Abstract

We consider the stationary nonlinear magnetic Choquard equation [(-\mathrm{i}\nabla+A(x))^{2}u+V(x)u=(\frac{1}{|x|^{\alpha}}\ast |u|^{p}) |u|^{p-2}u,\quad x\in\mathbb{R}^{N}%] where A A\ is a real valued vector potential, VV is a real valued scalar potential,, N3N\geq3, α(0,N)\alpha\in(0,N) and 2(α/N)<p<(2Nα)/(N2)2-(\alpha/N) <p<(2N-\alpha)/(N-2). \ We assume that both AA and VV are compatible with the action of some group GG of linear isometries of RN\mathbb{R}^{N}. We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition u(gx)=τ(g)u(x)   for allgG,xRN, u(gx)=\tau(g)u(x)\text{\ \ \ for all}g\in G,\text{}x\in\mathbb{R}^{N}, where τ:GS1\tau:G\rightarrow\mathbb{S}^{1} is a given group homomorphism into the unit complex numbers.Comment: To appear on ZAM

    Similar works

    Full text

    thumbnail-image

    Available Versions