107 research outputs found

    CG J1720-67.8: A Detailed Analysis of Optical and Infrared Properties of a New Ultracompact Group of Galaxies

    Get PDF
    We present here optical spectroscopy and BVRJHK(s) photometry of the recently discovered ultra-compact group of galaxies CG J1720-67.8. This work represents a considerable extension of the preliminary results we presented in a previous paper. Despite the complicated morphology of the group, a quantitative morphological classification of the three brightest members of the group is attempted based on photometric analysis. We find that one galaxy is consistent with a morphological type S0, while the other two are most probably late-type spirals that are already losing their identity due tothe interaction process. Information on the star formation activity and dust content derived from both spectroscopic data and optical and near-infrared colors are complemented with a reconstruction of far-infrared (FIR) maps from IRAS raw data. Enhanced star formation activity is revealed in all the group's members, including the early-type galaxy and the extended tidal tail, along which several tidal dwarf galaxy candidates are identified. The metallicity of the gaseous component is investigated and photoionization models are applied to the three main galaxies of the group, while a detailed study of the tidal dwarf candidates will appear in a companion paper. Subsolar metal abundances are found for all the three galaxies, the highest values being shown by the early-type galaxy (Z ~ 0.5 Zsolar).Comment: Accepted for publication in The Astrophysical Journa

    Dissipationless Merging and the Assembly of Central Galaxies

    Full text link
    We reanalyze the galaxy-mass correlation function measured by the Sloan Digital Sky Survey to obtain host dark matter halo masses at galaxy and galaxy group scales. We extend the data to galaxy clusters in the 2MASS catalog and study the relation between central galaxy luminosity and halo mass. While the central galaxy luminosity scales as ~M^{0.7-0.8} at low masses, the relation flattens to ~M^{<0.3} above ~4x10^{13} M_sun. The total luminosity of galaxies in the halo, however, continues to grow as a power-law ~M^{0.8-0.9}. Starting from the hypothesis that the central galaxies grow by merging ("galactic cannibalism"), we develop a simple model for the evolution of their luminosities as a consequence of the accretion of satellite galaxies. The luminosity-mass relation flattens when the time scale on which dynamical friction induces orbital decay in the satellite galaxies exceeds the age of the dark matter halo. Then, the growth of the central galaxy is suppressed as it can cannibalize only the rare, massive satellite galaxies. The model takes the dependence of the total luminosity of galaxies in a halo on its mass and the global galaxy luminosity function as input, and reproduces the observed central galaxy luminosity-mass relation over three decades in halo mass, (10^{12}-10^{15}) M_sun. The success of the model suggests that gas cooling and subsequent star formation did not play an important role in the final assembly of central galaxies from sub-L_star precursors.Comment: 4 pages, 2 figures, submitte

    The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging in a Spherical Gas Cloud

    Full text link
    Using high-resolution SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by both observational and theoretical work that indicate the presence of large amounts of gas in the central regions of merging galaxies. N-body simulations have shown that the coalescence of a massive black hole binary eventually stalls in a stellar background. However, our simulations suggest that the massive black hole binary will finally merge if it is embedded in a gaseous background. Here we present results in which the gas is assumed to be initially spherical with a relatively smooth distribution. In the early evolution of the binary, the separation dimishes due to the gravitational drag exerted by the background gas. In the later stages, when the binary dominates the gravitational potential in its vicinity, the medium responds by forming an ellipsoidal density enhancement whose axis lags behind the binary axis, and this offset produces a torque on the binary that causes continuing loss of angular momentum and is able to reduce the binary separation to distances where gravitational radiation is efficient. Assuming typical parameters from observations of Ultra Luminous Infrared Galaxies, we predict that a black hole binary will merge within 10710^{7}yrs; therefore these results imply that in a merger of gas-rich galaxies, any massive central black holes will coalescence soon after the galaxies merge. Our work thus supports scenarios of massive black hole evolution and growth where hierarchical merging plays an important role. The final coalescence of the black holes leads to gravitational radiation emission that would be detectable up to high redshift by LISA. We show that similar physical effects are important for the formation of close binary stars.Comment: 38 pages, 14 figures, submitted to Ap

    Accretion of a satellite onto a spherical galaxy. II. Binary evolution and orbital decay

    Get PDF
    We study the dynamical evolution of a satellite orbiting outside of a companion spherical galaxy. The satellite is subject to a back-reaction force resulting from the density fluctuations excited in the primary stellar system. We evaluate this force using the linear response theory developed in Colpi and Pallavicini (1997). The force is computed in the reference frame comoving with the primary galaxy and is expanded in multipoles. To capture the relevant features of the physical process determining the evolution of the detached binary, we introduce in the Hamiltonian the harmonic potential as interaction potential among stars. The dynamics of the satellite is computed self-consistently. We determine the conditions for tidal capture of a satellite from an asymptotic free state. If the binary comes to existence as a bound pair, stability against orbital decay is lost near resonance. The time scale of binary coalescence is computed as a function of the eccentricity and mass ratio. In a comparison with Weinberg's perturbative technique we demonstrate that pinning the center of mass of the galaxy would induce a much larger torque on the satellite.Comment: 13 pages, Tex,+ 10 .ps figures Submitted to The Astrophysical Journa

    Історія польських поселень Володарсько-Волинського району

    Get PDF
    В даній роботі описано 10 сіл з переважаючим польським населенням, на що вказують архівні матеріали і опитування жителів сіл

    Ejection of Supermassive Black Holes from Galaxy Cores

    Get PDF
    [Abridged] Recent numerical relativity simulations have shown that the emission of gravitational waves during the merger of two supermassive black holes (SMBHs) delivers a kick to the final hole, with a magnitude as large as 4000 km/s. We study the motion of SMBHs ejected from galaxy cores by such kicks and the effects on the stellar distribution using high-accuracy direct N-body simulations. Following the kick, the motion of the SMBH exhibits three distinct phases. (1) The SMBH oscillates with decreasing amplitude, losing energy via dynamical friction each time it passes through the core. Chandrasekhar's theory accurately reproduces the motion of the SMBH in this regime if 2 < ln Lambda < 3 and if the changing core density is taken into account. (2) When the amplitude of the motion has fallen to roughly the core radius, the SMBH and core begin to exhibit oscillations about their common center of mass. These oscillations decay with a time constant that is at least 10 times longer than would be predicted by naive application of the dynamical friction formula. (3) Eventually, the SMBH reaches thermal equilibrium with the stars. We estimate the time for the SMBH's oscillations to damp to the Brownian level in real galaxies and infer times as long as 1 Gyr in the brightest galaxies. Ejection of SMBHs also results in a lowered density of stars near the galaxy center; mass deficits as large as five times the SMBH mass are produced for kick velocities near the escape velocity. We compare the N-body density profiles with luminosity profiles of early-type galaxies in Virgo and show that even the largest observed cores can be reproduced by the kicks, without the need to postulate hypermassive binary SMBHs. Implications for displaced AGNs and helical radio structures are discussed.Comment: 18 pages, The Astrophysical Journal, in press. Replaced with revised versio

    The construction of non-spherical models of quasi-relaxed stellar systems

    Full text link
    Spherical models of collisionless but quasi-relaxed stellar systems have long been studied as a natural framework for the description of globular clusters. Here we consider the construction of self-consistent models under the same physical conditions, but including explicitly the ingredients that lead to departures from spherical symmetry. In particular, we focus on the effects of the tidal field associated with the hosting galaxy. We then take a stellar system on a circular orbit inside a galaxy represented as a "frozen" external field. The equilibrium distribution function is obtained from the one describing the spherical case by replacing the energy integral with the relevant Jacobi integral in the presence of the external tidal field. Then the construction of the model requires the investigation of a singular perturbation problem for an elliptic partial differential equation with a free boundary, for which we provide a method of solution to any desired order, with explicit solutions to two orders. We outline the relevant parameter space, thus opening the way to a systematic study of the properties of a two-parameter family of physically justified non-spherical models of quasi-relaxed stellar systems. The general method developed here can also be used to construct models for which the non-spherical shape is due to internal rotation. Eventually, the models will be a useful tool to investigate whether the shapes of globular clusters are primarily determined by internal rotation, by external tides, or by pressure anisotropy.Comment: AASTeX v5.2, 37 pages with 2 figures, accepted for publication in The Astrophysical Journa

    Weak Lensing Mass Reconstruction using Wavelets

    Full text link
    This paper presents a new method for the reconstruction of weak lensing mass maps. It uses the multiscale entropy concept, which is based on wavelets, and the False Discovery Rate which allows us to derive robust detection levels in wavelet space. We show that this new restoration approach outperforms several standard techniques currently used for weak shear mass reconstruction. This method can also be used to separate E and B modes in the shear field, and thus test for the presence of residual systematic effects. We concentrate on large blind cosmic shear surveys, and illustrate our results using simulated shear maps derived from N-Body Lambda-CDM simulations with added noise corresponding to both ground-based and space-based observations.Comment: Accepted manuscript with all figures can be downloaded at: http://jstarck.free.fr/aa_wlens05.pdf and software can be downloaded at http://jstarck.free.fr/mrlens.htm

    Dynamical friction and the evolution of satellites in virialized halos: the theory of linear response

    Get PDF
    The evolution of a small satellite inside a more massive truncated isothermal spherical halo is studied using both the Theory of Linear Response for dynamical friction and N-Body simulations. The analytical approach includes the effects of the gravitational wake, of the tidal deformation and the shift of the barycenter of the primary, so unifying the local versus global interpretation of dynamical friction. Sizes, masses, orbital energies and eccentricities are chosen as expected in hierarchical clustering models. We find that in general the drag force in self-gravitating backgrounds is weaker than in uniform media and that the orbital decay is not accompanied by a significant circularization. We also show that the dynamical friction time scale is weakly dependent on the initial circularity. We provide a fitting formula for the decay time that includes the effect of mass and angular momentum loss. Live satellites with dense cores can survive disruption up to an Hubble time within the primary, notwithstanding the initial choice of orbital parameters. Dwarf spheroidal satellites of the Milky Way, like Sagittarius A and Fornax, have already suffered mass stripping and, with their present masses, the sinking times exceed 10 Gyr even if they are on very eccentric orbits.Comment: 27 pages including 9 figures. Accepted for publication in the Astrophysical Journal. Part 2, issue November 10 1999, Volume 52

    Galaxies in N-body simulations: overcoming the overmerging problem

    Get PDF
    We present analysis of the evolution of dark matter halos in dense environments of groups and clusters in dissipationless cosmological simulations. The premature destruction of halos in such environments, known as the overmerging, reduces the predictive power of N-body simulations and makes difficult any comparison between models and observations. We analyze the possible processes that cause the overmerging and assess the extent to which this problem can be cured with current computer resources and codes. Using both analytic estimates and high resolution numerical simulations, we argue that the overmerging is mainly due to the lack of numerical resolution. We find that the force and mass resolution required for a simulated halo to survive in galaxy groups and clusters is extremely high and was almost never reached before: ~1-3 kpc and 10^8-10^9 Msun, respectively. We use the high-resolution Adaptive Refinement Tree (ART) N-body code to run cosmological simulations with the particle mass of \approx 2x10^8/h Msun} and the spatial resolution of \approx 1-2/h kpc, and show that in these simulations the halos do survive in regions that would appear overmerged with lower force resolution. Nevertheless, the halo identification in very dense environments remains a challenge even with the resolution this high. We present two new halo finding algorithms developed to identify both isolated and satellite halos that are stable (existed at previous moments) and gravitationally bound. To illustrate the use of the satellite halos that survive the overmerging, we present a series of halo statistics, that can be compared with those of observed galaxies. (Abridged)Comment: Accepted for publication in ApJ, substantional revisions after the first version, LaTeX 23 pages, 18 figs. (uses emulateapj.sty), Full-resolution version of Fig.9 is available upon reques
    corecore