520 research outputs found

    3D CBCT analysis of the frontal sinus and its relationship to forensic identification

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The positive identification of human remains that are decomposed, burnt, or otherwise disfigured can prove especially challenging in forensic anthropology, resulting in the need for specialized methods of analysis. Due to the unique morphological characteristics of the frontal sinus, a positive identification can be made in cases of unknown human remains, even when remains are highly cremated or decomposed. This study retrospectively reviews 3D CBCT images of a total of 43 Caucasian patients between the ages of 20-38 from the Indiana University School of Dentistry to quantify frontal sinus differences between adult males and females and investigate the usefulness of frontal sinus morphology for forensic identification. Digit codes with six sections and eleven-digit numbers were created to classify each individual sinus. It was shown that 3D CBCT images of the frontal sinus could be used to make a positive forensic identification. Metric measurements displayed a high degree of variability between sinuses and no two digit codes were identical. However, it was also shown that there were almost no quantifiable and significant sexually dimorphic differences between male and female frontal sinuses. This study confirms that sex determination should not be a primary goal of frontal sinus analysis and highlights the importance of creating a standard method of frontal sinus evaluation based on metric measurements

    Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma

    Get PDF
    Laser–plasma interaction (LPI) at intensities 1015–1016 W cm2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity 1:2 1016 W cm2 with a 100 mm scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (4 keV) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance

    Identifiable Acetylene Features Predicted for Young Earth-like Exoplanets with Reducing Atmospheres Undergoing Heavy Bombardment

    Get PDF
    The chemical environments of young planets are assumed to be largely influenced by the impacts of bodies lingering on unstable trajectories after the dissolution of the protoplanetary disk. We explore the chemical consequences of impacts within the context of reducing planetary atmospheres dominated by carbon monoxide, methane, and molecular nitrogen. A terawatt high-power laser was selected in order to simulate the airglow plasma and blast wave surrounding the impactor. The chemical results of these experiments are then applied to a theoretical atmospheric model. The impact simulation results in substantial volume mixing ratios within the reactor of 5% hydrogen cyanide (HCN), 8% acetylene (C2H2), 5% cyanoacetylene (HC3N), and 1% ammonia (NH3). These yields are combined with estimated impact rates for the early Earth to predict surface boundary conditions for an atmospheric model. We show that impacts might have served as sources of energy that would have led to steady-state surface quantities of 0.4% C2H2, 400 ppm HCN, and 40 ppm NH3. We provide simulated transit spectra for an Earth-like exoplanet with this reducing atmosphere during and shortly after eras of intense impacts. We predict that acetylene is as observable as other molecular features on exoplanets with reducing atmospheres that have recently gone through their own "heavy bombardments," with prominent features at 3.05 and 10.5 μm

    Measurements of ϕ\phi meson production in relativistic heavy-ion collisions at RHIC

    Get PDF
    We present results for the measurement of ϕ\phi meson production via its charged kaon decay channel ϕK+K\phi \to K^+K^- in Au+Au collisions at sNN=62.4\sqrt{s_{_{NN}}}=62.4, 130, and 200 GeV, and in p+pp+p and dd+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (y<0.5|y|<0.5) ϕ\phi meson transverse momentum (pTp_{T}) spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the pTp_{T} spectra from p+pp+p, dd+Au and peripheral Au+Au collisions show power-law tails at intermediate and high pTp_{T} and are described better by Levy distributions. The constant ϕ/K\phi/K^- yield ratio vs beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for ϕ\phi production at RHIC. The Ω/ϕ\Omega/\phi yield ratio as a function of pTp_{T} is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher transverse momenta. The measured nuclear modification factor, RdAuR_{dAu}, for the ϕ\phi meson increases above unity at intermediate pTp_{T}, similar to that for pions and protons, while RAAR_{AA} is suppressed due to the energy loss effect in central Au+Au collisions. Number of constituent quark scaling of both RcpR_{cp} and v2v_{2} for the ϕ\phi meson with respect to other hadrons in Au+Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV at intermediate pTp_{T} is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate pTp_{T} region at RHIC.Comment: 22 pages, 21 figures, 4 table

    Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations

    Get PDF
    Charged-particle spectra associated with direct photon (γdir\gamma_{dir} ) and π0\pi^0 are measured in pp+pp and Au+Au collisions at center-of-mass energy sNN=200\sqrt{s_{_{NN}}}=200 GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between γdir\gamma_{dir} and π0\pi^0. Assuming no associated charged particles in the γdir\gamma_{dir} direction (near side) and small contribution from fragmentation photons (γfrag\gamma_{frag}), the associated charged-particle yields opposite to γdir\gamma_{dir} (away side) are extracted. At mid-rapidity (η<0.9|\eta|<0.9) in central Au+Au collisions, charged-particle yields associated with γdir\gamma_{dir} and π0\pi^0 at high transverse momentum (8<pTtrig<168< p_{T}^{trig}<16 GeV/cc) are suppressed by a factor of 3-5 compared with pp + pp collisions. The observed suppression of the associated charged particles, in the kinematic range η<1|\eta|<1 and 3<pTassoc<163< p_{T}^{assoc} < 16 GeV/cc, is similar for γdir\gamma_{dir} and π0\pi^0, and independent of the γdir\gamma_{dir} energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.Comment: submitted to Phys. Rev. Lett, 6 pages, 4 figure

    Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

    Get PDF
    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review C

    Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

    Get PDF
    Identified charged particle spectra of π±\pi^{\pm}, K±K^{\pm}, pp and \pbar at mid-rapidity (y<0.1|y|<0.1) measured by the \dedx method in the STAR-TPC are reported for pppp and d+Au collisions at \snn = 200 GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]Comment: 58 pages, 46 figures, 37 table

    Longitudinal Spin Transfer to Λ\Lambda and Λˉ\bar{\Lambda} Hyperons in Polarized Proton-Proton Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    The longitudinal spin transfer, DLLD_{LL}, from high energy polarized protons to Λ\Lambda and Λˉ\bar{\Lambda} hyperons has been measured for the first time in proton-proton collisions at s=200GeV\sqrt{s} = 200 \mathrm{GeV} with the STAR detector at RHIC. The measurements cover pseudorapidity, η\eta, in the range η<1.2|\eta| < 1.2 and transverse momenta, pTp_\mathrm{T}, up to 4GeV/c4 \mathrm{GeV}/c. The longitudinal spin transfer is found to be DLL=0.03±0.13(stat)±0.04(syst)D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst}) for inclusive Λ\Lambda and DLL=0.12±0.08(stat)±0.03(syst)D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst}) for inclusive Λˉ\bar{\Lambda} hyperons with =0.5 = 0.5 and =3.7GeV/c = 3.7 \mathrm{GeV}/c. The dependence on η\eta and pTp_\mathrm{T} is presented.Comment: 5 pages, 4 figure

    An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement

    Full text link
    The QCD phase diagram lies at the heart of what the RHIC Physics Program is all about. While RHIC has been operating very successfully at or close to its maximum energy for almost a decade, it has become clear that this collider can also be operated at lower energies down to 5 GeV without extensive upgrades. An exploration of the full region of beam energies available at the RHIC facility is imperative. The STAR detector, due to its large uniform acceptance and excellent particle identification capabilities, is uniquely positioned to carry out this program in depth and detail. The first exploratory beam energy scan (BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades, most importantly a full barrel Time of Flight detector, are now completed which add new capabilities important for the interesting physics at BES energies. In this document we discuss current proposed measurements, with estimations of the accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure

    Hadronic resonance production in dd+Au collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV at RHIC

    Get PDF
    We present the first measurements of the ρ(770)0\rho(770)^0, KK^*(892), Δ\Delta(1232)++^{++}, Σ\Sigma(1385), and Λ\Lambda(1520) resonances in dd+Au collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV, reconstructed via their hadronic decay channels using the STAR detector at RHIC. The masses and widths of these resonances are studied as a function of transverse momentum (pTp_T). We observe that the resonance spectra follow a generalized scaling law with the transverse mass (mTm_T). The ofresonancesinminimumbiascollisionsiscomparedtothe of resonances in minimum bias collisions is compared to the of π\pi, KK, and pˉ\bar{p}. The ρ0/π\rho^0/\pi^-, K/KK^*/K^-, Δ++/p\Delta^{++}/p, Σ(1385)/Λ\Sigma(1385)/\Lambda, and Λ(1520)/Λ\Lambda(1520)/\Lambda ratios in dd+Au collisions are compared to the measurements in minimum bias p+pp+p interactions, where we observe that both measurements are comparable. The nuclear modification factors (RdAuR_{dAu}) of the ρ0\rho^0, KK^*, and Σ\Sigma^* scale with the number of binary collisions (NbinN_{bin}) for pT>p_T > 1.2 GeV/cc.Comment: STAR Collaboration. Submitted to PR
    corecore