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THE COMPLEMENTS OF LOWER CONES OF DEGREES AND

THE DEGREE SPECTRA OF STRUCTURES

URI ANDREWS, MINGZHONG CAI, ISKANDER SH. KALIMULLIN, STEFFEN LEMPP,

JOSEPH S. MILLER, AND ANTONIO MONTALBÁN

Abstract. We study Turing degrees a for which there is a countable structure
A whose degree spectrum is the collection {x : x 6≤ a}. In particular, for

degrees a from the interval [0′,0′′], such a structure exists if a′ = 0′′, and
there are no such structures if a′′ > 0′′′.

1. Introduction

The degree spectrum of a countable structure A in a finite language is the set of
all Turing degrees of isomorphic copies of A on the universe ω:

Sp (A) = {deg(B) : A ∼= B & dom (B) = ω}.
Knight [7] showed that each degree spectrum is either the singleton {0} (the triv-
ial case), or closed upward. Therefore, the degree spectrum of a non-computable
structure A can be alternatively defined as the collection of degrees that compute
copies of A.

Slaman [12] and Wehner [13] have proved independently that there exist non-
computable structures that are computable in all non-zero degrees, i.e., the collec-
tion {x : x 6≤ 0} is a degree spectrum of a structure. Wehner’s solution used the
following theorem:

Theorem 1 (Wehner [13]). There is a family G of sets such that G is uniformly
X-c.e. if and only if X is not computable.

To get a structure with the desired degree spectrum, it is enough now to use a
coding G 7→ ΓG of families of sets into undirected graphs such that G is uniformly
X-c.e. if and only if ΓG has an X-computable copy. For example, we can let ΓG
be the disconnected union of infinitely repeated graphs ΓA, for each A ∈ G, where
each ΓA consists of a single vertex connected with independent (n + 3)-cycles for
each n ∈ A.

Note that this coding can be carried over to produce partial orderings, lattices,
rings, integral domains, commutative semigroups, and 2-step nilpotent groups with
the degree spectrum {x : x 6≤ 0} (see [2]). For linear orderings [10], equivalence
structures, and abelian p-groups [6], we only know that degree spectra can be equal
to {x : x 6≤ 0} within the ∆0

2-degrees.
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Using a coding of families into structures, Kalimullin [3, 4] generalized the result
of Slaman and Wehner to the complements of lower cones of some non-zero degrees:
if a degree a is low or c.e. then the collection {x : x 6≤ a} is the degree spectrum
of a structure. In the next section, we will give an alternative proof for the c.e.
case and, after that, we will be able to combine both cases, finding an appropriate
family for a degree a that is low over a c.e. degree g ≤ a.

Kalimullin [5] has also proved that there is a degree a ≤ 0′′ such that the
collection {x : x 6≤ a} is not the degree spectrum of any structure. In the last two
sections, we will see that there are large classes of degrees a with this property, and
that we can even take a = 0′′.

2. Families that are uniformly c.e. in the complement of a cone

Theorem 2 (Kalimullin [4]). For each c.e. set A, there is a family GA of c.e. sets
such that GA is uniformly X-c.e. if and only if X 6≤T A.

Proof (Montalbán). Without loss of generality, we may assume that the set A ⊆ ω
is infinite. Fix a computable bijection f : ω → A and let g be the true stage function
for A defined by

g(0) = 0, g(n+ 1) = (µs > g(n))[(∀t > s)[f(t) > f(s)]].

Then g ≡T A and the set of strings Cg = {σ ∈ ω<ω : σ 6⊆ g} is c.e.
Consider the family of c.e. sets

GA =
{
{n} ⊕ (Cg ∪ g

F
) : n ∈ ω & F is finite & F 6= W g

n

}
,

where g
F

= {g � x : x ∈ F} = {τ ⊂ g : |τ | ∈ F} ⊆ ω<ω − Cg, and

{n} ⊕X = {2n} ∪ {2x+ 1 : x ∈ X}.
The main idea of this definition is to diagonalize against all A-c.e. sets W g

n , n ∈ ω,
along the co-c.e. path g. This ensures that the family is not A-c.e.; if it were A-c.e.,
then knowing g we could effectively enumerate a set not equal to W g

n , for each n,
which contradicts the Recursion Theorem. On the other hand, if a string has not
yet been enumerated into Cg, then it might be an initial segment of g, so we can
use it to estimate W g

n . Based on this estimation, we code a finite part of given set
X 6≤T A into F to eventually ensure the diagonalization F 6= W g

n . We explain both
parts of the proof more formally below.

First, we show that GA is not uniformly A-c.e. Suppose otherwise. Since g ≡T A,
there is a computable function a such that

GA =
{
WA
a(k) : k ∈ ω

}
.

Define computable functions b and c such that, for every n ∈ ω,

2n ∈W g
a(b(n)) and W g

a(b(n)) = {n} ⊕W g
c(n) ∈ GA.

Now, define a computable function d such that, for every n ∈ ω,

W g
d(n) =

{
x : g � x ∈W g

c(n)

}
.

Then W g
d(n) 6= W g

n for every n ∈ ω, since W g
c(n) = Cg ∪ gF with F = W g

d(n). This

contradicts the Recursion Theorem, so GA is not uniformly A-c.e.
Next, let X 6≤T A. To prove that GA is uniformly X-c.e., we fix an infinite X-

computable set U that does not contain any infinite A-c.e. subsets. (For example,
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a set consisting of codes of initial segments of X will suffice.) Let U = {u(0) <
u(1) < u(2) < · · · } for an X-computable function u. We may assume that u(s) > s
for every s.

Fix integers n,m, s ∈ ω. Below we X-computably define the sequence Hσ =
Hn,m,s
σ by induction on σ ∈ ω<ω, beginning with the empty string σ = λ:

Hλ = Dm;

Hσ∗i =

{
Hσ ∪ {u(|σ|)}, if Hσ = Wσ

n and s < |σ|,
Hσ otherwise,

where Dm is the m-th finite set, and Wσ
n is the set containing all numbers enumer-

ated by the Wn-operator with the use at most σ before the end of the stage t = |σ|.
Let Hn,m,s =

⋃
σ⊂gH

n,m,s
σ .

Suppose that Dm 6= W g
n , and the stage s is large enough that Dm 6= Wσ

n , for
every σ ⊂ g with |σ| > s. Then the definition ensures that Hn,m,s = Dm. Note also
that for arbitrary n,m, s ∈ ω, the set Hn,m,s is finite, and therefore Hn,m,s 6= W g

n ;
otherwise Hn,m,s−Dm = W g

n −Dm would be an infinite A-c.e. subset of U . Thus,

{Hn,m,s : m, s ∈ ω} = {F : F is finite & F 6= W g
n}

for every n ∈ ω. We also have

{τ ⊂ g : (∃σ ⊆ τ)[|τ | ∈ Hn,m,s
σ ]} = {τ ⊂ g : |τ | ∈ Hn,m,s} = g

Hn,m,s
,

since u ∈ Hn,m,s
σ∗i −Hn,m,s

σ implies u > |σ|; and

Cg ∪ {τ :(∃σ⊆ τ)[|τ |∈Hn,m,s
σ ]} = Cg ∪ {τ⊂g:(∃σ ⊆ τ)[|τ |∈Hn,m,s

σ ]} = Cg ∪ g
Hn,m,s

.

Therefore, the family

GA = {{n} ⊕ (Cg ∪ {τ : (∃σ ⊆ τ)[|τ | ∈ Hn,m,s
σ ]}) : n,m, s ∈ ω}

is uniformly X-c.e. �

Corollary 3 (Kalimullin [4]). For every c.e. degree a (in particular, for a = 0′),
there exists a structure A such that Sp (A) = {x : x 6≤ a}.

Theorem 4. Let G be a c.e. set. Then for each set A with G ≤T A and A′ ≤T G′,
there is a family GA of c.e. sets such that GA is uniformly X-c.e. if and only if
X 6≤T A.

Proof. As in the previous proof, we take a function g ≡T G such that the set
Cg = {σ ∈ ω<ω : σ 6⊆ g} is c.e.

Consider the family of c.e. sets

GA =
{
{n} ⊕ (Cg ∪ gF ) : n ∈ ω & F is finite & F 6= WA

n

}
,

where gF = {g � x : x ∈ F} ⊆ ω<ω − Cg.
Again, GA is not uniformly A-c.e. Indeed, if GA = {WA

a(n) : n ∈ ω} for a

computable function a, then we have computable functions b and c such that
WA
a(b(n)) = {n}⊕WA

c(n) ∈ GA, so that using g ≤T A we have a computable function

d such that, for all n ∈ ω,

WA
d(n) =

{
x : g � x ∈WA

c(n)

}
6= WA

n .

This contradicts the Recursion Theorem.
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Let X 6≤T A. We again fix an infinite X-computable set U = {0 < u(0) < u(1) <
u(2) < · · · } that does not contain any infinite A-c.e. subsets. Since A′ ≤T g′ there
is a Turing functional Φ such that

WA
n (z) = lims Φg(n, z, s)

for every n, z ∈ ω. For finite uses σ ∈ ω<ω, we introduce the following approxima-
tion of WA

n :

V σn = {z : (∃s < |σ|)[Φσ(n, z, s) ↓= 1 & (∀t < |σ|)[t > s =⇒ Φσ(n, z, t) ↑]]} ,

where Φσ(n, z, s) is the value (if any) computed before the stage |σ|. It is clear that
WA
n = limσ⊂g V

σ
n .

The definition of the sequences Hσ, σ ∈ ω<ω, is similar to one from the previous
proof. In contrast with the previous proof, we have only WA

n = limσ⊂g V
σ
n instead

of W g
n =

⋃
σ⊂gW

σ
n . This forces us to add to the list of parameters n,m, s ∈ ω one

more parameter x ∈ ω that acts as a witness of Dm 6= WA
n . Also we need to use

standard length functions `σ to estimate and to control the agreement between Hσ

and WA
n .

Below is the formal inductive X-computable definition of the sequence Hσ =
Hn,m,x,s
σ , for σ ∈ ω<ω:

Hλ = Dm;

Hσ∗i =


Hσ ∪ {u(|σ|)}, if x /∈ Dm4V σn , x < |σ|, s < |σ|, and

(∀ρ ⊂ σ)[`σ > `ρ],

Hσ otherwise,

where Dm4V σn = (Dm − V σn ) ∪ (V σn −Dm), and

`σ = max {y ≤ |σ| : (∀z < y)[z ∈ Hσ ⇐⇒ z ∈ V σn ]} .

Let Hn,m,x,s =
⋃
σ⊂gH

n,m,x,s
σ . We must prove that

{Hn,m,x,s : m,x, s ∈ ω} =
{
F : F is finite & F 6= WA

n

}
for every n ∈ ω. If Dm 6= WA

n , then take an x such that x ∈ Dm4WA
n . Take s

large enough that x ∈ Dm4V σn for every σ ⊂ g with |σ| > s. The definition ensures
that Hn,m,x,s = Dm.

It remains to prove thatHn,m,x,s is finite andHn,m,x,s 6= WA
n , for every n,m, x, s.

Suppose that Hn,m,x,s is infinite. Then limσ⊂g `σ =∞, and so

Hn,m,x,s = lim
σ⊂g

V σn = WA
n

is an infinite A-c.e. subset of U ∪Dm =∗ U , contradicting our assumption about U .
Therefore, Hn,m,x,s is finite.

Suppose that Hn,m,x,s = WA
n . Then limσ⊂g `σ = ∞. Since Hn,m,x,s is finite,

by definition we should have x ∈ Dm4WA
n = limσ⊂g(Dm4V σn ) and Hn,m,x,s =

Dm ∪ {u1, . . . , uk} with ui = u(|σi|) ≥ |σi| > x for each i = 1, . . . , k. Then
x ∈ Hn,m,x,s4WA

n , which is a contradiction.
We have proved that {Hn,m,x,s : m,x, s ∈ ω} = {F : F is finite & F 6= WA

n } for
every n ∈ ω. As in the previous proof, this implies that the family

GA = {{n} ⊕ (Cg ∪ {τ : (∃σ ⊆ τ)[|τ | ∈ Hn,m,x,s
σ ]}) : n,m, x, s ∈ ω}

is uniformly X-c.e. �
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Corollary 5. Suppose that for a degree a there exists a c.e. degree g ≤ a such that
a′ ≤ g′. Then there exists a structure A such that Sp (A) = {x : x 6≤ a}.

Corollary 6 (Kalimullin [3]). If a′ ≤ 0′, then there exists a structure A such that
Sp (A) = {x : x 6≤ a}.

Corollary 7. If 0′ ≤ a and a′ ≤ 0′′, then there exists a structure A such that
Sp (A) = {x : x 6≤ a}.

3. Impossible degree spectra: a highness property

A structure B has the c.e. extension property if each existential type Th∃(B,~b)
is c.e. As we will explain later, if the degree spectrum of B is the complement of a
lower cone, then B must have this property.

Theorem 8. Let A and B be sets such that B′′ has A-c.e. degree and B′′′ ≤T A′.
Then each B-computable structure B with the c.e. extension property has an A-
computable copy A ∼= B.

Proof. Let B be a B-computable structure. Without loss of generality we can
assume that B has a relational signature and the universe of B is ω. Since B has

the c.e. extension property, for each tuple of integers ~b the set Th∃(B,~b) of all

existential facts about ~b in B is c.e. Note that the relation

R(~b, e) ⇐⇒ We = Th∃(B,~b)

is ΠB
2 ⊆ ∆B

3 ⊆ ∆B′′

1 , so that we can fix a B′′-computable function e(~b) such that

We(~b) = Th∃(B,~b).

If C is a finite substructure of B, then we will write e(C) for e(~b), where ~b is the
sequence of elements of C written in increasing order (as integers).

It is easy to see by a direct back-and-forth strategy that the theorem follows

immediately if e(~b) is A-computable. In the general case we have e ≤T B′′ ≤T
B′′′ ≤T A′, but we also know that B′′ has A-c.e. degree.

Now instead of each single back-and-forth step, we can use a straightforward
technical algorithm based on the Limit Lemma:

Lemma 9. Assume that the following data is given:

(1) a finite structure C;
(2) a monomorphism f : C → B;
(3) a value e(f(C)) such that Th∃(B, f(C)) = We(f(C));
(4) a finite structure D ⊇ C that is embeddable into B extending f (we can

check this fact using e(f(C)));
(5) an element b ∈ B.

Then there is an A-computable algorithm that generates, uniformly in the given
data, an infinite sequence of finite structures

D = E0 ⊆ E1 ⊆ E2 ⊆ · · ·

such that:

(1) E =
⋃
s Es is finite;

(2) there is a monomorphism g : E → B extending f such that b ∈ g(E).
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Fix an A-c.e. set X ≡T B′′. Our construction of an A-computably copy A ∼=
B uses the Robinson low guessing method [11], which helps tame the process of
guessing facts that are computable from a low c.e. set (in this case, relative to A).
To this end, we will define a Turing operator ΓX . Using the Recursion Theorem and
the fact that X ′ ≤T A′, we can fix a Turing operator ∆ such that ∆A′

= dom ΓX .
We will use Γ and ∆ to certify A-computable guesses about computations from
X ≡T B′′.

The construction itself splits into simultaneously working modules Mn, n ∈ ω;
each of them produces a finite structure An such that An ⊆ An+1. We will let
A =

⋃
nAn.

The module Mn executes the procedure from Lemma 9 with the input

(1) C = An−1 (we assume A−1 = ∅);
(2) the monomorphism fn−1 : An−1 → B provided by Mn−1;
(3) the value e(fn−1(An−1)) provided by Mn−1;
(4) the finite structure D ⊇ C equal to the union of all Am, m ∈ ω, as they

appear at the moment the procedure starts;
(5) the element b = n from B

The output structure An = E should satisfy the properties:

(1) An is finite;
(2) there is a monomorphism fn : E → B extending fn−1 such that b ∈ fn(An).

While the procedure is executing, we are trying to calculate both a monomorphism
fn : An → B extending fn−1 such that b ∈ fn(An), and the value e(fn(An)). Precise
calculation of this data requires the B′′-oracle, so we can pass to Mn+1 only a
limit approximation based on the current A-computable enumeration of X ≡T B′′.
Before passing to Mn+1, we certify the current approximation: Define ΓX(n) ↓
with the same use as the current calculation of fn and e(fn(An)), then wait for

∆A′
(n) = 1 for the current A-computable enumeration of A′. If our approximation

later becomes incorrect via inconsistency of the Γ-use, wait until we see ∆A′
(n) = 0

and then restart the procedures in all Mm for m ≥ n.
Since ∆A′

= dom ΓX , there are only finitely many restarts for each Mn, n ∈
ω. Each module Mn successfully defines a finite structure An with embedding
fn : An → B. Since n ∈ fn(An), the function f =

⋃
n fn is an isomorphism

between the A-computable structure A =
⋃
nAn and the structure B. �

Corollary 10. If a ≥ 0′ and a′ ≥ 0′′′ (in particular, if a = 0(n) for n ≥ 2), then
there is no countable structure A such that Sp (A) = {x : x 6≤ a}.

Proof. Suppose for a contradiction that Sp (A) = {x : x 6≤ a}. Then each existen-
tial type of A is c.e. relative to every element of the co-null class

{X ∈ 2ω : X 6≤T a}.

By [9], this is possible only if the existential type is c.e. Thus, A has the c.e.
extension property. By assumption, A has no a-computable copy.

Consider first the case when 0′′ 6≤ a. By a modification of Friedberg’s Jump
Inversion Theorem (see [8, §13.3, Corollary X(b)]), there are degrees a0,a1 ≥ 0′

such that

0′′ = a′0 = a′1 = a0 ∪ a1
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Applying the same result to each of the degrees a0 and a1, we get degrees b0,b1,b2

and b3 such that

0′′ = b′′0 = b′′1 = b′′2 = b′′3 = b0 ∪ b1 ∪ b2 ∪ b3.

Since 0′′ 6≤ a, there exists a degree b ∈ {b0,b1,b2,b3} such that b 6≤ a. Then
A has a b-computable copy, but b′′ = 0′′ has c.e. degree relative to a ≥ 0′ and
b′′′ = 0′′′ ≤ a′. This contradicts Theorem 8.

Suppose now that 0′′ ≤ a. Relativizing the low simple set construction, one
can find an a-c.e. degree c > a such that c′ = a′. By a double jump inversion
argument, as above, there exists a degree b 6≤ a such that b′′ = c. Then A has a
b-computable copy but b′′ = c has a-c.e. degree and b′′′ = c′ ≤ a′. Again, this
contradicts Theorem 8. �

4. Impossible degree spectra: a non-lowness property

Just for convenience, we define C(x) as the class of degrees a ≥ x such that for
every function f ≤T x′, there is a g ≤T a that is not dominated by f .

Theorem 11. If a ∈ C(0′), then there is no countable structure A such that
Sp(A) = {x : x � a}.

Proof. We use the following forcing lemma. The proof follows from the proof of a
similar result for non-GL2 degrees in [1, Theorem 2.8] with the observation that
the function from the proof that we need to escape is computable from 0′′.

Lemma 12. Let P be a forcing notion computable from 0′ (i.e., both membership
and the partial order are computable from 0′) and let 〈Dn〉 be a class of dense sets
such that there is a 0′′-computable density function d(p, n) = q which gives a forcing
condition q that extends p and is in Dn. Then every a ∈ C(0′) computes a generic
sequence in P with respect to the dense sets 〈Dn〉. �

We may assume that a is not above 0′′ (because the case a ≥T 0′′ is covered in
Corollary 10). As above, we can perform double jump inversion with cone avoidance
to get a degree b that is not below a and such that b′′ = 0′′.

For a contradiction, assume that {x : x � a} is the degree spectrum of a count-
able structure A, and let M be a model of A computable in b. As always, we
assume that models are defined on ω. Again, the goal is to show that a can com-
pute a model N isomorphic to M using the fact that M has the c.e. extension
property.

The key idea is that using b′′ = 0′′ we could compute the correct c.e. indices for
the existential types of finite approximations to N , along with associated embed-
dings into M. This allows us to give a very robust construction of a structure N
isomorphic to M. The plan is to use this robustness and Lemma 12 to show that
a can approximate such a construction well enough to also compute an isomorphic
copy of M. We need to define an appropriate forcing notion.

First, we define an auxiliary 0′-computable ordering Q; our forcing notion P
will be defined based on Q. Let Q be all 5-tuples (s, τ, σ, f, e) where s is a natural
number, τ is an initial segment of the standard 0′-computable enumeration of ∅′′
at stage s, σ is an initial segment of the model N we want to build, coded as a
binary string, τ verifies that f is a partial isomorphism from N to the given model
M and that e is the c.e. index of the existential type of the finitely many elements
we have decided in the range of f .
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Given two tuples p = (s, τ, σ, f, e) and q = (s′, τ ′, σ′, f ′, e′), q extends p (q ≤Q p)
if the following holds:

(1) s ≤ s′ and σ′ ⊇ σ, i.e., the model is extended consistently.
(2) either at stage s′, (computable in 0′) we see that the approximation to ∅′′

disagrees with τ (in which case we believe p is wrong); or
(a) σ′, after coded as an existential formula over the free variables in the

(assumed) type We, is in We (so σ′ extends σ while respecting We);
(b) τ ′ verifies that We′ extends We in the sense that for every formula

in We′ , after adding existential quantifiers for the last appropriate
number of free variables (depending on the numbers of free variables
in We and We′), is in We; and

(c) f ′ extends f .
(i.e., we believe p is correct and we extend it to q appropriately for each
component.)

It is easy to see that 0′′ = b′′ computes a sequence in Q such that the limit of the
f ’s is total and onto, and furthermore, such that the τ ’s are always correct initial
segments of ∅′′. Our plan is to use the degree a to approximate such a construction.
Note that in an approximation, we might figure out that some guess p ∈ Q is wrong
(i.e., discover that ∅′′ disagrees with τ). In this case, we should ignore the restraints
(f, e) that p puts on extensions, but we still want to obey the restriction placed by
previous guesses that have not been proved wrong. (Note that previous guesses are
not automatically respected because our order on Q is not actually transitive.) For
this reason, we want to keep track of all guesses, so we define a forcing notion P
by taking “chains of conditions in Q”.

A forcing condition in P is a finite sequence p̄ of conditions 〈p0, p1, . . . , pn〉 such
that each pi is in Q and pi extends pj whenever i > j. Given two conditions p̄ and
q̄, we say q̄ extends p̄ if p̄ is an initial segment of q̄ (as sequences). It is easy to see
that the forcing notion P is computable from 0′.

Consider the dense sets

Dn = {p̄ : in the last condition pm of p̄, τm is a correct initial segment of ∅′′

and n is in both the domain and range of fm}.

We show that 0′′ computes a density function f such that f(p̄, n) extends a given p̄
and is in Dn. First of all, given p̄ = 〈p0, p1, . . . , pm〉, 0′′ can figure out whether the
τ part of these conditions are correct or not, and find a stage s0 when we detect
all incorrect ones in the 0′-computable enumeration. Now for the last remaining
correct pi, σm is, by definition of the partial order, in Wei . This means that the
current model can still be consistently mapped to the given model M by a partial
isomorphism extending the correct fi in pi. So we can extend the sequence by
adding a new condition (s, τ, σ, f, e) where σ contains n in the universe; f is an
extension of the partial isomorphism as above by adding n into both the domain
and range; e is the correct existential type of the current elements in the domain
(and range) of f ; all is witnessed by a correct initial segment τ of ∅′′; and s is a
stage number greater than s0 and large enough to enumerate τ in the 0′-computable
enumeration.

Now applying Lemma 12, we get a generic sequence G computable in a meeting
all the dense sets Dn’s. Let (p0, p1, p2, . . . ) be the sequence of Q-conditions in
p̄ ∈ G. This gives an a-computable model N by projecting the elements of G
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onto their σ coordinates, i.e., N = ∪iσi. In addition, when we meet a dense set
Dn, we guarantee that the partial isomorphism f is correct and preserved in the
construction by any forcing extension, and we make sure that n is in the domain and
range of f . So the union of these correct partial isomorphisms is an isomorphism
from N to M. This gives the desired contradiction. �

As a final remark, recall that a degree a ≥ 0′ is GL2 over 0′ if a′′ > (a∨0′′)′. It
is well-known that all degrees GL2 over 0′ are in the class C(0′), and restricted to
the degrees in [0′,0′′] they are exactly the degrees that are non-low2 over 0′, i.e.,
a′′ > 0′′′. Recall that if a degree d is low over 0′, then {x : x � a} is a degree
spectrum, so in the interval [0′,0′′], we only have a very small gap left, namely the
degrees that are low2 but not low over 0′.

Corollary 13. If 0′ ≤ a ≤ 0′′ and a′′ > 0′′′, then there is no countable structure
A such that Sp (A) = {x : x 6≤ a}.

Remark 14. It follows from Theorem 8 that every low2 algebraic structure with
the c.e. extension property has copies in the degrees a such that a ≥ 0′ and a′ ≥ 0′′′,
i.e., in the degrees of functions dominating all 0′-computable functions. Moreover,
by the proof of Theorem 11, every low2 algebraic structure with the c.e. extension
property has copies in the degrees a ∈ C(0′), i.e., in the degrees a ≥ 0′ such that
there is no 0′-computable function dominating all a-computable functions. Note
also that by Corollary 3, not every low algebraic structure with the c.e. extension
property has a copy in a c.e. degree a < 0′, even if a′ = 0′′.
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