67 research outputs found

    A Newly Identified Monoterpenoid-Based Small Molecule Able to Support the Survival of Primary Cultured Dopamine Neurons and Alleviate MPTP-Induced Toxicity In Vivo

    Get PDF
    Parkinson’s disease (PD) is the most common age-related movement disorder characterized by the progressive loss of nigrostriatal dopaminergic neurons. To date, PD treatment strategies are mostly based on dopamine replacement medicines, which can alleviate motor symptoms but do not slow down the progression of neurodegeneration. Thus, there is a need for disease-modifying PD therapies. The aim of this work was to evaluate the neuroprotective effects of the novel compound PA96 on dopamine neurons in vivo and in vitro, assess its ability to alleviate motor deficits in MPTP- and haloperidol-based PD models, as well as PK profile and BBB penetration. PA96 was synthesized from (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl) cyclohex-3-ene-1,2-diol (Prottremin) using the original three-step stereoselective procedure. We found that PA96: (1) supported the survival of cultured näive dopamine neurons; (2) supported the survival of MPP+-challenged dopamine neurons in vitro and in vivo; (3) had chemically appropriate properties (synthesis, solubility, etc.); (4) alleviated motor deficits in MPTP- and haloperidol-based models of PD; (5) penetrated the blood–brain barrier in vivo; and (6) was eliminated from the bloodstream relative rapidly. In conclusion, the present article demonstrates the identification of PA96 as a lead compound for the future development of this compound into a clinically used drug

    Discovery and validation of small-molecule heat-shock protein 90 inhibitors through multimodality molecular imaging in living subjects

    Get PDF
    Up-regulation of the folding machinery of the heat-shock protein 90 (Hsp90) chaperone protein is crucial for cancer progression. The two Hsp90 isoforms (α and β) play different roles in response to chemotherapy. To identify isoform-selective inhibitors of Hsp90(α/β)/cochaperone p23 interactions, we developed a dual-luciferase (Renilla and Firefly) reporter system for high-throughput screening (HTS) and monitoring the efficacy of Hsp90 inhibitors in cell culture and live mice. HTS of a 30,176 small-molecule chemical library in cell culture identified a compound, N-(5-methylisoxazol-3-yl)-2-[4-(thiophen-2-yl)-6-(trifluoromethyl)pyrimidin-2-ylthio]acetamide (CP9), that binds to Hsp90(α/β) and displays characteristics of Hsp90 inhibitors, i.e., degradation of Hsp90 client proteins and inhibition of cell proliferation, glucose metabolism, and thymidine kinase activity, in multiple cancer cell lines. The efficacy of CP9 in disrupting Hsp90(α/β)/p23 interactions and cell proliferation in tumor xenografts was evaluated by non-invasive, repetitive Renilla luciferase and Firefly luciferase imaging, respectively. At 38 h posttreatment (80 mg/kg × 3, i.p.), CP9 led to selective disruption of Hsp90α/p23 as compared with Hsp90β/p23 interactions. Small-animal PET/CT in the same cohort of mice showed that CP9 treatment (43 h) led to a 40% decrease in 18F-fluorodeoxyglucose uptake in tumors relative to carrier control-treated mice. However, CP9 did not lead to significant degradation of Hsp90 client proteins in tumors. We performed a structural activity relationship study with 62 analogs of CP9 and identified A17 as the lead compound that outperformed CP9 in inhibiting Hsp90(α/β)/p23 interactions in cell culture. Our efforts demonstrated the power of coupling of HTS with multimodality molecular imaging and led to identification of Hsp90 inhibitors

    Resveratrol Suppresses Constitutive Activation of AKT via Generation of ROS and Induces Apoptosis in Diffuse Large B Cell Lymphoma Cell Lines

    Get PDF
    BACKGROUND: We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL). In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4', 5-trihydroxystilbene), a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL) cells in causing inhibition of cell viability and inducing apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS). Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. CONCLUSION/SIGNIFICANCE: Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway

    Inhibition of Glioblastoma Growth by the Thiadiazolidinone Compound TDZD-8

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Thiadiazolidinones (TDZD) are small heterocyclic compounds first described as non-ATP competitive inhibitors of glycogen synthase kinase 3 beta (GSK-3 beta). In this study, we analyzed the effects of 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5- dione (TDZD-8), on murine GL261 cells growth in vitro and on the growth of established intracerebral murine gliomas in vivo. [Methodology/Principal Findings]: Our data show that TDZD-8 decreased proliferation and induced apoptosis of GL261 glioblastoma cells in vitro, delayed tumor growth in vivo, and augmented animal survival. These effects were associated with an early activation of extracellular signal-regulated kinase (ERK) pathway and increased expression of EGR-1 and p21 genes. Also, we observed a sustained activation of the ERK pathway, a concomitant phosphorylation and activation of ribosomal S6 kinase (p90RSK) and an inactivation of GSK-3 beta by phosphorylation at Ser 9. Finally, treatment of glioblastoma stem cells with TDZD-8 resulted in an inhibition of proliferation and self-renewal of these cells. [Conclusions/Significance]: Our results suggest that TDZD-8 uses a novel mechanism to target glioblastoma cells, and that malignant progenitor population could be a target of this compound.This work was supported by the Ministerio de Educacion y Ciencia grant SAF2007-62811 (to A.P.-C.). CIBERNED is funded by the Instituto de Salud Carlos III. JA.M.-G. and M.S.-S. are fellows of CIBERNED. D.A.-M. is a fellow of the Consejo Superior de Investigaciones Científicas.Peer reviewe

    Differential modulatory effects of GSK-3β and HDM2 on sorafenib-induced AIF nuclear translocation (programmed necrosis) in melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GSK-3β phosphorylates numerous substrates that govern cell survival. It phosphorylates p53, for example, and induces its nuclear export, HDM2-dependent ubiquitination, and proteasomal degradation. GSK-3β can either enhance or inhibit programmed cell death, depending on the nature of the pro-apoptotic stimulus. We previously showed that the multikinase inhibitor sorafenib activated GSK-3β and that this activation attenuated the cytotoxic effects of the drug in various BRAF-mutant melanoma cell lines. In this report, we describe the results of studies exploring the effects of GSK-3β on the cytotoxicity and antitumor activity of sorafenib combined with the HDM2 antagonist MI-319.</p> <p>Results</p> <p>MI-319 alone increased p53 levels and p53-dependent gene expression in melanoma cells but did not induce programmed cell death. Its cytotoxicity, however, was augmented in some melanoma cell lines by the addition of sorafenib. In responsive cell lines, the MI-319/sorafenib combination induced the disappearance of p53 from the nucleus, the down modulation of Bcl-2 and Bcl-x<sub>L</sub>, the translocation of p53 to the mitochondria and that of AIF to the nuclei. These events were all GSK-3β-dependent in that they were blocked with a GSK-3β shRNA and facilitated in otherwise unresponsive melanoma cell lines by the introduction of a constitutively active form of the kinase (GSK-3β-S9A). These modulatory effects of GSK-3β on the activities of the sorafenib/MI-319 combination were the exact reverse of its effects on the activities of sorafenib alone, which induced the down modulation of Bcl-2 and Bcl-x<sub>L </sub>and the nuclear translocation of AIF only in cells in which GSK-3β activity was either down modulated or constitutively low. In A375 xenografts, the antitumor effects of sorafenib and MI-319 were additive and associated with the down modulation of Bcl-2 and Bcl-x<sub>L</sub>, the nuclear translocation of AIF, and increased suppression of tumor angiogenesis.</p> <p>Conclusions</p> <p>Our data demonstrate a complex partnership between GSK-3β and HDM2 in the regulation of p53 function in the nucleus and mitochondria. The data suggest that the ability of sorafenib to activate GSK-3β and alter the intracellular distribution of p53 may be exploitable as an adjunct to agents that prevent the HDM2-dependent degradation of p53 in the treatment of melanoma.</p

    Deregulated expression of TANK in glioblastomas triggers pro-tumorigenic ERK1/2 and AKT signaling pathways

    Get PDF
    Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although increased expression or dysregulation of both kinases has been described for a variety of human cancers, this study shows that deregulated expression of the TANK protein is frequently occurring in glioblastomas (GBMs). The functional relevance of TANK was analyzed in a panel of GBM-derived cell lines and revealed that knockdown of TANK arrests cells in the S-phase and prohibits tumor cell migration. Deregulated TANK expression affects several signaling pathways controlling cell proliferation and the inflammatory response. Interference with stoichiometrically assembled signaling complexes by overexpression or silencing of TANK prevented constitutive interferon-regulatory factor 3 (IRF3) phosphorylation. Knockdown of TANK frequently prevents constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). TANK-mediated ERK1/2 activation is independent from the canonical MAP kinase or ERK kinase (MEK) 1/2-mediated pathway and utilizes an alternative pathway that uses a TBK1/IKKɛ/Akt signaling axis, thus identifying a novel pathway suitable to block constitutive ERK1/2 activity.Peer reviewe

    GSK3β Regulates Differentiation and Growth Arrest in Glioblastoma

    Get PDF
    Cancers are driven by a population of cells with the stem cell properties of self-renewal and unlimited growth. As a subpopulation within the tumor mass, these cells are believed to constitute a tumor cell reservoir. Pathways controlling the renewal of normal stem cells are deregulated in cancer. The polycomb group gene Bmi1, which is required for neural stem cell self-renewal and also controls anti-oxidant defense in neurons, is upregulated in several cancers, including medulloblastoma. We have found that Bmi1 is consistently and highly expressed in GBM. Downregulation of Bmi1 by shRNAs induced a differentiation phenotype and reduced expression of the stem cell markers Sox2 and Nestin. Interestingly, expression of glycogen synthase kinase 3 beta (GSK3β), which was found to be consistently expressed in primary GBM, also declined. This suggests a functional link between Bmi1 and GSK3β. Interference with GSK3β activity by siRNA, the specific inhibitor SB216763, or lithium chloride (LiCl) induced tumor cell differentiation. In addition, tumor cell apoptosis was enhanced, the formation of neurospheres was impaired, and clonogenicity reduced in a dose-dependent manner. GBM cell lines consist mainly of CD133-negative (CD133-) cells. Interestingly, ex vivo cells from primary tumor biopsies allowed the identification of a CD133- subpopulation of cells that express stem cell markers and are depleted by inactivation of GSK3β. Drugs that inhibit GSK3, including the psychiatric drug LiCl, may deplete the GBM stem cell reservoir independently of CD133 status

    Transcription, Epigenetics and Ameliorative Strategies in Huntington’s Disease: a Genome-Wide Perspective

    Get PDF
    corecore