12 research outputs found
D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile
Apolipoprotein C-III deficiency provides cardiovascular protection, but apolipoprotein C-III is not known to be associated with human amyloidosis. Here we report a form of amyloidosis characterized by renal insufficiency caused by a new apolipoprotein C-III variant, D25V. Despite their uremic state, the D25V-carriers exhibit low triglyceride (TG) and apolipoprotein C-III levels, and low very-low-density lipoprotein (VLDL)/high high-density lipoprotein (HDL) profile. Amyloid fibrils comprise the D25V-variant only, showing that wild-type apolipoprotein C-III does not contribute to amyloid deposition in vivo. The mutation profoundly impacts helical structure stability of D25V-variant, which is remarkably fibrillogenic under physiological conditions in vitro producing typical amyloid fibrils in its lipid-free form. D25V apolipoprotein C-III is a new human amyloidogenic protein and the first conferring cardioprotection even in the unfavourable context of renal failure, extending the evidence for an important cardiovascular protective role of apolipoprotein C-III deficiency. Thus, fibrate therapy, which reduces hepatic APOC3 transcription, may delay amyloid deposition in affected patients
Characterization of a dominant negative mutant form of the HNF-4 orphan receptor.
The HNF-4 orphan receptor is a member of the nuclear receptor family of transcription factors and a major regulator of genes involved in carbohydrate and lipid metabolism. As an initial step in characterizing the role of HNF-4 in the regulation of metabolism, we have generated a dominant negative form of HNF-4 (DN-HNF-4) that contains a defective DNA-binding domain. In gel mobility shift assays, DN-HNF-4 did not bind an oligonucleotide probe representing an essential HNF-4 binding site, C3P contained in the human apo CIII promoter, but did prevent the binding of two recombinant isoforms, HNF-4alpha1 and HNF-4alpha2, as well as naturally-occurring HNF-4. DN-HNF-4 had no effect on the binding of PPARgamma-RXRalpha heterodimers to a PPAR response element. In transfected HepG2 cells, DN-HNF-4 dramatically reduced constitutive transcriptional activity of the human apo CIII promoter and abolished the positive transcriptional activity caused by plasmids expressing either isoform of HNF-4. These results indicate that DN-HNF-4 is a selective dominant negative mutant which forms defective heterodimers with wild-type HNF-4, thereby preventing DNA binding and subsequent transcriptional activation by HNF-4
Hypolipidemic activity of select fibrates correlates to changes in hepatic apolipoprotein C-III expression: a potential physiologic basis for their mode of action.
4.P.326 A novel compound that elevates HDL and activates the peroxisomal proliferation activated receptor
A novel compound that elevates high density lipoprotein and activates the peroxisome proliferator activated receptor
Effects of gemfibrozil on insulin resistance to fat metabolism in subjects with type 2 diabetes and hypertriglyceridaemia
Analysis of 6-month effect of orlistat administration, alone or in combination with fenofibrate, on triglyceride-rich lipoprotein metabolism in overweight and obese patients with metabolic syndrome
Inhibition of the Actions of Peroxisome Proliferator-activated Receptor α on Obesity by Estrogen*
Activation of Peroxisome Proliferator-Activated Receptor (PPAR) Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men
GNAI3: Another Candidate Gene to Screen in Persons with Ocular Albinism
Ocular albinism type 1 (OA), caused by mutations in the OA1 gene, encodes a G-protein coupled receptor, OA1, localized in melanosomal membranes of the retinal pigment epithelium (RPE). This disorder is characterized by both RPE macro-melanosomes and abnormal decussation of ganglion cell axons at the brain's optic chiasm. We demonstrated previously that Oa1 specifically activates Gαi3, which also signals in the Oa1 transduction pathway that regulates melanosomal biogenesis. In this study, we screened the human Gαi3 gene, GNAI3, in DNA samples from 26 patients who had all clinical characteristics of OA but in whom a specific mutation in the OA1 gene had not been found, and in 6 normal control individuals. Using the Agilent HaloPlex Target Enrichment System and next-generation sequencing (NGS) on the Illumina MiSeq platform, we identified 518 variants after rigorous filtering. Many of these variants were corroborated by Sanger sequencing. Overall, 98.8% coverage of the GNAI3 gene was obtained by the HaloPlex amplicons. Of all variants, 6 non-synonymous and 3 synonymous were in exons, 41 in a non-coding exon embedded in the 3' untranslated region (UTR), 6 in the 5' UTR, and 462 in introns. These variants included novel SNVs, insertions, deletions, and a frameshift mutation. All were found in at least one patient but none in control samples. Using computational methods, we modeled the GNAI3 protein and its non-synonymous exonic mutations and determined that several of these may be the cause of disease in the patients studied. Thus, we have identified GNAI3 as a second gene possibly responsible for X-linked ocular albinism
