675 research outputs found

    Many worlds and modality in the interpretation of quantum mechanics: an algebraic approach

    Get PDF
    Many worlds interpretations (MWI) of quantum mechanics avoid the measurement problem by considering every term in the quantum superposition as actual. A seemingly opposed solution is proposed by modal interpretations (MI) which state that quantum mechanics does not provide an account of what `actually is the case', but rather deals with what `might be the case', i.e. with possibilities. In this paper we provide an algebraic framework which allows us to analyze in depth the modal aspects of MWI. Within our general formal scheme we also provide a formal comparison between MWI and MI, in particular, we provide a formal understanding of why --even though both interpretations share the same formal structure-- MI fall pray of Kochen-Specker (KS) type contradictions while MWI escape them.Comment: submitted to the Journal of Mathematical Physic

    Carbon Nanotubes Effect for Polymer Materials on Break Down Voltage

    Get PDF
    Epoxy resin composites reinforced to different types of carbon nano-particles have been fabricated. Carbon black (20, 30 and 40 wt. %), graphene (0.5 to 4 wt. %) and carbon nanotubes (CNT) (0.5 to 2 wt. %) were added with different weight percentages to epoxy. The dielectric strength of composites was tested in several conditions such as (dry, wet, low salinity and high salinity). The mechanical characterization showed that the nano-composite Polymer enhanced by using these particles in the tensile strength. Thermal gravimetric analysis shows effect of these nano-particles on the thermal structure of epoxy resin. Scanning Electron Microscopic test is used to characterize the dispersion of carbon nano-particles and to analysis the fractured parts in the nano scale

    Photoacoustics for Cardiovascular Applications

    Get PDF
    In the thesis entitled Photoacoustic imaging for Cardiovascular Applications, two cardiovascular diseases were tackled, namely atrial fibrillation and coronary atherosclerosis. An imaging algorithm was also devised to enhance imaging target super-localization. Photoacoustic imaging is an imaging modality which provides molecular information, based on optical absorption and subsequent thermoelastic expansion resulting in detectable pressure waves with common ultrasonic detectors. Capability of imaging tissue molecular changes was shown relevant to enable real-time monitoring of lesion formation in catheter-based ablation for atrial fibrillation as well as to assess lipid content of atherosclerotic plaques in an anima

    The Complements of Lower Cones of Degrees and the Degree Spectra of Structures

    Get PDF
    We study Turing degrees a for which there is a countable structure whose degree spectrum is the collection {x : x ≰ a}. In particular, for degrees a from the interval [0′, 0″], such a structure exists if a′ = 0″, and there are no such structures if a″ \u3e 0‴

    Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium

    Get PDF
    Catheter-based radiofrequency ablation for atrial fibrillation has long-term success in 60-70% of cases. A better assessment of lesion quality, depth, and continuity could improve the procedure’s outcome. We investigate here photoacoustic contrast between ablated and healthy atrial-wall tissue in vitro in wavelengths spanning from 410 nm to 1000 nm. We studied single-and multi-wavelength imaging of ablation lesions and we demonstrate that a two-wavelength technique yields precise detection of lesions, achieving a diagnostic accuracy of 97%. We compare this with a best single-wavelength (640 nm) analysis that correctly identifies 82% of lesions. We discuss the origin of relevant spectroscopic features and perspectives for translation to clinical imaging

    Anterior eye surface changes following miniscleral contact lens wear

    Get PDF
    Purpose To quantify the effect of short-term miniscleral contact lens wear on the anterior eye surface of healthy eyes, including cornea, corneo-scleral junction and sclero-conjuctival area. Methods Twelve healthy subjects (29.9 ± 5.7 years) wore a highly gas-permeable miniscleral contact lens of 16.5 mm diameter during a 5-hour period. Corneo-scleral height profilometry was captured before, immediately following lens removal and 3 h after lens removal. Topography based corneo-scleral limbal radius estimates were derived from height measurements. In addition, elevation differences in corneal and scleral region were calculated with custom-written software. Sclero-conjuctival flattening within different sectors was analysed. Results Short-term miniscleral lens wear significantly modifies the anterior eye surface. Significant limbal radius increment (mean ± standard deviation) of 146 ± 80 μm, (p = 0.004) and flattening of −122 ± 90 μm in the sclero-conjuctival area, (p << 0.001) were observed immediately following lens removal. These changes did not recede to baseline levels 3 h after lens removal. The greatest anterior eye surface flattening was observed in the superior sector. No statistically significant corneal shape change was observed immediately following lens removal or during the recovery period. Conclusions Short-term miniscleral contact lens wear in healthy eyes does not produce significant corneal shape changes measured with profilometry but alters sclero-conjuctival topography. In addition, sclero-conjuctival flattening was not uniformly distributed across the anterior eye
    • …
    corecore