531 research outputs found
Система мотивации персонала для сферы малого бизнеса России на примере предприятия розничной торговли ООО «Космос»
Выпускная квалификационная работа содержит: 91 страницу , 13 рисунков, 11 таблиц, 48 источников, 1 приложение.Final qualifying work consists of: page 91 , figures 13 , tables 11 ,sources 48 , app 1
Adolescent brain maturation and cortical folding: evidence for reductions in gyrification
Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development
Analysis of cross-correlations in electroencephalogram signals as an approach to proactive diagnosis of schizophrenia
We apply flicker-noise spectroscopy (FNS), a time series analysis method
operating on structure functions and power spectrum estimates, to study the
clinical electroencephalogram (EEG) signals recorded in children/adolescents
(11 to 14 years of age) with diagnosed schizophrenia-spectrum symptoms at the
National Center for Psychiatric Health (NCPH) of the Russian Academy of Medical
Sciences. The EEG signals for these subjects were compared with the signals for
a control sample of chronically depressed children/adolescents. The purpose of
the study is to look for diagnostic signs of subjects' susceptibility to
schizophrenia in the FNS parameters for specific electrodes and
cross-correlations between the signals simultaneously measured at different
points on the scalp. Our analysis of EEG signals from scalp-mounted electrodes
at locations F3 and F4, which are symmetrically positioned in the left and
right frontal areas of cerebral cortex, respectively, demonstrates an essential
role of frequency-phase synchronization, a phenomenon representing specific
correlations between the characteristic frequencies and phases of excitations
in the brain. We introduce quantitative measures of frequency-phase
synchronization and systematize the values of FNS parameters for the EEG data.
The comparison of our results with the medical diagnoses for 84 subjects
performed at NCPH makes it possible to group the EEG signals into 4 categories
corresponding to different risk levels of subjects' susceptibility to
schizophrenia. We suggest that the introduced quantitative characteristics and
classification of cross-correlations may be used for the diagnosis of
schizophrenia at the early stages of its development.Comment: 36 pages, 6 figures, 2 tables; to be published in "Physica A
Digital mental health in schizophrenia and other severe mental illness: an international consensus on current challenges and potential solutions
Background: Digital approaches may be helpful in augmenting care to address unmet mental health needs, particularly in schizophrenia and severe mental illness (SMI).
Objectives: An international multidisciplinary group was convened to reach consensus on the challenges and potential solutions in collecting data, delivering treatment and the ethical challenges in digital mental health approaches in schizophrenia and SMI.
Methods: The consensus development panel method was used, with an in-person meeting of two groups: the expert group and the panel. Membership was multidisciplinary, including those with lived experience with equal participation at all stages, and co-production of the consensus outputs and summary. Relevant literature was shared in advance of the meeting and a systematic search of the recent literature on digital mental health interventions in schizophrenia and psychosis was completed to ensure the panel was informed before the meeting with the expert group.
Results: Four broad areas of challenge and proposed solutions were identified: (i) user involvement for real coproduction, (ii) new approaches to methodology in digital mental health, including agreed standards, data sharing, measuring harms, prevention strategies and mechanistic research (iii) regulation and funding issues (iv) implementation in real-world settings (including multidisciplinary collaboration, training, augmenting existing service provision, social and population-focussed approaches). Examples are provided with more detail on human-centred research design, lived experience perspectives and biomedical ethics in digital mental health approaches in SMI.
Conclusions: The consensus agreed on a number of recommendations: (i) a new and improved approach to digital mental health research (with agreed reporting standards, data sharing, and shared protocols) (ii) equal emphasis on social and population research as well as biological and psychological approaches (iii) meaningful collaborations across varied disciplines that have previously not worked closely together (iv) increased focus on the business model and product with planning and new funding structures across the whole development pathway (v) increased focus and reporting on ethical issues and potential harms (vi) organisational changes to allow true communication and coproduction with those with lived experience of SMI.
This approach, combining an international expert meeting with PPIE (patient and public involvement and engagement) throughout the process, consensus methodology, discussion, and publication, is a helpful way to identify directions for future research and clinical implementation in rapidly evolving areas, and can be combined with measurements of real-world clinical impact over time. Similar initiatives will be helpful in other areas of digital mental health and similarly fast-evolving fields, to focus research and organisational change and effect improved real-world clinical implementation
Delta-9-tetrahydrocannabinol, neural oscillations above 20 Hz and induced acute psychosis
Rationale: An acute challenge with delta-9-tetrahydrocannabinol (THC) can induce psychotic symptoms including delusions. High electroencephalography (EEG) frequencies, above 20 Hz, have previously been implicated in psychosis and schizophrenia. Objectives: The objective of this study is to determine the effect of intravenous THC compared to placebo on high-frequency EEG. Methods: A double-blind cross-over study design was used. In the resting state, the high-beta to low-gamma magnitude (21–45 Hz) was investigated (n=13 pairs+4 THC only). Also, the event-related synchronisation (ERS) of motor-associated high gamma was studied using a self-paced button press task (n=15). Results: In the resting state, there was a significant condition × frequency interaction (p=0.00017), consisting of a shift towards higher frequencies under THC conditions (reduced high beta [21–27 Hz] and increased low gamma [27–45 Hz]). There was also a condition × frequency × location interaction (p=0.006), such that the reduction in 21–27-Hz magnitude tended to be more prominent in anterior regions, whilst posterior areas tended to show greater 27–45-Hz increases. This effect was correlated with positive symptoms, as assessed on the Positive and Negative Syndrome Scale (PANSS) (r=0.429, p=0.042). In the motor task, there was a main effect of THC to increase 65–130-Hz ERS (p=0.035) over contra-lateral sensorimotor areas, which was driven by increased magnitude in the higher, 85–130-Hz band (p=0.02) and not the 65–85-Hz band. Conclusions: The THC-induced shift to faster gamma oscillations may represent an over-activation of the cortex, possibly related to saliency misattribution in the delusional state
A review of abnormalities in the perception of visual illusions in schizophrenia
Specific abnormalities of vision in schizophrenia have been observed to affect high-level and some low-level integration mechanisms, suggesting that people with schizophrenia may experience anomalies across different stages in the visual system affecting either early or late processing or both. Here, we review the research into visual illusion perception in schizophrenia and the issues which previous research has faced. One general finding that emerged from the literature is that those with schizophrenia are mostly immune to the effects of high-level illusory displays, but this effect is not consistent across all low-level illusions. The present review suggests that this resistance is due to the weakening of top–down perceptual mechanisms and may be relevant to the understanding of symptoms of visual distortion rather than hallucinations as previously thought
Source-Reconstruction of Event-Related Fields Reveals Hyperfunction and Hypofunction of Cortical Circuits in Antipsychotic-Naive, First-Episode Schizophrenia Patients during Mooney Face Processing
Schizophrenia is characterized by dysfunctions in neural circuits that can be investigated with electrophysiological methods, such as EEG and MEG. In the present human study, we examined event-related fields (ERFs), in a sample of medication-naive, first-episode schizophrenia (FE-ScZ) patients (n � 14) and healthy control participants (n � 17) during perception of Mooney faces to investigate the integrity of neuromagnetic responses and their experience-dependent modification. ERF responses were analyzed for M100, M170, and
M250components at the sensor and source levels. In addition, we analyzed peak latency and adaptation effects due to stimulus repetition. FE-ScZ patients were characterized by significantly impaired sensory processing, as indicated by a reduced discrimination index (A�). At the sensor level, M100 and M170 responses in FE-ScZ were within the normal range, whereas the M250 response was impaired. However, source localization revealed widespread elevated activity for M100 and M170 in FE-ScZ and delayed peak latencies for the M100 and M250 responses. In addition, M170 source activity in FE-ScZ was not modulated by stimulus repetitions. The present findings suggest that neural circuits in FE-ScZ may be characterized by a disturbed balance between excitation and inhibition that could lead to a failure to gate information flow and abnormal spreading of activity, which is compatible with dysfunctional glutamatergic neurotransmission
Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency
Spatiotemporal pattern formation in neuronal networks depends on the interplay between cellular and network synchronization properties. The neuronal phase response curve (PRC) is an experimentally obtainable measure that characterizes the cellular response to small perturbations, and can serve as an indicator of cellular propensity for synchronization. Two broad classes of PRCs have been identified for neurons: Type I, in which small excitatory perturbations induce only advances in firing, and Type II, in which small excitatory perturbations can induce both advances and delays in firing. Interestingly, neuronal PRCs are usually attenuated with increased spiking frequency, and Type II PRCs typically exhibit a greater attenuation of the phase delay region than of the phase advance region. We found that this phenomenon arises from an interplay between the time constants of active ionic currents and the interspike interval. As a result, excitatory networks consisting of neurons with Type I PRCs responded very differently to frequency modulation compared to excitatory networks composed of neurons with Type II PRCs. Specifically, increased frequency induced a sharp decrease in synchrony of networks of Type II neurons, while frequency increases only minimally affected synchrony in networks of Type I neurons. These results are demonstrated in networks in which both types of neurons were modeled generically with the Morris-Lecar model, as well as in networks consisting of Hodgkin-Huxley-based model cortical pyramidal cells in which simulated effects of acetylcholine changed PRC type. These results are robust to different network structures, synaptic strengths and modes of driving neuronal activity, and they indicate that Type I and Type II excitatory networks may display two distinct modes of processing information
- …