIF3A during the day, whereas CtBP1 is equally present during the night and day. The diurnal dynamics of the ribbon complex persist under constant darkness and decrease after stimulus deprivation of the pineal gland by constant light. Our findings indicate that neuroendocrine pinealocytes possess a protein complex that resembles the CAZ of ribbon synapses in sensory organs and whose dynamics are under circadian regulation

    Enhancing Art Gallery Visitors’ Learning Experience using Wearable Augmented Reality: Generic Learning Outcomes Perspective

    Get PDF
    The potential of ICT-enhanced visitor learning experience is increasing with the advancement of new and emerging technologies in art gallery settings. However, studies on the visitor learning experience using wearable devices, and in particular those investigating the effects of wearable augmented reality on the learning experience within cultural heritage tourism attractions are limited. Using the Generic Learning Outcomes framework, this study aims to assess how the wearable augmented reality application enhances visitor’s learning experiences. Forty-four volunteers who were visiting an art gallery were divided into two groups, an experimental group and a control group. Following their visit to the gallery, the volunteers, who had and had not used wearable computing equipment, were interviewed, and the data were analysed using thematic analysis. Findings revealed that the wearable augmented reality application helps visitors to see connections between paintings and personalise their learning experience. However, there are some drawbacks such as lack of visitor-visitor engagement and the social acceptability
    • …
    corecore