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QUANTUM SYMMETRIC PAIRS AND REPRESENTATIONS OF

DOUBLE AFFINE HECKE ALGEBRAS OF TYPE C∨Cn

DAVID JORDAN AND XIAOGUANG MA

Abstract. We build representations of the affine and double affine braid

groups and Hecke algebras of type C∨Cn, based upon the theory of quan-
tum symmetric pairs (U,B). In the case U = Uq(glN ), our constructions

provide a quantization of the representations constructed by Etingof, Freund

and Ma in [EFM], and also a type C∨Cn generalization of the results in [J].

1. Introduction

In [Ch], Ivan Cherednik introduced the double affine Hecke algebra (abbreviated
DAHA, also known as the Cherednik algebra), as a generalization of the affine
Hecke algebra (AHA) associated to an affine root system. The DAHA is a quotient
of the group algebra of the double affine braid group by additional Hecke relations.
Cherednik used these algebras to prove Macdonald’s constant term conjecture for
Macdonald polynomials. In [S], Sahi constructed a six-parameter DAHA associated
to the root system C∨Cn, and used it to analyze the non-symmetric Macdonald
and Koornwinder polynomials.

The degenerate affine Hecke algebra (dAHA) of a Coxeter group was defined by
Drinfeld and Lusztig ([Dri], [Lus]). It is a certain multi-parameter deformation of
the smash product of the group algebra of the Coxeter group with the coordinate
ring of its reflection representation. The degenerate double affine Hecke algebra
(dDAHA) of a root system was introduced by Cherednik (see [Ch]). It is a certain
multi-parameter deformation of the smash product of the affine Weyl group with
the coordinate ring of its reflection representation. The relationship between these
algebras and their non-degenerate counterparts is analogous to that between U(g)
and Uq(g): the former may be recovered from the latter by taking quasi-classical
limits with respect to the defining parameters.

Motivated by conformal field theory, Arakawa and Suzuki ([AS]) constructed a
functor from the category of Harish-Chandra U(glN )-bimodules to the category of
representations of the dAHA of type An for each n ≥ 1. This construction was
extended to the dDAHA of type An by Calaque, Enriquez, and Etingof in [CEE],
using the theory of ad-equivariant D-modules on the algebraic group G = GLN .

In [EFM], these constructions were extended to encompass BCn root systems.
More precisely, they considered the symmetric pair of Lie algebras (g, k) = (glN , glp×
glq)

1 associated to the real symmetric pair (G,K) = (U(N), U(p)×U(q)). For each
n, there were constructed functors from the category of Harish-Chandra modules for

1991 Mathematics Subject Classification. Primary 17B37; Secondary 20C08.

Key words and phrases. Quantum D-modules, double affine Hecke algebras.
1all Lie algebras are over C, and N = p+ q.
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2 DAVID JORDAN AND XIAOGUANG MA

(G,K) to the representations of the dAHA, and from the category of K-equivariant
D-modules on G/K to the representations of the dDAHA of type BCn.

In [J], the constructions of [CEE] were quantized to encompass the theory of
quantum groups, and the non-degenerate DAHA’s of type An. Namely, for a
quasi-triangular Hopf algebra U, an integer n ≥ 1, and V ∈ U−mod, there were
constructed functors from the category of U-modules to the category of represen-
tations of the affine braid group, and from the category ad-equivariant quantum
DU-modules to the representations of the double affine braid group. In case the
braiding on V satisfies a Hecke relation, the functors take values in representations
of the AHA and DAHA, respectively. Moreover it was shown that in the case
U = Uq(slN ), the quasiclassical limit q 7→ 1 recovers the construction of [CEE].

In this paper, we quantize the constructions of [EFM], by appealing to the theory
of quantum symmetric pairs, as pioneered by Letzter [L1, L2], and developed further
in [DS, Kol, OS], among others. To a simple Lie algebra g and an involution
θ : g → g is associated the (classical) symmetric pair (g, gθ). Here gθ is the
subalgebra of g whose elements are fixed by θ. The quantum analogue of U(gθ) is a
left (alternatively, right) coideal subalgebra B ⊂ Uq(g), which specializes to U(gθ)
as q→ 1. The pair (Uq(g),B) is called a quantum symmetric pair.

For the simple Lie algebras, such pairs were explicitly described by Letzter
([L1, L2]): interestingly, it was shown that in the case of (glN , glp × glq), there
is a not a unique quantization, but rather a one-parameter family, {Bσ}σ∈C, of
subalgebras, essentially because the involution θ is replaced by a one-parameter
family of automorphisms of Uq(g) (see [L1], p. 50). In this case, the algebras Bσ

are known as quantum Grassmannians, and were first introduced by Dijkhuizen,
Noumi and Sugitani in the paper [DNS].

Basic algebraic properties of quantum symmetric pairs, and their connection
to the so-called reflection equations were established in [KoSt]. In particular, it
was explained there how so-called Noumi coideal subalgebras can be constructed
canonically, starting from a character of the braided dual, A, of U. In the case
U = Uq(glN ), characters of the reflection equation algebra were classified by Mudrov
[Mud], and it was explained in [KoSt] how to extend these to its localization, A.

Our general setup is as follows. We let U be a quasitriangular Hopf algebra.
We choose a character f : A → C, and denote by Bf ⊂ U the corresponding left
Noumi coideal subalgebra. We further choose a character χ : Bf → C. For each
n ≥ 1, we construct with this data a functor from the category of U-modules to
representations of the affine braid group of type C∨Cn. Next, we choose a second
character g : A → C, and denote by B′g the corresponding right Noumi coideal
subalgebra. We let χ′ : B′g → C be a character. To this data, we associate a
functor from the category of DU-modules (satisfying some technical conditions) to
the category to representations of the double affine braid group of type C∨Cn, by
analogy with [EFM]. Our main results are Theorems 5.1, 6.10, 8.1, and 9.1, where
we detail the construction of the functors, and apply them in examples to obtain
representations of the AHA and DAHA, respectively. We obtain representations of
the DAHA with five continuous and one discrete parameter: one parameter for each
subalgebra, one parameter for each character, the overall quantization parameter
q, and finally the integers N and p defining the classical pair; for the AHA we have
three continuous parameters: we choose one subalgebra, its character, and we have
the overall quantization parameter q.
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The first part of the paper contains the basic constructions, and is organized as
follows. In Section 2, we recall the definition of the braid groups and Hecke algebras
of type C∨Cn. In Section 3, we recall the construction of the braided coordinate
algebra, and its relation to reflection equations. In Section 4, we recall definitions
and notation for quasi-triangular Hopf algebras, Noumi co-ideal subalgebras, and
their diagrammatic calculus. In Section 5, we construct representations of the affine
braid group using the machinery in the preceding sections. In Section 6, we recall
the construction of quantum D-modules and construct representations of double
affine braid group from them.

The remainder of the paper is devoted to connections to the AHA and DAHA
coming from quantum groups, and is considerably more technical. In Section 7, we
recall the quantum group Uq(glN ), the classical symmetric pair (glN , glp×glq), and
its quantum analog. In Sections 8-9, we show that the constructions of Sections
5 and 6 take values in representations of the AHA and DAHA, respectively, when
applied in the context of Section 7. Finally, in Section 10, we compute the quasi-
classical limits of our construction and show that they degenerate to those of [EFM].

Acknowledgments. The authors would like to thank Pavel Etingof for his guid-
ance, Ting Xue for helpful discussions, and Stefan Kolb for many helpful comments
on our first draft, and for pointing us to Theorem 7.3. Finally, we thank the anony-
mous referee for thorough reading and many helpful suggestions and corrections.
The work of both authors was supported by NSF grant DMS-0504847.

2. Double affine braid group and Hecke algebra of type C∨Cn

2.1. The root system ΦC
∨Cn of type C∨Cn. Let En = Rn, with standard basis

εi and inner product (εi, εj) = δij . We define the set of roots ΠC∨Cn = {±εi ±
εj}i 6=j ∪ {±εi} ∪ {±2εi} ⊂ En. Then ΦC

∨Cn := (En,ΠC∨Cn) defines a non-reduced
root system. We choose as a set of positive simple roots:

ΠC∨Cn
+ = {αi = εi − εi+1}n−1

i=1 ∪ {αn = εn}.

Let α0 denote the additional affine positive root. Then {αi, i = 0, . . . , n} form the
affine root system of type C∨Cn. The corresponding affine Dynkin diagram is

• • • • • •
0 1 2 n−2 n−1 n
< >

For each α ∈ ΠC∨Cn , we sα denote the corresponding reflection, and let si := sαi .

Definition 2.1. The affine Weyl group, Ŵn, of type C∨Cn, is the group generated
by s0, . . . , sn, with relations s2

i = 1, and the braid relations:

sisj = sjsi, (|i− j| > 1), sisi+1si = si+1sisi+1, (i ∈ {1, . . . , n− 1}),

s0s1s0s1 = s1s0s1s0 sn−1snsn−1sn = snsn−1snsn−1.

The Weyl group,Wn, of type C∨Cn, is the subgroup generated by elements s1, . . . , sn.
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2.2. Double affine braid groups and Hecke algebras in type C∨Cn.

Definition 2.2. The affine braid group, B̂n of type C∨Cn is the group generated
by T0, . . . , Tn, subject to the braid relations:

TiTj = TjTi, (|i− j| > 1), TiTi+1Ti = Ti+1TiTi+1, (i ∈ {1, . . . , n− 1}),(1)

T0T1T0T1 = T1T0T1T0 Tn−1TnTn−1Tn = TnTn−1TnTn−1, .(2)

The braid group, Bn, is the subgroup generated by T1, . . . , Tn.

Definition 2.3. The double affine braid group, B̃n, is the group generated by the

affine braid group B̂n and K0, subject to the cross relations:

K0Ti = TiK0, (i ∈ {2, . . . , n});
T1K0T1K0 = K0T1K0T1;

T0T
−1
1 K0T1 = T−1

1 K0T1T0.(3)

Remark 2.4. This presentation for the double affine braid group is different from
that in [S] and [EGO], and was chosen to allow the most concise constructions for
the current work. It is closely related to presentations in [IS]. In Section 10.6, it is
shown that our presentation agrees with the earlier ones.

For later use, we introduce the following notations:

T(i···j) :=

 TiTi+1 · · ·Tj−1, j > i > 0,
Ti−1 · · ·Tj+1Tj , i > j > 0,

1, i = j.

Pi := Ti · · ·Tn−1TnTn−1 · · ·Ti = T(i···n)TnT(n···i).

Remark 2.5. The group B̃n admits the following geometric description. Let E be
an elliptic curve with coordinate z, and let

C̃onfn(E) := {(z1, . . . , zn) ∈ En | zi 6= ±zj , for i 6= j, and zi 6= −zi.}

Confn(E) := C̃onfn(E)/((Z/2Z)n o Sn),

where each Z/2Z replaces zi with −zi, and Sn permutes the factors. Then one

can check that π1(Confn(E)) ∼= B̃n. This is a double affine version of the usual
identification [Br] of Bn with π1(hreg/Wn), where

hreg := {(z1, . . . , zn) ∈ Cn | zi 6= 0, zi 6= ±zj , for i 6= j}.

See Section 10.6 for further discussion.

We fix a field K, and let v, t, t0, u0, tn, un ∈ K×.2 For an operator X and a
parameter x, we use the notation X ∼ x to mean that X satisfies the Hecke
relation (X − x)(X + x−1) = 0.

Definition 2.6. The double affine Hecke algebra, HHn(v, t, t0, tn, u0, un), of type

C∨Cn, is the quotient of the group algebra K[B̃n] by the Hecke relations:

T0 ∼ t0, Tn ∼ tn, K0 ∼ un, (vK0P1T0)−1 ∼ u0, T1, . . . , Tn−1 ∼ t.

2For historical reasons, it is common to replace these parameters formally with their square
roots. For simplicity, we have dropped this convention.
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The affine Hecke algebra, Hn(t, t0, tn), of type C∨Cn, is the quotient of the group

algebra K[B̂n] by the relations:

T0 ∼ t0, Tn ∼ tn, T1, . . . , Tn−1 ∼ t.
The Hecke algebra, Hn(t, tn), of type C∨Cn, is the quotient of the group algebra

K[Bn] by the relations:

Tn ∼ tn, T1, . . . , Tn−1 ∼ t.
Remark 2.7. Hn(t, t0, tn) and Hn(t, tn) are subalgebras of HHn(v, t, t0, tn, u0, un)
in the obvious way.

Remark 2.8. There are three variants of the above setup, depending on the
choice of K. One may consider: K = C, and the parameters are numerical,
K = C(v, t, t0, tn, u0, un) and the parameters are indeterminates, K = C((~)) and
the parameters are formal Laurent series. The latter will appear most notably in
Section 10, and in that case, we also complete all algebras with respect to ~.

3. Characters of the braided dual and the reflection equation

In this section we recall a categorical construction of a certain quantization of the
algebra of functions on an algebraic group, which Majid dubbed the covariantized
coordinate algebra, or simply the braided group. For clarity of presentation, we
recall some elementary constructions in the theory of tensor categories and phrase
our constructions in these terms; of course, we could just as well phrase construc-
tions in terms of generators and relations (see Example 4.5). For details about
locally finite tensor categories, see [De1], [De2].

Definition 3.1. An abelian category C is called locally finite if every object X ∈ C
has finite length, and all Hom spaces are finite dimensional.

Example 3.2. The category of finite dimensional modules over an algebra (possibly
infinite dimensional) is a locally finite abelian category, equipped with a functor to
vector spaces.

Let (C,⊗, σ) be a locally finite braided tensor category, and let C � C denote its
Deligne tensor square. If C is semisimple, then C � C is also, with simples X � Y ,
for X,Y ∈ C simple. In any case, we will refer to objects in C�C of the form V �W
as pure objects: every object in C � C is a finite iterated extension of pure objects.
C � C is also a tensor category with tensor product ⊗2, given on pure objects by:

(V �W )⊗2 (X � Y ) := (V ⊗X) � (W ⊗ Y ).

C � C becomes a braided tensor category with braiding σ2 := σ � σ. The tensor
product on C gives a functor

T : C � C → C, V �W 7→ V ⊗W.
We can equip T with the structure of a tensor functor by using the braiding σW,X :

β : T (V �W )⊗T (X�Y ) = V ⊗W ⊗X⊗Y
σW,X−−−−→ V ⊗X⊗W ⊗Y = T (V �W ⊗2X�Y ).

There is an important ind-algebra3 A = CoEnd (C) in C � C, first constructed by
Majid [Maj]. As we will use it extensively in what follows, we recall its construction

3An ind-object in C is a direct limit of objects in C, but not, in general, itself an object of C.
Rather it is an object in a completion of C with respect to inductive limits; this distinction is not

particularly important for us.
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here. To begin, we consider the (very large) ind-object Ã in C � C:

Ã =
⊕
V ∈C

V ∗ � V.

Let Q ⊂ Ã denote the sum over all V,W, and φ : V →W of the images in Ã of

xφ := φ∗ � idV − id∗W �φ ∈ Hom(W ∗ � V, V ∗ � V ⊕W ∗ �W ).(4)

As an ind-object in C, we define A := Ã/Q. Note that for any object V ∈ C, we
have a canonical map iV : V ∗�V → A. A multiplication µ : A⊗2 A→ A is given
on each V ∗ � V , W ∗ �W by

µ : (V ∗⊗W ∗)� (V ⊗W )
σV ∗,W∗�id
−−−−−−−→ (W ∗⊗V ∗)� (V ⊗W ) ∼= (V ⊗W )∗� (V ⊗W ),

which makes A into a unital associative algebra in C�C (one uses the braid relations
on the first factor). By tensor functoriality, T (A) also becomes a unital associative
algebra in C with multiplication T (µ) ◦ β. Furthermore, T (A) carries the structure
of a coalgebra in C, with comultiplication defined on generators V ∗ ⊗ V :

∆ := id∗V ⊗ coevV ⊗ idV : V ∗ ⊗ V → V ∗ ⊗ V ⊗ V ∗ ⊗ V ⊂ T (A)⊗ T (A).

The counit is defined on generators by the pairing ev : V ∗ ⊗ V → 1. Any object in
C is naturally both a right and left comodule over T (A) via the maps

∆R
V := coevV ⊗ id : V → V ⊗ V ∗ ⊗ V ⊂ V ⊗ T (A),(5)

∆L
V := id⊗ coev∗V : V → V ⊗∗ V ⊗ V ⊂ T (A)⊗ V.(6)

Finally, we have the antipode map S : T (A)→ T (A) defined on generators by

S|V ∗⊗V := (uV ⊗ id) ◦ σV ∗,V : V ∗ ⊗ V → V ∗∗ ⊗ V ∗,

where uV : V → V ∗∗ is the Drinfeld element (see, e.g. [KlSch], p. 247). Together
these maps make T (A) into a braided Hopf algebra in C, as defined by Majid [Maj].
Note that ∆L = σV,A ◦ (id⊗S) ◦∆R.

Remark 3.3. A more concise description of A may be given in the language
of module categories. For a C-module category M, and M,N ∈ M, we let
Hom(M,N) ∈ C denote the representing object for the functor HomM(• ⊗M,N)
(called the inner Homs from M to N). When M = N , Hom(M,M) has a natural
algebra structure (see [EO] for details). Any tensor category C has the structure
of a C � C⊗−op module-category, given by (X � Y )⊗M := X ⊗M ⊗ Y . Thus we
have an algebra A′ := Hom(1, 1) ∈ C � C⊗−op; A′ represents the functor taking
X � Y to the co-invariants of X ⊗ Y . Finally A is the C � C algebra equivalent to
A′ via the functor id�σ : C � C → C � C⊗−op. We will not use this construction of
A in later sections, but rather its explicit presentation in terms of the relations of
equation (4).

Key to applications in Lie theory and quantum groups is the observation that
when C is semi-simple, A admits the following Peter-Weyl decomposition:

Proposition 3.4. Suppose that C is semi-simple. Then we have:

A ∼=
⊕

V simple

V ∗ � V,

where the sum counts each isomorphism class of simple objects exactly once.
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Proof. Apply the relations in equation (4) to isomorphisms φ : V → W , to reduce
the sum to isomorphism classes of objects V . Apply equation (4) to the projections
and inclusions of simple components, to further reduce the sum to the simple objects
V . �

4. Quasi-triangular Hopf algebras

For the rest of the paper, we work under the assumption that C is a locally finite
braided tensor subcategory of the category of finite dimensional complex represen-
tations of a quasi-triangular Hopf algebra U. We denote by F the corresponding
tensor functor to vector spaces. For any U-module V ∈ C, we denote the action by
ρV : U→ EndC(V ).

4.1. The universal R-matrix and L-operators. Recall (see, e.g. [KlSch] for
details) that a quasi-triangular Hopf algebra is a Hopf algebra U, with an invertible

element R =
∑
i ri ⊗ r′i ∈ Û⊗U 4, called the universal R-matrix, such that

∆cop(u) = R∆(u)R−1, for all u ∈ U, and

(∆⊗ id)(R) = R13R23, (id⊗∆)(R) = R13R12,

where R12 =
∑
i ri ⊗ r′i ⊗ 1, R13 =

∑
i ri ⊗ 1⊗ r′i, and R23 =

∑
i 1⊗ ri ⊗ r′i.

The braiding in C is given by

σV,W = τV,W ◦RV,W : V ⊗W
∼=−→W ⊗ V,(7)

for any V,W ∈ C. Here RV,W := ρV ⊗ ρW (R), τV,W is the flip operator V ⊗W →
W ⊗V, v⊗w 7→ w⊗v. We will suppress “⊗ id” from morphisms on tensor products
when it is clear from context (e.g. σV,W := id⊗σV,W : • ⊗ V ⊗W → •⊗W ⊗ V ).

Remark 4.1. Usually R is assumed to lie in U ⊗U rather than its completion.
However many examples - in particular those coming from quantum groups - fall
into this more general context, so we adopt this definition. One could alterna-
tively work with comodules over co-quasitriangular Hopf algebas, but we prefer the
present, equivalent, formalism.

For any U-module V , we define the “L-operators”:

L+
V = (id⊗ ρV )(R) ∈ U⊗ EndC(V ),

L−V = (ρV ⊗ id)(R−1) ∈ EndC(V )⊗U.

For a basis of V , {ei}, we define elements lV±ij ∈ U by

L+
V (1⊗ ej) =

∑
i

lV+
ij ⊗ ei, and L−V (ej ⊗ 1) =

∑
i

ei ⊗ lV−ij .(8)

We have:

(9) ∆(lV±ij ) =
∑
k

lV±ik ⊗ l
V±
kj .

4For an algebra A, let Â denote its profinite completion, i.e. the completion in the topology in

which a basis of neighborhoods of zero is formed by the annihilators of finite dimensional modules.

In other words,
∑
k ak ∈ Â if, and only if, for all V ∈ A-mod finite dimensional, akV = 0, for

k � 0.
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4.2. The CoEnd algebra A. A fiber functor on C� C is defined by F2 := F ◦T :
C�C → Vect. Now let A = CoEnd (C) be the ind-algebra in C defined in Section 3.
Then F2(A) becomes an algebra in the usual sense (i.e. in the category of vector
spaces), by tensor functoriality.

Remark 4.2. In this case, it is well known that F2(A) is isomorphic as a coalgebra
to the restricted dual U◦ of U, and that the product in F2(A) is twisted from that
of U◦ by a certain cocycle built from the braiding, hence the name “braided dual”.

For any V ∈ C, recall the comodule maps ∆R
V ,∆

L
V defined in equations (5), (6).

Fixing a basis of V , we can write them as matrices, with coefficients in F2(A):

∆R
V =

dimV∑
i,j=1

Eji ⊗ a
i
j(V ), ∆L

V =

dimV∑
i,j=1

ãij(V )⊗ Eji .

Here Eji is the matrix Eji vk = δjkvi. Now suppose V,W ∈ C with choosen basis.
Define

CRV :=

dimV∑
i,j=1

Eji ⊗ id⊗aij(V ) ∈ EndC(V )⊗ EndC(W )⊗ T (A),

CRW :=

dimW∑
i,j=1

id⊗Elk ⊗ akl (W ) ∈ EndC(V )⊗ EndC(W )⊗ T (A).

Similarly, we have operators CLV , C
L
W defined using ∆L

V ,∆
L
W instead.

Theorem 4.3 ([Maj],[DKM]. See [J], Proposition 2.14 for a short proof.). For any
V,W ∈ C, the generators V ∗⊗V and W ∗⊗W in F2(A) satisfy the relations of the
reflection equation algebra:

(10) σW,V C
R
V σV,WC

R
W = CRWσW,V C

R
V σV,W ,

(11) σW,V C
L
WσV,WC

L
V = CLV σW,V C

L
WσV,W .

Example 4.4. If we take C to be the symmetric category of finite dimensional
U(g)-modules, then the resulting algebra F2(A) is the coordinate algebra O(G) for
the connected, simply connected algebraic group with Lie algebra g.

Example 4.5. If we instead take C to be the category of finite dimensional, type
I Uq(glN )-modules (see Section 7.1), the resulting algebra F2(A) is Majid’s covari-
antized coordinate algebra. F2(A) is twist equivalent (though not isomorphic) to
the usual dual quantum group Oq(G), and has been suggested ([Maj], [DM1]) as
a preferable replacement for Oq(G) in the context of braided geometry, as it is
constructed to be covariant for the coadjoint action of Uq(g).

We can write a presentation of F2(A) explicitly as follows. It is well-known
that in this case, C is generated as a tensor category by the defining representation
CN with highest weight (1, 0, . . . , 0), together with the dual of the determinant
representation ΛNq (CN ). It follows immediately that F2(A) is generated as an

algebra by the elements af,v, f ∈ (CN )∗, v ∈ CN , subject to the relations (10) with
V = W = CN , and the inverse of the central element detq. Even more explicitly,
we can choose the standard basis {ei} of weight vectors for V0, and its dual basis
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{ei} for V ∗0 , and set aij := aei,ej . Then F2(A) is the algebra generated by the aij
and det−1

q , subject to relations:

(12)
∑

Rikmsa
s
lR

lm
una

n
v =

∑
ailR

lk
mna

n
sR

sm
uv .

As has been noted in many places, these are precisely the so-called “reflection
equations”.

4.3. Characters of F2(A). Now suppose that f : F2(A) → C is a character

(homomorphism of algebras). For V ∈ C, let JV :=
∑
i,j f(aij(V ))Eji , and J ′V :=∑

i,j f(ãij(V ))Eji . Then we have the following well-known

Proposition 4.6. For all V,W ∈ C, we have the following relation in EndC(V ⊗
W ):

σW,V JV σV,WJW = JWσW,V JV σV,W .(13)

σW,V J
′
WσV,WJ

′
V = J ′V σW,V J

′
WσV,W .(14)

Proof. Apply f to the equations (10) and (11). �

We will refer to equations (13) and (14) as the “right-handed” and “left-handed”
reflection equations, respectively.

4.4. Coideal subalgebras associated to characters. The operators JV and J ′V
constructed from f in the previous section are not, in general, realized as morphisms
of U-modules. Rather, they are morphisms of Bf -modules (resp. B′f -modules), for

certain coideal subalgebras Bf ,B
′
f ⊂ U constructed in [KoSt], which we now recall.

Let Bf and B′f denote the subalgebras of U generated by the sets:

Φf := {cil =

N∑
j,k=1

lV+
ij (JV )jkS(lV−kl )|i, l = 1, . . . N},(15)

Φ′f := {c′il =

N∑
j,k=1

S(lV−ij )(J ′V )jkl
V+
kl |i, l = 1, . . . N},(16)

respectively. Here S is the antipode of the Hopf algebra U and N = dimV . Bf

and B′f are independent on the choice of basis, and it follows from (9) that they
form left and right coideal subalgebras, respectively:

∆(Bf ) ⊂ U⊗Bf , ∆(B′f ) ⊂ B′f ⊗U.

Proposition 4.7. The operator JV ∈ EndC(V ) is Bf -linear: JV (xv) = xJV (v) for
all v ∈ V and x ∈ Bf . The operator J ′V ∈ EndC(V ) is B′f -linear: J ′V (xv) = xJ ′V (v)

for all v ∈ V and x ∈ B′f .

Proof. Similar proofs have appeared in many sources, e.g. [KoSt], [DS], [NS]; we
include a proof here for the reader’s convenience. We prove the statement for JV ;
the statement for J ′V is similar. To show that JV commutes with all the ρV (cil)
is equivalent to showing that (id⊗JV2

) commutes with x =
∑
Eli ⊗ ρV (cil) ∈

EndC(V1 ⊗ V2), where V1 = V2 = V . We observe that

x =
∑

Eli ⊗ ρV (lV+
ij (JV )jkS(lV−kl )) = σV2,V1

JV1
σV1,V2

,

so that the claim reduces to the right handed reflection equation. �
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Remark 4.8. The proof of Proposition 4.7 relies on the observation that the ma-
trix coefficients of σV2,V1JV1σV1,V2 are precisely the generators of Bf . The same
observation provides the key steps in Lemmas 6.9 and 9.4.

4.5. JV -decorated Tangle Diagrams in C � C. Morphisms in a braided tensor
category may be conveniently manipulated using tangle diagram notation (see, e.g.
[K], Chapter XIV). It will be necessary to extend the tangle diagram notation in
two ways: first, we consider morphisms in the Deligne tensor product C�C; second,
we admit morphisms JV and J ′V which are not morphisms in C but rather in the
C-module categories of representations of the coideal subalgebras Bf and B′f from
Section 4.4.

Figure 1. The tangle diagram for the morphism φ of equation (17).

To depict an object of C�C, we draw the objects alongside one another, separated
by the � symbol. For a morphism f �g in C�C, we draw the corresponding tangle
diagrams alongside one another, joining the � symbols with a dotted line. We
follow the convention from [K] that morphisms move up the page. For example, for
f ∈ Hom(W,U), Figure 1 depicts the morphism:

(17) φ = (coevV ⊗ idX) � ((f ⊗ idV ) ◦ σ−1
W,V ◦ σ

−1
V,W ).

The linear maps JV and J ′V do not commute with the braiding in the ordinary
way, but may instead be manipulated in a tangle diagram by applying equations
(13) and (14), as depicted in Figure 2.

Figure 2. Equality of J-decorated tangle diagrams representing
equations (13) and (14), respectively.
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5. Some new representations of the affine braid group of type C∨Cn

Let C, F , and f be as in Section 4. For any objects M,V1, . . . , Vn ∈ C, consider
the vector space5:

F fV1,...,Vn
(M) := M ⊗ V1 ⊗ · · · ⊗ Vn.

For simplicity we will take V1 = · · · = Vn = V (though it is still convenient to

retain the indices), and in this case abbreviate F fV,n := F fV1,...,Vn
. Our goal in this

section is to construct an action of B̂n on F fn,V (M). Recall that the character f
determines a map JVi : Vi → Vi, for each i.

In the following construction, we make frequent use of the maps JV . As was
mentioned in Section 4.5, the only flexibility in moving the morphisms JV about
a tangle comes from the reflection equation for JV , and so we make repeated use
of that identity throughout. We will use the abbreviation QYBE (quantum Yang-
Baxter equation) to refer to relations of undecorated tangle diagrams.

5.1. The action of Bn. Let Ti = σVi,Vi+1
, for i = 1, . . . , n − 1. Then it is

well known that the Ti’s satisfy the braid relations (1). Now let Tn = JVn =

idM ⊗ id⊗(n−1)⊗JV . Then the required relation

TnTn−1TnTn−1 = Tn−1TnTn−1Tn

is equivalent to the right-handed reflection equation for JVn . Thus the above con-

struction gives an action of Bn on F fn,V (M). Related constructions have appeared

in [KoSt, tD, tDHO], under the name “universal cylinder forms”.

5.2. The action of T0. We let

T0 = P−1
1 (σV1,M ◦ σM,V1

)−1

See Figure 3 for the tangle diagram associated to T0. It is straightforward to verify
that TiT0 = T0Ti for i ≥ 2. We check T1T0T1T0 = T0T1T0T1 in Figure 4.

Figure 3. The morhpism T0

We have proven the following:

Theorem 5.1. The operators T0, . . . Tn define a representation of B̂n on F fn,V (M).
Thus we have a functor:

F fn,V : C → B̂n-mod, M 7→ F fn,V (M).

5While f does not affect the underlying vector space, it impacts the functor constructed in
Theorem 5.1, and so we introduce the notation here.



12 DAVID JORDAN AND XIAOGUANG MA

Figure 4. Proof of relation T1T0T1T0 = T0T1T0T1. The first and
third equalities use only QYBE, while the second uses the reflection
equation for J .

Remark 5.2. The pure (double, affine) braid group on n strands is the kernel of
the natural projection from the (double, affine) braid group to the symmetric group
Sn. It is clear from the proof that Theorem 5.1 extends more generally to the pure
affine braid group on n strands, if we drop the assumption that all Vi are equal.
Alternatively, given V1, . . . , Vn possibly distinct, we can construct a similar action
of the full affine braid group on the sum

F̃ fV1,...Vn
:=
⊕
σ∈Sn

M ⊗ Vσ(1) ⊗ . . .⊗ Vσ(n).

The same remark applies to Theorem 6.10.

6. Some new representations of the double affine braid group of
type C∨Cn

6.1. Quantum D-modules. Let U be a quasi-triangular Hopf algebra, and C be
a locally finite braided tensor subcategory of U-mod, as in Section 4. The algebra
DU of quantum differential operators6 is a Hopf algebra analog of the algebra of
differential operators on the algebraic group G with Lie algebra g: when U = U(g),
we have DU = D(G). In this section, we recall the definition of DU, and some
constructions from [VV] involving it. We have followed their notation as closely as
possible, though there are a few differences (in particular, see Remark 6.5).

Let A be the braided dual algebra defined in Section 3, and let Ã = (F �F )(A).
That is, we regard A as an algebra in vector spaces, where it is equipped with a (U⊗
U)-action. Note that Ã is not isomorphic to F2(A) considered previously (although

it is obviously twist equivalent). Ã is also a twist-equivalent to a subalgebra of U∗.

Namely, each f � v ∈ Ã, gives a linear functional af,v : U → C by af,v(u) = f(uv).

The product in Ã is such that

(18) (af,vag,w)(u) =
∑

ar′ig⊗rif,v⊗w(u) =
∑
i

arif,v(u(1))ar′ig,w(u(2)).

6A and thus DU depend on the choice of C, but we will suppress this in the notation
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We use “�” to denote the left adjoint action of U on itself: for x, y ∈ U, y�x :=
y(1)xS(y(2)), where ∆(x) = x(1) ⊗ x(2) is Sweedler’s implicit sum notation for the
coproduct. As there is no risk of confusion, we use the same symbol to denote the

action of U⊗U on Ã: for x, y ∈ U, and f⊗v ∈ Ã, we let (x⊗y)�(f⊗v) := xf⊗yv.

In particular, the coadjoint action of u ∈ U on a ∈ Ã is given by ∆(u) � a. Recall
that for vector spaces V ,W , τV,W : V ⊗W →W ⊗ V denotes the tensor flip.

Let U′ denote the left coideal subalgebra in U consisting of elements x which
generate a finite dimensional submodule under the adjoint action.

Definition 6.1. The algebra DU of quantum differential operators has underly-

ing vector space Ã ⊗ U; the natural inclusions of Ã ⊗ 1 and 1 ⊗ U are algebra
homomorphisms, and the commutation relations are given by the smash product:

(1⊗ x)(a⊗ 1) =
∑
i,j

((x(1) ⊗ 1) � a)⊗ x(2), for a ∈ Ã, x ∈ U.

We denote by ∂� : U → DU the inclusion into the subalgebra (1 ⊗ U). The

algebra U′ is a locally finite left U-module, and thus a right Ã comodule algebra,
via the adjoint action; we have a linear map: ad∗ : U′ → U′ ⊗A, u 7→

∑
i ui ⊗ gi.

By definition, we have
∑
i gi(v)ui = v(1)uS(v(2)), for all v ∈ U.

Remark 6.2. For quantum groups defined over formal power series, it is not nec-
essary to distinguish between U and its locally finite part, as the space of vectors
of finite type under the ad U-action is dense in the ~-adic topology, so for instance

the co-adjoint map ad∗ : U → U ⊗ Ã is automatically well-defined as a formal
power series – this is all we need.

Proposition 6.3. [[VV], Proposition 1.8.2(c), Remark 1.8.4] We have:

(1) If U has enough finite-dimensional modules (see, e.g. [J], Definition 2.12,
Theorem 2.18), then the algebra A is a faithful representation for DU. (We
will make this assumption from now on).

(2) The map ∂� : U′ → DU, given by

∂�(u) :=
∑
i,j

((rj ⊗ 1) � gi)∂�(S−1(uir
′
j)),

is a homomorphism of algebras.

(3) The algebra Ã is equivariant for the resulting U⊗U′ action.
(4) The images ∂�(U) and ∂�(U′) commute in DU, so we have a homomor-

phism ∂2 = ∂� ⊗ ∂� : U⊗U′ → DU.
(5) ∂2 is a quantum moment map: on generators V ∗ � V of A, the U ⊗U′-

action is given by:

∂2(x⊗ y)(f � v) = xf � yv.

Proof. The proof of 6.3.1 given in [J] applies as well here. We include proofs of
6.3.2-5 for the reader’s convenience, as our conventions differ slightly from [VV].

For 6.3.2, we claim that ∂�(u)f = (1 ⊗ u) � f = f(•u), for all f ∈ Ã. Here
f(•u)(v) := f(vu). This will imply that ρÃ ◦ ∂�, and thus ∂� by claim 6.3.1, is a
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homomorphism. Thus we let v ∈ U and compute:

(∂�(u)f)(v) = (
∑
i,j

(rj ⊗ 1) � gi)∂�(S−1(uir
′
j))f)(v)

=
∑
i,j

(gi(S(rj)−)f(uir
′
j−))(v)

=
∑
i,j,k

gi(S(rj)rkv(1))f(uir
′
jr
′
kv(2)), by (18)

=
∑
k

gi(v(1))f(uiv(2))

= f(v(1)uS(v(2))v(3))

= f(vu),

as claimed. The proof of 6.3.3 is clear, because Ã was constructed as an algebra in

C � C. To prove 6.3.4, it suffices to consider the DU-module Ã, by claim 6.3.1. We
have

(∂�(u1)∂�(u2)f)(v) = f(S(u2)vu1) = (∂�(u2)∂�(u1)f)(v).

Claim 6.3.5 follows from the proof of claim 6.3.2. �

Remark 6.4. We will make repeated use of the faithfulness of Ã in coming sections,
as in the proofs of 6.3.2 and 6.3.4 above. In particular, the proofs of Proposition
6.8 and Theorem 9.1 require us to check certain relations amongst elements in
EndC(M ⊗ U), where M is a DU-module, and U is a finite dimensional vector
space. Each relation is of the form (ρM ⊗ id)(X) for some X ∈ DU ⊗ EndC(U),
and thus holds for all DU modules if, and only if, X is already zero. Since A is
faithful, we can verify X = 0 by evaluating at M = A.

Remark 6.5. The algebra Ã is constructed to be equivariant for a U⊗U-action,
while the algebra F2(A) is equivariant for the diagonal U-action. In [VV], there is
yet another relative of A, denoted F, which is equivariant for a Uco−op⊗U-action.
These algebras are not each isomorphic. However, the smash-product algebras DU

defined from them are isomorphic. See [VV], Proposition 1.4.2 for details.

6.2. Non-degenerate quantum D-modules. Classically, a D(G) module is a
module over the algebra U(g)⊗ U(g) via the inclusions of U(g) into D(G) by left-
and right-invariant differential operators. The quantum analog of these actions are
given by the homomorphism ∂2 : U′ ⊗U′ → DU. For U = U(g), we have U′ = U,
and this recovers the commuting actions entirely; for more general quasi-triangular
Hopf algebras U (including those coming from quantum groups), it can happen
that U′ 6= U.

We thus introduce the following definitions. We denote by C̃ and D̃ the categories

of U-modules and U′-modules, respectively. We denote by Res : C̃ → D̃ the functor
of restriction.

Definition 6.6. A non-degenerate DU-module M is an object of C̃ � C̃, together
with the structure of a DU-module on (id�Res )(M), such that the two actions of
U⊗U′ coincide.

Remark 6.7. In other words, we ask for an extension of the action of ∂�(U′) to an
action of U. For a general quasi-triangular Hopf algebra, it is not completely clear
how many DU modules admit non-degenerate structure. However, see Section 7.3.
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6.3. Construction of the representations. Let M be a non-degenerate DU-
module. Let f, g be two characters of A, and let J := JV be the numerical solution
to the right-handed reflection equation for f , and J ′ := J ′V be the numerical solution
to the left-handed reflection equation for g. Let χ : Bf → C be a character, and
let 1χ denote the associated one dimensional representation. We regard any non-
degenerate DU-module M as a U⊗U-module via the homomorphism ∂2 of Section
6.1, which we extend to U⊗U. We then define (reusing the previous notation):

F f,χ,gn,V := HomBf (1χ,M ⊗2 (1� V1)⊗2 · · · ⊗2 (1� Vn)).

In other words, we regard each Vi as an object in C�D, i.e. a U⊗U′-module with
trivial action in the first components. Here Bf acts on the tensor product via the

restiction of the homomorphism ∂� : Bf → DU. We let B̂n act as before, acting
always on the second tensor component (which means it acts by left translation,
which are right-invariant quantum vector fields on M).

We define the following operator

(19) K0 := µM ◦ σ1�V,M ◦ ((J ′ ⊗ 1) ◦ coevV �(id⊗ coev∗V )) ◦ σ−1
1�V1,M

,

depicted in the following figure:

K0 is thus constructed from Bf -linear (U-linear, even) morphisms on the second
�-component, and so it automatically preserves spaces of Bf -invariants.

Proposition 6.8. We have following identity:

T1K0T1K0 = K0T1K0T1, and K0Ti = TiK0 for i ≥ 2.

Proof. The second set of relations is clear because in this case Ti and K0 act on
distinct tensor factors. To show the first relation, we will compute it explicitly
in the case M = A, as in Remark 6.4. For this, we can explicitly compute the
multiplication µM = µA on the generating subspaces W ∗ � W of A, where K0

takes the simpler form of Figure 5.
In Figure 6, we prove the relation T1K0T1K0 = K0T1K0T1. �

It remains to show relation (3) in Definition 2.3.

Lemma 6.9. On the space of χ-invariants, we have the identity

T−1
0 = σV,M J̃V1σ

−1
V,M , where J̃ =

∑
EliρV (S(l+ijχ(cjk)S(l−kl))).
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Figure 5. K0 acting on the generating subspace W ∗ �W of A.

Figure 6. Proof of T1K0T1K0 = K0T1K0T1. The first equality
applies the relations in equation (4) between the dotted lines, not-
ing that the two tangles appearing there are adjoint-inverse to one
another. The second equality applies QYBE and the left-handed
reflection equation for J ′.

Proof. We compute:

T−1
0 = σV,MσM,V T(1···n)TnT(n···1)

= σV,MσM,V T(1···n)TnT(n···1)σV,Mσ
−1
V,M

= σV,M (
∑
i,l

(Eli)V1
⊗ (cil)M⊗V2⊗···Vn)σ−1

V,M

= σV,M (
∑

EliρV (S(l+ijχ(cjk)S(l−kl))))V1σ
−1
V,M ,

as desired. In the final equality, we have applied the identity

(1⊗ x) = (S(x(1))⊗ 1)(x(2) ⊗ x(3)) = (S(x(1))χ(x(2))⊗ 1)

to x = cil, using the left coideal property for Bf . �

The final relation (3) of Definition 2.3 is computed in Figure 7. We have proven
the following:
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Figure 7. Proof of relation T−1
1 K0T1T0 = T0T

−1
1 K0T1. We have

applied Lemma 6.9 to simplify the appearance of T0 in both sides
of the equality. The moves from the left hand side to the right
hand side are only QYBE.

.

Theorem 6.10. The operators T0, . . . Tn and K0 define a representation of B̃n on

F f,χ,gn,V (M). We have a functor:

F f,χ,gn,V :
non-degenerate
DU-modules

−→ B̃n-mod.

7. Quantum groups and quantum symmetric pairs

7.1. The Drinfeld-Jimbo quantum group Uq(glN ) and its representations.
Let g = gl(N,C) be the Lie algebra of general linear algebraic group
G = GL(N,C). Let EN = RN , with standard basis εi and inner product (εi, εj) = δij .

Let Π
AN−1

+ = {αi = εi − εi+1|i = 1, . . . , N − 1} be the set of simple roots of g and

ΠAN−1 be the set of roots. Let Λ (resp. Λ+) be the set of integral (dominant
integral) weights for glN :

Λ = {m1ε1 + · · ·+mNεN | mi ∈ Z}.

Λ+ = {m1ε1 + · · ·+mNεN | mi ∈ Z,m1 ≥ · · · ≥ mN}.
We let ωN := ε1 + · · · + εN denote the fundamental weight corresponding to the
determinant representation.

Let q ∈ C× be a nonzero complex number and assume q is not a root of unity.
Set Ei := Eαi and Fi := Fαi for each simple root. Then the Drinfeld-Jimbo algebra
Uq(g) is generated by elements Ei, Fi, (1 ≤ i ≤ N − 1), and Kj ,K

−1
j (1 ≤ j ≤ N),

with relations:

KiKj −KjKi = 0, KiK
−1
i = K−1

i Ki = 1,

KiEjK
−1
i = qδi,j−δi,j+1Ej , KiFjK

−1
i = q−δi,j+δi,j+1Fj ,

EiFj − FjEi = δi,j
KiK

−1
i+1−K

−1
i Ki+1

q−q−1 ,

EiEj − EjEi = 0, FiFj − FjFi = 0, |i− j| ≤ 2,

E2
i Ei±1 − (q + q−1)EiEi±1Ei + Ei±1E

2
i = 0,

F 2
i Fi±1 − (q + q−1)FiFi±1Fi + Fi±1F

2
i = 0.
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For any λ ∈ Λ with λ =
∑
i niεi, we will denote Kλ := Kn1

1 · · ·K
nN
N . The Hopf

structure on Uq(g) is given by:

∆(K±i ) = K±i ⊗K
±
i , ∆(Ei) = Ei ⊗KiK

−1
i+1 + 1⊗ Ei,

∆(Fi) = Fi ⊗ 1 +K−1
i Ki+1 ⊗ Fi, ε(Ki) = 1, ε(Ei) = ε(Fi) = 0,

S(Ki) = K−1
i , S(Ei) = −EiK−1

i Ki+1, S(Fi) = −KiK
−1
i+1Fi.

We will consider the block of type I Uq(g)-modules, where the generators Ki act
on a vector v of weight µ by q<εi,µ>. See [KlSch] for details.

7.2. The vector representation of Uq(g). Now let ei be the standard basis for
V = CN . The vector representation ρV of Uq(g) on V = CN is given by:

ρV (Ki) = q−1Eii +
∑
i 6=j E

j
j , i = 1, . . . , N,

ρV (Ei) = Eii+1, ρV (Fi) = Ei+1
i , i = 1, . . . , N − 1.

The R-matrix for the vector representation can be expressed explicitly:

(20) R := (ρV ⊗ ρV ) ◦ R = q
∑
i

Eii ⊗ Eii +
∑
i6=j

Eii ⊗ E
j
j + (q− q−1)

∑
i>j

Eji ⊗ E
i
j .

We define Rikjl , (R
−1)ikjl ∈ C, for i, j, k, l = 1, . . . , N by

R(ei ⊗ ej) =
∑
i,j

Rklij (ek ⊗ el), R−1(ei ⊗ ej) =
∑
i,j

(R−1)klij (ek ⊗ el).

We can write the coefficients explicitly as follows:

(21) Rklij =


q, i = j = k = l;
1, i = k 6= j = l;

q− q−1, i = l < j = k;
0, otherwise;

(R−1)klij =


q−1, i = j = k = l;
1, i = k 6= j = l;

q−1 − q, i = l < j = k;
0, otherwise.

We will use the notation L±and l±ij for L±V and lV,±ij , when V is the vector repre-

sentation. The elements l±ij satisfy the following relations:

L±1 L
±
2 R = RL±2 L

±
1 , L−1 L

+
2 R = RL+

2 L
−
1 ,(22)

l+ii l
−
ii = l−ii l

+
ii = 1, i = 1, . . . , N,(23)

l+ij = l−ji = 0, i > j.(24)

Here L± = (l±ij) and L±1 = L± ⊗ id, L±2 = id⊗L± which are N2 ×N2 matrices. In
fact, we have the following theorem.

Theorem 7.1 ( See e.g. [KlSch], Ch. 8). The Drinfeld-Jimbo algebra Uq(g) is

generated by the l±ij, i, j = 1, . . . , n, with relations (22),(23), and (24). The antipode
S, coproduct ∆ and counit ε are given by

S(L±) = (L±)−1, ∆(l±ij) =
∑
k

l±ik ⊗ l
±
kj , and ε(l±ij) = δij .

By their definition, the elements l±ij act on V = CN via the R-matrix; more
precisely, we have

ρV (l+ij) =
∑
k,l

RkiljE
l
k, ρV (l−ij) =

∑
k,l

(R−1)ikjlE
l
k.
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7.3. Non-degenerate quantum D-modules for Uq(glN ). In Section 6.2, we
have introduced the notion of non-degeneracy for DU-modules. This condition is
necessary for technical reasons; however, in this section we show that the restriction
is a mild one in the case U = Uq(glN ) (which we assume in this section).

Proposition 7.2. U is generated as an algebra by U′ and K1, . . . ,KN .

Proof. Recall that x � y := x(1)yS(x(2)) denotes the adjoint action of U on itself.
We will use the following theorem due to A. Joseph and G. Letzter. Note that we
use slightly different conventions for the Ki, and that the statement is adapted to
account for the central element KωN ∈ Uq(glN )).

Theorem 7.3 (see [JL], Theorem 4.10).

U′ =
⊕

λ∈−2Λ++ZωN

Uq(g) �Kλ.

Now let U′′ be the algebra generated by U′ and K1, . . . ,KN . It is easy to see
that K±1

1 , . . . ,K±1
N ∈ U′′. For λ ∈ −2Λ+ and i = 1, . . . , n, we have:

Ei �Kλ = EiK
λKi+1K

−1
i −K

λEiK
−1
i Ki+1 = (1− q(αi,λ))EiK

λKi+1K
−1
i ,

Fi �Kλ = FiK
λ −KλFi = (1− q−(αi,λ))FiK

α.

Thus Ei and Fi ∈ U′′ as well, and so U′′ = U. �

It follows that U is obtained from U′ in a two-step process: first one localizes
U′ at its denominator set generated by the K−2αi , and then one adjoins a square
root Kαi of each K2αi .

7.4. The classical symmetric pair and quantum symmetric pair. Let g be
a reductive Lie algebra with Cartan decomposition g = n− ⊕ h ⊕ n+. Suppose we
have an involution of g, denoted by θ. Let k = gθ be the fixed Lie subalgebra in g
under the involution. Then the pair (g, k) is called a (classical) symmetric pair.

Our primary example of a symmetric pair is constructed as follows. Let g =
gl(N) with N = p + q. Let θ be the involutive automorphism of g defined by
θ(u) := JuJ where

J =
∑

1≤k≤p

Ekk −
∑

p+1≤k≤N

Ekk .

The corresponding Lie subalgebra k is gl(p)× gl(q) and we get the symmetric pair
(gl(N), gl(p)×gl(q)). For our purpose, we would like to consider another symmetric
pair (g, k′) as in [DS]. The involution θ′ of this symmetric pair is given by θ′(u) =
J ′uJ ′ with

(25) J ′ =
∑

1≤k≤p

EN−k+1
k +

∑
1≤k≤p

EkN−k+1 −
∑

p<k<N−p+1

Ekk .

It is easy to see that k and k′ are conjugate to each other by the matrix g of equation
(35).

The theory of quantum symmetric pairs provides an analog of classical symmetric
pairs in the setting of quantum groups. It was developed systematically by G.
Letzter in a series of papers [L1, L2], with many examples coming from so-called
Noumi coideal subalgebras [N, NS, OS].

Let (g, k) denote a classical symmetric pair. A quantum symmetric pair associ-
ated to (g, k) is a pair (Uq(g), I), where I is a right coideal subalgebra in Uq(g),
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such that the quasi-classical limit as q → 1 recovers U(k). The coideal formalism
arises because while U(k) is a sub-Hopf algebra of U(g), the quantization I of U(k)
inside Uq(g) is no longer a sub-coalgebra, but only a one-sided coideal.

7.5. The one parameter family of coideal subalgebras. The symmetric pair
(g, k′) can be quantized via the method of characters f : F2(A)→ C, where F2(A)
is the braided dual of Uq(glN ). Let {aij} be the generators of F2(A) which are
defined in Section 4.2. Characters for the reflection equation algebra associated
to Uq(glN ) were studied by Donin, Kulish and Mudrov [DKM, DM1, DM2], and
completely classified in [Mud]. In [KoSt], it was explained that a character f of the
reflection equation algebra extends to a character of the braided dual of Uq(glN ) if,
and only if, the matrix (f(aij)) is invertible. Following them (see also [N, OS, DS]),

we choose7 qσ ∈ C, and define an N ×N complex matrix Jσ:

(26) Jσ =
∑

1≤k≤p

(qσ − q
−σ)Ekk −

∑
p<k<N−p+1

q
−σEkk +

∑
1≤k≤p

EN−k+1
k +

∑
1≤k≤p

EkN−k+1.

Note that Jσ satisfies a Hecke relation Jσ ∼ qσ.

Lemma 7.4 (See e.g. [DS], [DNS], [Mud]). The matrix Jσ is a right-handed
numerical solution of the reflection equation

(27) R21J
σ
1 R12J

σ
2 = Jσ2 R21J

σ
1 R12,

where Jσ1 = Jσ ⊗ id and Jσ2 = id⊗ Jσ.

Corollary 7.5. The matrix (Jσ)−1 is a left-handed numerical solution of the re-
flection equation.

Proof. By the lemma, Jσ is a solution of the right handed reflection equation for
all qσ ∈ C. Let us write R = R(q) and Jσ = Jσ(q) to emphasize the dependence on
q. By inspecting the R-matrix for V ⊗ V , we see that R(q)−1 = R(q−1). Similarly
Jσ(q) = J−σ(q−1). Thus, we compute that the left handed reflection equation for
J−σ at q is equivalent to the left-handed equation for (Jσ)−1 at q−1:

R21(q)J−σ1 (q)R12(q)J−σ2 (q) = J−σ2 (q)R21(q)J−σ1 (q)R12(q)

⇔ R21(q−1)−1Jσ1 (q−1)R12(q−1)−1Jσ2 (q−1) = Jσ2 (q−1)R21(q−1)−1Jσ1 (q−1)R12(q−1)−1,

⇔ Jσ2 (q−1)−1R12(q−1)Jσ1 (q−1)−1R21(q−1) = R12(q−1)Jσ1 (q−1)−1R21(q−1)Jσ2 (q−1)−1,

⇔ Jσ1 (q−1)−1R21(q−1)Jσ2 (q−1)−1R12(q−1) = R21(q−1)Jσ2 (q−1)−1R12(q−1)Jσ1 (q−1)−1.

The first equivalence follows from the preceding paragraph. The second is by in-
verting both sides of the equation, and the third is by applying the flip τ12. Since
the right handed reflection equation is established for Jσ(q) at all parameters q and
qσ, it follows that the left hand reflection equation holds for Jσ(q) for all q and qσ

as well. �

Thus we can define characters fσ : F2(A)→ C, fσ(aji ) := Jσij , and gρ : F2(A)→
C, gρ(ã

j
i ) = ((Jρ)−1)ij . Note that the corresponding matrices JV :=

∑
f(aij)E

j
i

and J ′V :=
∑
g(ãij)E

j
i for the vector representation V = CN will be Jσ and (Jρ)−1

7In this article qσ denotes a generic complex number, not directly related to q. We keep the

old notation for two reasons: first to emphasize the connection with previous papers [DS, NS, OS],
and second, because in the formal setting we will take σ ∈ C, and let q := e~, and qσ := eσ~, in

order to compute the trigonometric degeneration. We let q−σ := 1
qσ

.
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themselves, since Jσ and (Jρ)−1 are symmetric. Following section 4.4, we have
coideal subalgebras Bσ := Bfσ and B′ρ := B′gρ associated to any V ∈ C. 8

In Letzter’s framework [L1, L2], it is important that the coideal subalgebras
Bσ are all isomorphic as abstract algebras (similarly for the B′ρ). This property
was also used in [OS] in the case p = q, where the authors constructed a single
comodule algebra and a family of embeddings into the quantum group. In our case,
the isomorphisms between the Bσ take an especially simple form in the following
propositon:

Proposition 7.6. Let q, qσ1 , qσ2 ∈ C be generic, and let φ : Bσ1 → Bσ2 be defined

on generators by φ(c
(1)
il ) = c

(2)
il , where c

(k)
il are the generators (15) for Bσk . Then

φ is an isomorphism of algebras.

Proof. Using that L+ (resp. L−) is upper (resp. lower) triangular, that S(l−ii ) = l+ii ,
and that Jσ is skew-upper triangular and symmetric, we can see by inspection that
the matrix of generators (cil) has the form:

cil =

 ∗ ∗ X
∗ ∗ 0
Y 0 0


il

,

where the blocks are of size (p, q − p, p) × (p, q − p, p) (the same as in Jσ). Here,
the ∗’s are some nonzero expressions, X and Y are skew upper triangular, and we
have Xi,p−i = Yp−i,i. This means that each Iσ is really generated by the q2 entries
in the ∗′ed regions, plus the p2 entries in X and Y , counting the diagonal only
once. This gives a system of p2 + q2 generators, which are subject to (at least) the
relations of the reflection equation algebra:

(28) R21c1R12c2 = c2R21c1R12.

It follows that the algebras Bσ are spanned by ordered monomials in the cil,
though a priori we may expect more relations.

It turns out that there are no other relations, which we can see as follows. It
is shown in Section 10.4 that the quasi-classical limits of the elements cil are the
generators of the subalgebra U(k) = U(k′) ⊂ U(glN ), which itself affords a PBW
basis of ordered monomials in its generators. It now follows from the fact that
Uq(g) is a flat deformation of U(g), for q not a root of unity, that the relations (28)
provide all the relations on Bσ. In particular, the relations don’t depend at all on
qσ, so the map φ is an isomorphism. �

Obviously the map χσ : cil 7→ Jσil is a character of Bσ (χσ is the restriction of
ε). In fact, we see by the previous proposition that each Bσ has a two parameter
family of characters:

(29) χητ (l+ijJ
σ
jkS(l−kl)) := qηJτil.

Likewise, each B′ρ has a two parameter family of characters:

(30) λων (S(l−ij)(J
ρ)−1
jk l

+
kl) := qω(Jν)−1

il .

In the next two sections, we will use these to construct twisted invariants and
twisted quantum D-modules.

8It is also possible to scale the matrices Jσ by an arbitrary nonzero complex number. Of
course, doing so will yield the same algebra.
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7.6. q-Harish Chandra modules for (Uq(glN ),Bσ). In the theory of real and
p-adic groups, an important role is played by the so-called Harish-Chandra mod-
ules associated to a symmetric pair (G,K). The following definition captures the
relevant algebraic properties in the q-deformed setting, and was proposed in [L3],
Definition 3.1.

Definition 7.7. The category of q-Harish-Chandra modules for (Uq(glN ),Bσ) is
the full abelian subcategory of Uq(glN )-modules M such that Bσ acts semi-simply
on M .

Definition 7.8. The category of q-Harish-Chandra D-modules for
(Uq(glN ),Bσ,B

′
ρ) is the full abelian subcategory of non-degenerateDUq(glN )-modules

M such that ∂2(B′ρ ⊗Bσ) acts semi-simply on M .

In either case, we have the “Harish-Chandra part” functor which sends a module
to sum of all its q-Harish Chandra submodules; the result is only a U′Bσ-module
(see the discussion in [L3] following Definition 3.1). In the case of non-degenerate
DU-modules, the Harish-Chandra part is only a U′B′ρ ⊗ U′Bσ module, which is
preserved by the A action. This is enough for our purposes.

8. Representations of the affine Hecke algebras of type C∨Cn.

Let V = CN be the vector representation for Uq(g) = Uq(glN ). Let χητ be the
character of Bσ defined in (29), and let 1ητ denote the associated one-dimensional
representation. For any Bσ-module W , we denote by W l.f. the locally finite part
of W , i.e. the sum of all finite dimensional Bσ-submodules of W . For any Uq(g)-
module M , define a vector space

Fσ,η,τn (M) = (M ⊗ V ⊗n)Bσ,χ
η
τ := HomBσ (1ητ ,M ⊗ V ⊗n).

Above, the Bσ action on the tensor product is as in Section 6. The main result of
this section is the following theorem.

Theorem 8.1. Fσ,η,τn defines an functor from the category of Uq(g)-modules to the
category of representations of the affine Hecke algebra Hn(t, t0, tn) with parameters:

t = q, tn = qσ, t0 = q(p−q−τ).

Moreover Fσ,η,τn factors through the Harish-Chandra part functor, and is exact on
the category of q-Harish-Chandra modules.

The construction is a specialization of Section 5, except that we rescale the
operators to have eigenvalues of the form λ,−λ−1. It is clear that the relations we
checked in Section 5 are unchanged by rescaling; thus, the only new proofs in this
section will be checking the Hecke relations.

For i = 1, . . . n − 1, we let Ti = σVi,Vi+1
, and we let Tn = JσVn . We let T0 =

αP−1
1 (σV1,M ◦ σM,V1)−1, where α = q−N+η. It follows immediately that Ti ∼ q,

and Tn ∼ qσ.

Proposition 8.2. T0 ∼ qp−q−τ .
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Proof. By Lemma 6.9, on the space of (Iσ, χτ )-invariants, T−1
0 has the same min-

imal polynomial as α−1J̃ = qN−η
∑
Eliρ(S(l+ijχ

η
τ (cjk)S(l−kl))). Applying the defini-

tion of χητ , we have:

α−1J̃ = qN
∑

Eliρ(S(l+ijJ
τ
jkS(l−kl)))

= qN
∑

Eliρ(S2(l−kl)J
τ
jkS(l+ij))

= qN
∑

Eliρ(ul−klu
−1JτjkS(l+ij)),

where u is the Drinfeld element such that S2(x) = uxu−1 for all x ∈ U. For the
vector representation we have the well-known formula9:

ρV (u) =

N∑
i=1

q2i−2Eii .

By equations (20) and (21) and direct computation, we have

α−1J̃ =

p∑
i=1

(qq−p+τ − qp−q−τ )Eii −
N−p∑
i=p+1

qp−q−τEii

+

p∑
i=1

q−N+2i−1EN+1−i
i +

p∑
i=1

qN−2i+1EiN+1−i,

which is semisimple, with two eigenvalues: λ1 = qq−p+τ and λ2 = −qp−q−τ .
The second part of the theorem follows easily because tensoring is an exact

functor, as is Hom(1, •), when restricted to the category of q-Harish-Chandra-
modules. �

9. Representations of the double affine Hecke algebras of type
C∨Cn

Let V = CN denote the vector representation for U = Uq(glN ). Let χητ and
λων be the characters of Bσ and B′ρ, respectively, defined in equations (29) and
(30). We denote the corresponding one dimensional representations 1ητ := 1χητ and
1ων := 1λων . In this section we prove that a certain rescaling of the action defined in
Section 6 induces an action of the double affine Hecke algebra of type C∨Cn. Let
M be a non-degenerate DU-module, and let

Fσ,η,τn,ρ,ω,ν(M) := HomB′ρ⊗Bσ (1ων � 1
η
τ ,M ⊗2 (1� V1)⊗2 · · · ⊗2 (1� Vn)).

Theorem 9.1. Fσ,η,τn,ρ,ω,ν defines a functor from the category of non-degenerate
DU-modules to the category of representations of the double affine Hecke algebra
Hn(v, t, t0, tn, u0, un) with parameters:

t = q, tn = qσ, t0 = q(p−q−τ),

u0 = qν , un = q−ρ, v = qη−N−ω.

Moreover Fσ,η,τn,ρ,ω,ν factors through the q-Harish-Chandra part of M , and is an exact
functor on the category q-Harish-Chandra DU-modules.

9up to an immaterial scalar, depending on the normalization of u.
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We let T0, . . . , Tn act as in Section 8, and we let K0 act as in Section 6. We have
only to prove the Hecke relations asserted in the theorem. By remark 6.4, we may
consider the faithful representation M = A. As in the proof of Proposition 6.8, K0

takes the explicit form of Figure 5.

Proposition 9.2. We have the relation K0 ∼ q−ρ.

Proof. Let V ∈ U-mod. In Figure 8, it is proven that the assignment

K : EndC(V )→ EndC(A⊗ V )

X 7→ (X ⊗ id⊗ id) ◦ (coevV ⊗ id) � (id⊗ id⊗ coev∗V )

is an algebra homomorphism. It follows that K0 = K((Jρ)−1) satisfies the same
quadratic relation, K0 ∼ q−ρ, as (Jρ)−1. �

Figure 8. Proof of K(X)K(Y ) = K(XY ). The left hand side is
the composition K(X)K(Y ). The first equality is straightforward.
The second equality applies relations (4) to coev∗V as indicated by
the dotted lines.

Proposition 9.3. We have the relation (vK0P1T0)−1 ∼ qν , where v = αq−ω.

Proof. By definition, we have vK0P1T0 = q−ωK0σ
−1
M,V σ

−1
V,M . We have the following

Lemma 9.4. We have the identity:

K0σ
−1
M,V σ

−1
V,M = ξ � (σ−1

V⊗∗V,W ◦ (idV ⊗ coev ∗V )),

where ξ = (σV,W∗ ⊗ id) ◦ ((Jρ)−1 ⊗ id⊗ id) ◦ (σW∗,V ⊗ id) ◦ (id⊗ coevV ).

Proof. The proof is given in Figure 9. �

Now, we can express ξ in terms of the c′il:

ξ : f 7→
∑

S(l−ij)(J
ρ)−1
jk l

+
klf ⊗ E

l
iem ⊗ em

=
∑

c′ilf ⊗ Eliem ⊗ em,

where {ei} denotes the dual basis to {ei}. Thus, on the space of (B′ρ, λ
ω
ν ) invariants,

we have

ξ :
∑

fj�wj⊗vj,1⊗· · ·⊗vj,n 7→ qω
∑

fj⊗ (Jν)−1em⊗em�wj⊗vj,1⊗· · ·⊗vj,n.

Thus, we have that

q−ωK0σ
−1
M,V σ

−1
V,M = ((id⊗(Jν)−1 ⊗ id) � id) ◦ (id⊗ coevV �σ−1

V⊗∗V,W ◦ coev∗V ).
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Figure 9. Proof of Lemma 9.4. The first equality applies relations
of equation (4) between the dotted lines. The second equality uses
only QYBE. We have abbreviated J ′ := (Jρ)−1.

Now arguing as in Proposition 9.2, we see that vK0P1T0 has the same minimal
polynomial as (Jν)−1, and we are done.

The second part of the theorem follows as in the proof of Theorem 8.1. �

Remark 9.5. A priori, for each n,N, p, Fσ,η,τn depends upon the four continuous
parameters q, qσ, qη, qτ . However, it is clear from the definition that Fσ,η,τn is the
precomposition of Fσ,0,τn by the automorphism of C given by M 7→ ∗1η ⊗ M ,
corresponding to the fractional tensor power of the determinant character.

A priori, for each n,N, p, Fσ,η,τn,ρ,ω,ν depends upon the seven continuous parame-

ters, q, qσ, qη, qτ , qρ, qω, qν . However, as above, we can express Fn,σ,η+ξ,τ
ρ,ω+ξ,ν as the

precomposition of Fσ,η,τn,ρ,ω,ν by twisting the DU module M with a fractional tensor
power of the determinant local system. On the other hand, Fσ,η,τn,ρ,ω,ν(M) will be

zero unless λων (detq) = χητ (detq)q
−n/N . This is because the element detq is central

and thus its image in DU under both the left and right actions coincide, so that the
values of the characters can only differ by the contribution of the factor (1�V )⊗n.
Thus we really have five continuous parameters.

10. The relation to the trigonometric dAHA and dDAHA

In this section we recall the construction in [EFM], and show that it may be
recovered as the trigonometric degeneration of our construction. Furthermore, we
reprove the main results from that paper, quoted below as Theorems 10.1 and 10.2.
Beyond giving a new proof of a known result, this serves two purposes: it provides us
an explicit check of our computations in the preceding section, and it also illustrates
the process of trigonometric degeneration, whereby very complicated Lie-theoretic
formulas appear as the first derivative in ~ of considerably more natural formulas
in quantum groups and braided tensor categories.

10.1. The dAHA of type BCn. Let Wn = Sn n (Z2)n be the Weyl group of
type BCn. We denote by sij the reflection in this group corresponding to the root
εi−εj , and by γi the reflection corresponding to εi We abbreviate si := si,i+1. The
type BCn dAHA Hdeg

n (κ1, κ2) is generated by y1, . . . , yn and C[Wn], with cross
relations:

siyi − yi+1si = κ1; [si, yj ] = 0, ∀j 6= i, i+ 1;

γnyn + ynγn = κ2; [γn, yj ] = 0, ∀j 6= n; [yi, yj ] = 0.

For any c 6= 0, we have an isomorphism Hdeg
n (κ1, κ2) ∼= Hdeg

n (cκ1, cκ2).
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Let us recall the construction of the functor Fn,p,µ in [EFM]. Let CN be the
vector representation of g = glN . Let M be a g-module. Define

Fn,p,µ(M) = (M ⊗ (CN )⊗n)k0,µ,

where k0 is the subalgebra in k = glp×glq consisting of trace zero elements and, for
µ ∈ C, (k0, µ)-invariants means for all x ∈ k0, xv = µχ(x)v. Here χ is a character
of k defined in [EFM]:

(31) χ(

(
A1 0
0 A2

)
) = qtrA1 − ptrA2.

The Weyl group Wn acts on Fn,p,µ(M) in the following way: the element sij
acts by exchanging the i-th and j-th factors, and γi acts by multiplying the i-th

factor by J =

(
Ip
−Iq

)
.

Define elements yk ∈ EndC(Fn,p,µ(M)) as follows:

(32) yi = −
∑
s|t

(Ets⊗Est )0i+
p− q − µN

2
γi+

1

2

∑
k>i

sik−
1

2

∑
k<i

sik +
1

2

∑
i 6=k

sikγiγk,

where
∑
s|t =

∑p
s=1

∑n
t=p+1 +

∑p
t=1

∑n
s=p+1, the first component acts on M and

the second component acts on the k-th factor of the tensor product.

Theorem 10.1 ([EFM]). The above action of Wn and the elements yi define a
representation of the degenerate affine Hecke algebra Hdeg

n (κ1, κ2) on the space
Fn,p,µ(M), with

κ1 = 1, κ2 = p− q − µN.

10.2. The dDAHA of type BCn. The type BCn dDAHA HHdeg(t, k1, k2, k3) is
generated by two commutative families {xi, i = 1, . . . , n}, {yi, i = 1, . . . , n} and
C[Wn], with relations:

i) sixi − xi+1si = 0, [si, xj ] = 0, (j 6= i, i+ 1);
ii) siyi − yi+1si = k1, [si, yj ] = 0, (j 6= i, i+ 1);
iii) γnyn + ynγn = k2 + k3, γnxn = x−1

n γn,
[γn, yj ] = [γn, xj ] = 0, (j 6= n);

vi) [yj , xi] = k1xisij − k1xisijγiγj ,
[yi, xj ] = k1xisij − k1xjsijγiγj , (i < j);

v)

[yi, xi] = txi − k1xi
∑
k>i

sik − k1

∑
k<i

sikxi − k1xi
∑
k 6=i

sikγiγk

−(k2 + k3)xiγi − k2γi.

In particular, we see that the subalgebra in the dDAHA generated by Wn and
the yi is Hdeg

n (κ1, κ2), where κ1 = k1 and κ2 = k2 + k3.
Let λ ∈ C. For x ∈ g, let Lx denote the vector field on G generated by the left

action of x. Let Dλ(GL(N)/(GL(p)×GL(q))) be the sheaf of differential operators
on GL(N)/(GL(p)×GL(q)), twisted by the character λχ.

Let M be a Dλ(GL(N)/(GL(p) × GL(q)))-module. Then M is naturally a g-
module, via the vector fields Lx. Define

Fλn,p,µ(M) = (M ⊗ V ⊗n)k0,µ.

Then Fλn,p,µ(M) is a Hdeg
n -module as in the Theorem 10.1.
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For i = 1, . . . , n, define the following linear operators on the space Fλn,p,µ(M):

xi =
∑
s,t

(AJA−1J)st ⊗ (Ets)i,

where (AJA−1J)st is the function of A ∈ GL(N)/GL(p)×GL(q) which takes the st
-th element of AJA−1J and the second component acts on the i-th factor in V ⊗n.

Theorem 10.2 ([EFM]). The above action of Wn and the elements xi, yi define a

representation of the dDAHA HHdeg(t, k1, k2, k3) on the space Fλn,p,µ(M), with

(33) t =
2n

N
+ (λ+ µ)(q − p), k1 = 1, k2 = p− q − λN, k3 = (λ− µ)N.

We have a functor Fλn,p,µ from the the category of Dλ(GL(N)/GL(p)×GL(q))-
modules to the category of representations of the type BCn dDAHA with such pa-
rameters.

10.3. The trigonometric degeneration of the DAHA. In [Ch], Cherednik
defined the dDAHA of a root system as a suitable quasi-classical limit of the DAHA.
In this section, we explain how to apply this procedure to the DAHA of type C∨Cn
to recover the presentation of the dDAHA in Section 10.2. Thus we take K = C((~))
in the definitions of Section 2.2

Recall that in [S], we have a faithful representation of the DAHA of type C∨Cn
which is given by follows. Let C[x] = C[x±1 , . . . , x

±
n ], with the BCn Weyl group

acting by by permuting and inverting the xi. Define

π(Xi) := xi,

π(T0) := t0 + t−1
0

(1− vt0u0x
−1
1 )(1 + vt0u

−1
0 x−1

1 )

1− v2x−2
1

(s0 − 1),

π(Ti) := t+ t−1 1− t2xix−1
i+1

1− xix−1
i+1

(si − 1),

π(Tn) := tn + t−1
n

(1− tnunxn)(1 + tnu
−1
n xn)

1− x2
n

(γn − 1),

for, i = 1, . . . , n− 1. Then we have

Theorem 10.3 ([S], Theorem 3.1, 3.2). The map π extends to a faithful represen-
tation of the C∨Cn DAHA on C[x].

Let m1, . . .m6 ∈ C, and define the following elements of C[[~]]:

q = e~, t = qm1 , tn = qm2 , t0 = qm3 , u0 = qm4 , un = qm5 , v = qm6 .

Let HH~ denote the closed subalgebra of EndC[[~]](C[x±1
1 , . . . , x±1

n ][[~]]) generated
by the operators in Theorem 10.3. As the formulas expressing Xi, T0, Ti and Tn in
terms of the xi, s0, si, and sn are invertible in C[[~]], HH~ is also generated by the
latter set of elements.

Proposition 10.4. The natural map on the (lower-case) generators induces an

isomorphism HH~/~HH~ ∼= HHdeg(t, k1, k2, k3).
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Proof. By a direct computation, which we omit, it can be seen that the relations
of the C∨Cn type DAHA degenerate to the relations in the type BCn degenerate
double affine Hecke algebra. The parameter correspondence is given by

k1 = m1, k2 = m2, k3 = m3 = m4 +m5, t = m2 +m3 +m6.(34)

�

10.4. The trigonometric degeneration of Bσ. In this subsection, we let σ ∈ C,
and define the power series

q := e~, qσ := e~σ ∈ C[[~]].

In this way the algebras Uq(g) and Bσ considered throughout become C[[~]]-algebras.
Recall that a C[[~]]-subalgebra B of a C[[~]]-algebra A is called saturated if

~a ∈ B ⇒ a ∈ B. The saturation Bs of B is the smallest saturated subalgebra
containing B. The quasi-classical limit of a saturated subalgebra B ⊂ A is the
subalgebra B/~B of A/~A. The following is an elaboration of [DS], Remark 6.4:

Claim 10.5. For all σ ∈ C, the quasi-classical limit of the subalgebra Bs
σ is U(k′),

where k′ is the subalgebra of glN defined in Section 7.4.

Proof. As remarked in the proof of Proposition 7.6, the relations of the reflection
equation algebra imply that Bσ is spanned over C[[~]] by ordered monomials in the
cil, and therefore its saturation Bs

σ is a saturated subalgebra whose quasi-classical
limit is generated by the quasi-classical limits of the generators cil. Thus it remains
only to compute the quasi-classical limits of the cil and check that they coincide
with the generators of U(k′).

We recall the formula for the generators cil:

cil =

m∑
j,k=1

l+ij(JV )jkS(l−kl).

The classical limits of each l±ij are δij . We recall the well-known formulas for the

quasi-classical limits of the l±ij :

lim
q→1

l±ij
q− q−1

= − lim
q→1

S(l±ij)

q− q−1
= ±Eij , for i 6= j;

lim
q→1

2(l+ii − l
−
jj)

q− q−1
= Eii + Ejj .

The only terms in the summation expression for cil which will contribute to the
quasi-classical limit are those in which either i = j or k = l; in all other cases, the
term will vanish to second order in ~, and thus its quasiclassical limit will be zero.
We have six cases to compute, according to the block form of Jσ.
Case 1a: 1 ≤ i < l ≤ p.

lim
q→1

cil
q− q−1

= lim
q→1

l+i,N−l+1S(l−ll ) + l+iiS(l−N−i+1,l)

q− q−1

= EiN−l+1 + EN−i+1
l ;
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Case 1b: 1 ≤ l < i ≤ p.

lim
q→1

cil
q− q−1

= lim
q→1

l+i,iS(l−N−i+1,l) + l+i,N−l+1S(l−l,l)

q− q−1

= EN−i+1
l + EiN−l+1;

Case 1c: 1 ≤ i = l ≤ p.

lim
q→1

cii
q− q−1

= lim
q→1

l+iiS(l−ii )(q
σ − q−σ) + l+i,iS(l−N−i+1,i) + l+i,N−i+1S(l−i,i)

q− q−1

= σ + EN−i+1
i + EiN−i+1;

Case 2: 1 ≤ i ≤ p, p+ 1 ≤ l ≤ N − p.

lim
q→1

cil
q− q−1

= lim
q→1

l+i,iS(l−N−i+1,l)− q−σl+i,lS(l−l,l)

q− q−1

= EN−i+1
l − Eil ;

Case 3a: N − p+ 1 ≤ l ≤ N , 1 ≤ i < N − l + 1.

lim
q→1

cil
q− q−1

= lim
q→1

l+i,iS(l−N−i+1,l) + l+i,N−l+1S(l−l,l)

q− q−1

= EN−i+1
l + EiN−l+1;

Case 3b: N − p+ 1 ≤ l ≤ N , i = N − l + 1.

lim
q→1

2− 2cil
q− q−1

= lim
q→1

2
(

1− l+i,iS(l−N−i+1,N−i+1)
)

q− q−1

= lim
q→1

2(l−N−i+1,N−i+1 − l
+
i,i)S(l−N−i+1,N−i+1)

q− q−1

= −EN−i+1
N−i+1 − E

i
i ;

Case 4: 1 ≤ l ≤ p, p+ 1 ≤ i ≤ N − p.

lim
q→1

cil
q− q−1

= lim
q→1

−q−σl+i,iS(l−i,l) + l+i,N−l+1S(l−l,l)

q− q−1

= EiN−l+1 − Eil ;

Case 5a: p+ 1 ≤ i < l ≤ N − p.

lim
q→1

cil
q− q−1

= lim
q→1

q−σl+i,lS(l−l,l)

q− q−1
= Eil ;

Case 5b: p+ 1 ≤ i = l ≤ N − p.

lim
q→1

q−σ + cii
q− q−1

= lim
q→1

q−σ − q−σl+i,iS(l−i,i)

q− q−1

= lim
q→1

q−σ(l−i,i − l
+
i,i)S(l−i,i)

q− q−1

= −Eii ;
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Case 5c: p+ 1 ≤ l < i ≤ N − p.

lim
q→1

cil
q− q−1

= lim
q→1

−q−σl+i,iS(l−i,l)

q− q−1
= −Eil ;

Case 6a: N − p+ 1 ≤ i ≤ N , 1 ≤ l < N − i+ 1.

lim
q→1

cil
q− q−1

= lim
q→1

l+i,iS(l−N−i+1,l) + l+i,N−l+1S(l−l,l)

q− q−1

= EN−i+1
l + EiN−l+1;

Case 6b: N − p+ 1 ≤ i ≤ N , l = N − i+ 1.

lim
q→1

2− 2cil
q− q−1

= lim
q→1

2
(

1− l+i,iS(l−N−i+1,N−i+1)
)

q− q−1

= lim
q→1

2(l−N−i+1,N−i+1 − l
+
i,i)S(l−N−i+1,N−i+1)

q− q−1

= −Eii − EN−i+1
N−i+1 .

Finally, we let

(35) g =

p∑
k=1

Ekk −
n∑

k=p+1

Ekk +

p∑
k=1

Ekn−k+1 +

p∑
k=1

En−k+1
k

and conjugate each of the above elements by g. We have

g(EiN−l+1 + EN−i+1
l )g−1 = Eil − EN−i+1

N−l+1 , in Case 1a;

g(EN−i+1
l + EiN−l+1)g−1 = Eil − EN−i+1

N−l+1 , in Case 1b;

σ + g(EN−i+1
i + EiN−i+1)g−1 = σ + Eii − EN−i+1

N−i+1 , in Case 1c;

g(EN−i+1
l − Eil )g−1 = EN−i+1

l , in Case 2;

g(EN−i+1
l + EiN−l+1)g−1 = EN−i+1

l + EiN−l+1, in Case 3a;

g(−Eii − EN−i+1
N−i+1)g−1 = −Eii − EN−i+1

N−i+1 , for Cases 3b and 6b;

g(EiN−l+1 − Eil )g−1 = 2EiN−l+1, in Case 4;

g(Eil )g
−1 = Eil , in Cases 5a, b and c;

g(EN−i+1
l + EiN−l+1)g−1 = EN−i+1

l + EiN−l+1, in Case 6a;

Thus we see by direct inspection that the quasi-classical limit of the subalgebra Bσ

is the algebra U(k′). �

10.5. The trigonometric degeneration of the character χητ . By trigonometric
degeneration of a character χ : Bσ → C we will mean the following: first we work
over C[[~]], and set q = e~, qσ = e~σ. We thus view χ as a homomorphism to C[[~]]
instead. We send a ∈ Bs

σ/~Bs
σ to χ(â) mod ~ for any lift â of a.

We now apply the explicit computations above to compute the trigonometric
degeneration of the characters χητ . In order to be compatible with the conventions
of [EFM], we will consider the character χ̃ητ : glp × glq → k′ → C, obtained by

precomposing with conjugation by g−1, and applying the quasi-classical limit of
the character χητ : Bs

σ → C. We compute that:
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χ̃ητ (

(
A1 0
0 A2

)
) =

η + τ − σ
2

trA1 +
η + σ − τ

2
trA2.

Thus, we have that

χ̃ητ = (
η

2
+

(p− q)(τ − σ)

2N
)tr +

(τ − σ)

N
χ,

where χ is that from equation (31).

Similarly, we can compute the character λ̃ων : glp× glq → C obtained from λων by
quasi-classical limit. We have

λ̃ων = (
ω

2
+

(p− q)(ρ− ν)

2N
)tr +

(ρ− ν)

N
χ.

10.6. An alternate presentation for the DAHA. In this section, we recall an
alternate presentation for the DAHA (e.g. [S],[EGO]), and prove that it coincides
with Definition 2.3.

Let [a, b] denote the set of integers between a and b inclusive, regardless of which
is larger. Recall the elements T(i···j) and Pi from Section 2. By direct computation,
we have the following:

Lemma 10.6. We have the following relations:

T(i···j)T(k···l) =

 T(k···l)T(i···j), [i, j] ∩ [k, l] = ∅,
T(k···l)T(i+1···j+1), [i, j] ( [k, l], k > l,
T(k···l)T(i−1···j−1), [i, j] ( [k, l], k < l,

TiPi+1Ti = Pi, TiPj = PjTi (j 6= i, i+ 1),

PiPj = PjPi, i, j = 1, . . . , n− 1.

Consider the following elements:

Yi := PiT(i···1)T0T
−1
(i···1),(36)

Xi := P−1
i T−1

(1···i)K
−1
0 T(1···i).(37)

Proposition 10.7. B̃n is generated by the group Bn and elements X1, . . . , Xn,
Y1, . . . Yn, with the relations:

TiYi+1Ti = Yi, TiXiTi = Xi+1, XiXj = XjXi, YiYj = YjYi (i, j = 1, . . . , n),

TiYj = YjTi, TiXj = XjTi (j 6= i, i+ 1), TnYn−1 = Yn−1Tn, TnXn−1 = Xn−1Tn,

Xi(P
−1
1 Y1) = (P−1

1 Y1)Xi (i = 2, . . . , n− 1).

Proof. Let B̃′ denote the group specified in the proposition, and reserve B̃ for the

group given by Definition 2.3. We define φ : B̃′ → B̃ on generators:

φ : Ti 7→ Ti, i = 1, . . . , n,

Xi 7→ P−1
i T−1

(1···i)K
−1
0 T(1···i), i = 1, . . . , n,

Yi 7→ PiT(i···1)T0T
−1
(i···1), i = 1, . . . , n.

We leave it to the reader to verify that φ defines an isomorphism. �
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Remark 10.8. Along the lines of Remark 2.5, the isomorphism φ admits the
following geometric interpretation: every elliptic curve E = C/Λ admits a Z2 action,
z 7→ −z. Let E◦ denote the complement of the fixed points. It is easy to see that

E◦/Z2 is homeomorphic to P1\{p1, p2, p3, p4}. The generators Xi and Yj of B̃n
correspond to the horizontal and vertical cycles on E, as in [J], Figure 1. The
generators T0, Tn, and K0 correspond to loops around p1, p2, and p3, respectively,
so that (K0P1T0)−1 corresponds to a loop around p4.

Corollary 10.9. The double affine Hecke algebra is a quotient of K[B̃] by the
relations:

YnT
−1
n ∼ t0, Tn ∼ tn, X−1

n T−1
n ∼ un,

v−1Y −1
1 P1X1 ∼ u0, Ti ∼ t (i = 1, . . . , n− 1).

Remark 10.10. The operators T0 defined in Section 5.2 determine operators Yi,
via the isomorphism asserted in Proposition 10.7. It should be noted that these
coincide with the inverse of the operators Yi which appeared in [J] for the An−1

construction, except that those involved slN , rather than glN .

10.7. The quasi-classical limit of Theorems 9.1 and 8.1. In this section,
we compute the quasi-classical limits of the operators appearing in Theorems 9.1
and 8.1, making use of the alternate presentation for the C∨Cn DAHA from the
previous section. By comparing the results with the operators in [EFM], we can
give a reproof of Theorems 10.1 and 10.2. This serves as a consistency check for
both papers.

It is well known that the quasi-classical limit of the R-matrix of Uq(glN ) is

1 + ~r mod ~2,

where r denotes the classical R-matrix for glN . Thus, for i = 1 . . . , n − 1, the
quasi-classical limit of Ti is

si(1 + ~ri,i+1) mod ~2.

By direct computation, the classical limit of Tn is

J ′ + ~σĴ mod ~2,

where Ĵ = 2
∑
i≤pE

i
i +

∑
p+1≤i≤q E

i
i , and J ′ is the classical matrix from equation

(25).

Lemma 10.11. When U = U(glN ), the operator K0 acts as (AJA−1)ij ⊗ E
j
i .

Proof. The proof is by direct computation in the symmetric category U(g)-mod,
and relies on the triviality of the braiding to simplify K0. We may choose a basis
diagonalizing J , and rewrite equation (19) in coordinates, ignoring appearance of
R-matrices, identifying ∗V ∼= V ∗ canonically, and noting that the classical limit (in
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this basis) of Jσ is J :

K0 =
∑

cJvk⊗vk,vj⊗vi ⊗ E
j
i

=
∑

cvk,vjcJvk⊗vi ⊗ E
j
i

=
∑

cvk,vjJ
l
kS(cvi,vl)⊗ E

j
i

=
∑

akjJ
l
kS(ail)⊗ E

j
i

=
∑

(AJA−1)ji ⊗ Eji .

�

Proposition 10.12. The classical limit of X1 is
∑

(AJA−1J)ij ⊗ E
j
i

Proof. We have X1 = P−1
1 K−1

0 . The classical limit of P−1
1 is J1, by direct compu-

tation, using triviality of the braiding, and the fact that J = J−1. Thus, by the
lemma, we have:

X1 =
∑

(AJA−1)ij ⊗ JklElkE
j
i =

∑
(AJA−1J)kj ⊗ E

j
k,

as desired. �

Define ŷi ∈ EndC(M ⊗ V ⊗n) by the equation Yi ≡ 1 + ~ŷi (mod ~2). As noted
in Remark 10.10, the operators Yi determined by our choice for T0 and Proposition
10.7 coincide with the inverse of those of [J]. In order to prove Theorem 8.1, we
rescaled T0 and thus Y1 by qη−N and thus the quasi-classical limit of y1 is computed
by:

Proposition 10.13 (see [J], Proposition 6.14). The operator ŷ1 is given by:10

ŷi = −Ω0i −
∑
j<i

sij +
η −N

2
,

where is the Ω =
∑
i,j E

j
i ⊗ Eij ∈ Sym2(g)g is the Casimir element for g = glN .

The following proposition allows us to compare ŷi with the operators yi from
Section 10.1. We have:

Proposition 10.14. As an operator on the (k, χ̃ητ )-invariants, we have

y1 = −Ω01 +
η −N

2
+

(τ − σ)− µN
2

γ1.

10in that construction, t = qk is the parameter for the quantum group Ut(slN ), and thus the

factor k multiplies ỹi. Also, since we work with glN , there is not the shift i−1
N

, which occurs in

Proposition 6.14 of [J], because ΩslN = ΩglN − 1
N

idN ⊗ idN
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Proof. Recall the summation convention
∑
ij :=

∑p
i,j=1 +

∑N
i,j=p+1 from [EFM].

First, we set i = 1 in equation (32), and simplify the summations over k:

S =
1

2

∑
k>1

s1k +
1

2

∑
k>1

s1kγ1γk

=
1

2

∑
k>1

∑
i,j

(Eji )1 ⊗ (Eij)k +
1

2

∑
k>1

∑
i,j

(Eji J)1 ⊗ (EijJ)k

=
∑
k>1

∑
i,j

(Eji )1 ⊗ (Eij)k

(applying the χ̃ητ -invariant property, to the tensor factors in k)

=
∑
i,j

(Eji )1χ̃
η
τ (Eij)−

∑
i,j

(Eji )0 ⊗ (Eij)1 − p
∑
i≤p

(Eii)1 − q
∑
i>p

(Eii)1

=
η

2
+
τ − σ

2

(∑
i≤p

(Eii)1 −
∑
i>p

(Eii)1

)
−
∑
i,j

(Eij)0 ⊗ (Eij)1

− p
∑
i≤p

(Eii)1 − q
∑
i>p

(Eii)1.

Thus, we may rewrite equation (32):

y1 = −
∑
i,j

(Eji )0 ⊗ (Eij)1 +
η −N

2
+

(τ − σ)− µN
2

γ1.

�

Finally, let:

σ = p− q − λN
τ = (µ− λ)N + p− q

ν − ρ = (λ− µ)N

η − ω = N +
2n

N
+ λ(q − p)− 2µp

Comparing with (34), we see that k1, k2, k3 and t from the degeneration of the
DAHA agree with the parameters of Theorem 10.2. On the other hand, we have
shown that the coideal subalgebras Bσ and B′ρ both degenerate to the subalgebra

U(glp × glq), while the characters χ̃ητ and λ̃ρν degenerate to the characters µχ and
(µ− λ)χ, respectively, upon restriction to glp × glq.

Thus we may recover Theorems 10.1 and 10.2 as follows. η records the spectrum
of the center of glN on M , which is discarded in [EFM], who consider instead slN .
Thus by summing the Fσ,η,τn (M) over all η, and Fσ,η,τn,ρ,ω,ν(M) over all η and ω, we

recover the spaces of Theorems 10.1 and 10.211, respectively as quasi-classical limits.
We have shown that the operators Xi and Tj degenerate to xi and sj , respectively,
for i, j = 1, . . . n, and we have shown that ŷi = yi. Thus the entire constructions of
[EFM] are recovered as quasi-classical limits of the present results.

11In that paper, the authors consider λχ-twisted D-modules, and µ-invariants. This coincides
with λχ-ad-invariants, and µχ left-invariants, or equivalently (µ − λ)χ right-invariants and µχ

left-invariants.
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