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ABSTRACT
Recent numerical relativity simulations have shown that the emission of gravitational waves during the

merger of two supermassive black holes (SMBHs) delivers a kick to the final hole, with a magnitude as large
as 4000kms−1. We study the motion of SMBHs ejected from galaxy cores by such kicks and the effects on
the stellar distribution using high-accuracy directN-body simulations. Following the kick, the motion of the
SMBH exhibits three distinct phases. (1) The SMBH oscillates with decreasing amplitude, losing energy via
dynamical friction each time it passes through the core. Chandrasekhar’s theory accurately reproduces the
motion of the SMBH in this regime if 2. lnΛ . 3 and if the changing core density is taken into account. (2)
When the amplitude of the motion has fallen to roughly the core radius, the SMBH and core begin to exhibit
oscillations about their common center of mass. These oscillations decay with a time constant that is at least 10
times longer than would be predicted by naive application ofthe dynamical friction formula. During this phase,
the SMBH is typically displaced from the peak of stellar density by roughly the core radius. (3) Eventually,
the SMBH reaches thermal equilibrium with the stars. We use straightforward scaling arguments to estimate
the time for the SMBH’s oscillations to damp to the Brownian level in real galaxies and infer times as long
as∼ 1Gyr in the brightest galaxies. The longevity of the oscillations makes this mechanism competitive with
others that have been proposed to explain double or offset nuclei. Ejection of SMBHs also results in a lowered
density of stars near the galaxy center; mass deficits as large as five times the SMBH mass are produced for
kick velocities near the escape velocity. We compare theN-body density profiles with luminosity profiles of
early-type galaxies in Virgo and show that even the largest observed cores can be reproduced by the kicks,
without the need to postulate “hypermassive” binary SMBHs.Implications for displaced AGNs and helical
radio structures are discussed.
Subject headings:galaxies:nuclei - stellar dynamics

1. INTRODUCTION

The recent breakthroughs in numerical relativity (Pretorius
2005; Campanelli et al. 2006; Baker et al. 2006a) have al-
lowed a number of groups to evolve binary black holes (BHs)
to full coalescence. The final inspiral is driven by emissionof
gravitational waves, and in typical (asymmetric) inspirals, a
net impulse is imparted to the system due to anisotropic emis-
sion of the waves (Bekenstein 1973; Fitchett & Detweiler
1984; Favata et al. 2004). Early arguments that the magni-
tude of the recoil velocity would be modest for non-spinning
BHs (Redmount & Rees 1989) were confirmed by the simula-
tions, which foundVkick . 200kms−1 in the absence of spins
(Baker et al. 2006b; González et al. 2007b; Herrmann et al.
2007). The situation changed dramatically following the
first simulations of “generic” binaries, i.e., binaries in which
the individual BHs were spinning and in which the spins
were allowed to have arbitrary orientations (Campanelli etal.
2007b). Kicks as large as∼ 2000kms−1 have now been
confirmed (Campanelli et al. 2007a; González et al. 2007a;
Tichy & Marronetti 2007), and simple scaling arguments sug-
gest that the maximum kick velocity would probably increase
to ∼ 4000kms−1 in the case of maximally-spinning holes
(Campanelli et al. 2007a). The most propitious configuration
for the kicks consists of an equal-mass binary in which the in-
dividual spin vectors are oppositely aligned and oriented par-
allel to the orbital plane. The kick amplitude also depends
sensitively on the angle between the BH spin vectors and their
linear momenta shortly before the plunge (Campanelli et al.
2007c).

Electronic address: alessiag,merritt@astro.rit.edu

Galaxy escape velocities are. 3000kms−1 (Merritt et al.
2004), which means that gravitational wave recoil can in prin-
ciple displace coalescing supermassive black holes (SMBHs)
arbitrarily far from galaxy centers, or even eject them com-
pletely. The actual distribution of kick velocities is very
uncertain, since it depends on the unknown distribution of
binary mass ratios and spins, but most kicks are probably
. 103kms−1. A SMBH that is kicked with less than escape
velocity will travel some maximum distance from the galaxy
center after which its orbit decays due to dynamical friction;
most of the energy loss takes place during passages through
the galaxy center. Removal of the SMBH from the core has
the effect of transferring kinetic energy to the stars and low-
ering the core density (Redmount & Rees 1989; Merritt et al.
2004; Boylan-Kolchin et al. 2004). This implies a more grad-
ual return of the SMBH to a zero-velocity state than in a
galaxy with fixed density.

In fact, however, the SMBH is not expected to ever reach a
state of zero kinetic energy. When its energy falls to a value

1
2

MBHV2 ≈ 1
2

m⋆v2
⋆ (1)

with respect to the galaxy central potential, wherem⋆ and
v⋆ are a typical stellar mass and velocity respectively, ran-
dom gravitational perturbations from stars act to accelerate
the SMBH as often as they decelerate it. This is the regime of
gravitational Brownian motion (Young 1977; Bahcall & Wolf
1976; Merritt et al. 2007). A natural definition of the “re-
turn time” of a kicked SMBH is the time required for dy-
namical friction to reduce the SMBH’s mean kinetic energy
to the Brownian value. Applying standard expressions for
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the dynamical friction force leads one to the conclusion that
this would occur in a relatively short time, of order a few or-
bital periods, after dynamical friction has returned the kicked
SMBH to the core.

The N-body simulations presented here were designed to
test these expectations by evaluating the return times of kicked
SMBHs and by quantifying the induced changes in galaxy
structure. These processes can not be studied accurately using
classical dynamical friction theory since the SMBH substan-
tially modifies the core as it recoils and falls back. Approx-
imateN-body schemes, e.g. tree or grid codes, are also not
well suited to the problem since they can not robustly follow
both the early (collisionless) and late (collisional) evolution
of the SMBH. Large particle numbers are required in order to
cleanly separate the collisional and collisionless regimes.

These various requirements can currently be met only
with parallel, direct N-body codes running on special-
purpose supercomputers. Our simulations use the
φGRAPE integrator (Harfst et al. 2007) as implemented
on gravitySimulator, a 32-node supercomputer em-
ploying GRAPE-6A accelerator boards (Fukushige et al.
2005).

Our findings are surprising in one important respect. After
returning to the core, the kicked SMBH exhibits long-lived
oscillations with amplitude comparable to the core radius1.
These oscillations eventually decay but with a time constant
that is at least an order of magnitude longer than would be
predicted by a straightforward application of the dynamical
friction equation. We demonstrate that the existence, ampli-
tude and damping time of these oscillations are independent
of the numberN of “star” particles used in the simulations, for
N up to 2×106. The oscillations are similar to those first re-
ported by R. Miller and collaborators (Miller & Smith 1992;
Miller 1996) in their pioneeringN-body studies of the central
regions of galaxies. A number of other authors have reported
low effective values of the dynamical friction force as it acts
on massive objects that inspiral into constant-density cores
(Bontekoe 1988; Bertin et al. 2003; Read et al. 2006) or on
rotating bars (Weinberg & Katz 2002; Valenzuela & Klypin
2003). Our use of a high-accuracy, direct-summationN-body
code combined with large particle numbers greatly reduces
the possibility that our results are an artifact of the potential
calculation scheme, an issue that has plagued the interpreta-
tion of similar results in the past (Zaritsky & White 1988).

§ 2 describes the initial models and theN-body algorithm.
Evolution of the SMBH’s orbit is described in detail in § 3,
and the induced changes in galaxy structure are described in
§ 4, where theN-body models are compared to luminosity
profiles of core galaxies. § 5 presents estimates of the SMBH
return times in real galaxies, and § 6 discusses some of the
observable consequences of the kicks.

2. INITIAL MODELS AND NUMERICAL METHODS

The light profiles of elliptical galaxies and the bulges of spi-
ral galaxies are generally well described in terms of the Sér-
sic model (Sérsic 1963; Sersic 1968), which is a generaliza-
tion of the de Vaucouleurs (1948, 1959) law. The most lumi-
nous elliptical galaxies depart systematically from the Sérsic
law near the center, where they show evidence for partially
depleted stellar cores (Faber et al. 1997; Milosavljević et al.
2002; Graham 2004; Ferrarese et al. 2006). Formation of

1 A movie showing the oscillations is available at
http://ccrg.rit.edu/Research/Publications.php?paper=0708.0771.

TABLE 1
PARAMETERS OF THE INITIAL MODELS.

name n α rb γ MBH/Mgal

A1 4.0 2.0 0.014 0.55 1.0×10−3

A2 4.0 2.0 0.0095 0.55 1.0×10−3

B 4.0 2.0 0.027 0.55 3.0×10−3

a binary SMBH following a galaxy “major merger” has
been shown to produce cores of roughly the right magnitude
(Milosavljević & Merritt 2001; Merritt 2006), although some
observed cores are too large to be easily explained by this
model (a point we return to in detail below).

As approximate representations of galaxies with binary-
depleted cores, we adopt core-Sérsic models (Graham et al.
2003) for our initial conditions. Thespacedensity profile of
a galaxy that follows the core-Sérsic law in projection can be
accurately approximated as (Terzić & Graham 2005)

ρ (r) =ρ
′

[

1+
( rb

r

)α]γ/α

[(

rα + rα
b

)

/Rα
e

]−p/α
e−b[(rα+rα

b )/Rα

e ]1/nα

(2)

with

ρ
′

= ρb 2(p−γ)/α

(

rb

Re

)p

e
b
“

21/αrb/Re

”1/n

. (3)

Equation (2) is a modification of the Prugniel-Simien model
(Prugniel & Simien 1997). Here,Re is the effective (half-
mass) radius of the projected galaxy;rb is the break (core)
radius;ρb is the space density atr = rb; andα regulates the
sharpness of the transition from core to outer profile. The
parametern describes the curvature of the Sérsic profile and
b and p are fixed functions ofn (Prugniel & Simien 1997;
Terzíc & Graham 2005). Monte-Carlo initial conditions were
generated using the scheme of Szell et al. (2005), after includ-
ing the gravitational potential of a central point particlerepre-
senting the SMBH.

The parameters used for our initial models are listed in Ta-
ble 1. The table also reports names for the different runs based
on the adopted ratio of SMBH mass to galaxy mass and ini-
tial core radius. Core radii were chosen so as to give initial
mass deficits of roughlyMBH, as observed for the majority
of luminous early-type galaxies (Merritt 2006). We note that
γ = 0.5 is the shallowest power-law profile that is consistent
with a non-negative, isotropic distribution of stellar velocities
around the BH.

The initial models were evolved using theφGRAPE
numerical integrator (Harfst et al. 2007). This direct-
summation code employs a fourth-order Hermite integrator
with predictor-corrector scheme and hierarchical time steps.
The MPI parallelization strategy is designed to minimize the
amount of communication among different computing nodes
and to make efficient use of the special-purpose GRAPE hard-
ware. All the simulations presented in this work were per-
formed on the 32-node clustergravitySimulator2 at
the Rochester Institute of Technology. Most of our simula-
tions usedN = 0.5×106 equal-mass particles to represent the
galaxy although some runs used largerN. We set the ratio
of BH mass to galaxy mass,MBH/Mgal, to be (1,3)× 10−3,
typical for observed galaxies (Merritt & Ferrarese 2001). For
each model described in Table 1, we chose eleven different
values of the kick velocityVkick in units of the central escape

2 http://wiki.cs.rit.edu/bin/view/GRAPEcluster
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speedVesc: Vkick = (0.1,0.2, ..,1.1)×Vesc; the latter was com-
puted numerically from the initialN-body models. In order
to guarantee energy conservation, we used a time-step accu-
racy parameterη = 0.01. This ensures a relative energy error
smaller than one part in 106. An accuracy parameter twice as
big would approximately halve the integration time but would
result in a relative energy error of 10−4, which we do not con-
sider acceptable for this study. A softening lengthǫ = 10−4

was assigned to both the stars and the BH. Such a small soft-
ening length has been shown not to affect even the Brownian
motion of a massive particle in models like ours (Merritt et al.
2007).

Throughout the paper we adopt units according to which the
gravitational constantG, the effective radiusRe in equation
(2), and the total galaxy massMgal are unity. The models can
be scaled to physical units as follows:

[T] =

(

GMgal

R3
e

)−1/2

(4)

= 7.75×106yr

(

Mgal

1011M⊙

)−1/2(

Re

3kpc

)3/2

, (5)

[V] =

(

GMgal

Re

)1/2

(6)

= 378kms−1

(

Mgal

1011M⊙

)1/2(

Re

3kpc

)−1/2

. (7)

3. THE BLACK HOLE MOTION

3.1. General Remarks

Figure 1 (which can be compared with Fig. 1 of
Madau & Quataert 2004 shows BH trajectories in models A1,
A2 and B forVkick/Vesc= (0.4,0.7,0.9,1.1). ForVkick ≥ Vesc
the black hole escapes the galaxy on an unbound orbit. The
maximum displacement of the BH (rmax) is shown in Figure 2.
The data from the simulations (points) are compared to theo-
retical (dotted lines) and numerical (dashed lines) estimates of
rmax in the absence of dynamical friction. The theoretical and
numerical estimates are obtained from the initialN-body data
by assuming conservation of total energy for the BH:rmax is
the distance at which the gravitational potential of the system
equals the initial total energy of the BH. For the theoretical so-
lution we use the expression of the potential in a core-Sérsic
model (see equations 7 through 13 of Terzić & Graham 2005)
while for the numerical solution we compute the potential at
different radii from theN-body data. The two estimates are
for practical purposes indistinguishable.

Dynamical friction affects the maximum displacement of
the BH only for moderately large kicks, where the data points
appear systematically lower than the theoretical curves. Val-
ues ofrmax larger than the expected turning points in the first
orbit are due to the rapidly-expanding core.

During the initial outward journey, dynamical friction does
not strongly influence the motion of the BH, and the maxi-
mum displacement is similar to that of an energy-conserving
orbit. We note that a kick velocity larger than about 0.3Vesc
is necessary to bring the BH beyond the core. Due to the
combined effect of the kick and dynamical friction, the BH
displays a damped oscillatory motion. The number of radial
oscillations increases withVkick; for Vkick = 0.9Vescthe BH ex-
periences∼ 5 full radial oscillations before returning to the
core. Almost all of the energy loss to dynamical friction takes

FIG. 1.— BH trajectories in models A1, A2 and B, forVkick/Vesc = 0.4
(blue/lower), 0.7 (green), 0.9 (red) and 1.1 (black).

place during the short intervals that the BH passes through the
core. This is shown in Figure 3 which plots the evolution of
the BH specific energyE in Model A1 with Vkick = 0.9Vesc,
where

E ≡ V2

2
−

N
∑

i=2

mi
√

(xi − X)2 + ǫ2
(8)
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FIG. 2.— Maximum displacement of the BH from the galaxy center. The
data points show the results from the simulations while the lines are estimates
in the absence of dynamical friction. The dashed lines represent numerical
estimates from the computation of the potential of theN-body system at time
t = 0 while the dotted lines represent theoretical estimates from the analytic
expression of the potential in a core-Sérsic model.

FIG. 3.— Upper panel:Specific energy of the BH particle versus time in
Model A1 with Vkick = 0.9Vesc. Almost all of the energy loss occurs during
passages through the core.Lower panel:Mean density in a sphere of radius
0.05 centered on the point of maximum density in the core of the galaxy
(excluding the BH).

and the summation is over the “star” particles3. The energy
lost during the initial emergence from the core appears to be
less than during subsequent passages, suggesting that dynam-

3 Unless otherwise noted, upper-case variablesX andV refer to the BH
particle while lower-case symbols are reserved for the starparticles.

FIG. 4.— Stellar mass bound to the BH in the initial models.

ical friction requires a finite time to “turn on” after the kick.
During the first few oscillations, the BH’s motion remains es-
sentially rectilinear, but eventually theY- andZ-components
of the motion become important due to non-sphericities in the
galaxy potential and also to perturbations from stars. At late
times, the BH’s motion is essentially random, similar to that
of a Brownian particle in a fluid. Figure 3 also shows the
mean density in a sphere of fixed radius whose center is lo-
cated at the estimated density peak (computed via the algo-
rithm described in § 3.2). The core density decreases rapidly
following the initial ejection, then more gradually as the BH
returns again and again to the core, losing energy to the stars
each time.

Figure 4 shows the mass in stars bound to the BH att = 0.
The bound mass was computed by counting all the stars,
within the influence radiusrh, which formed a bound two-
body system with the BH particle. The influence radius was
defined as the radius containing a mass in stars equal to twice
MBH. The bound mass decreases steeply withVkick, as noted
in earlier studies (Merritt et al. 2004; Boylan-Kolchin et al.
2004), and is ignorable forVkick & 0.6Vesc.

In all cases where the kick velocity was large enough to re-
move the BH completely from the core (i.e.Vkick & 0.3Vesc),
we observed three distinct regimes of the motion. In Phase
I, the BH’s motion is well predicted by Chandrasekhar’s dy-
namical friction theory, after taking into account the chang-
ing size of the galaxy core where most of the friction occurs.
This is the phase illustrated in Figure 1; in Figure 3, Phase I
extends untilt ≈ 20. Phase II begins roughly when the ampli-
tude of the BH’s motion had decayed to the size of the core.
In this phase, the energy of the BH’s orbit continues to decay
but with a much longer time constant than predicted by Chan-
drasekhar’s formula. The BH and the core oscillate about their
common center of mass in this regime. In Phase III, the BH’s
energy has dropped to the thermal level. Phase II is generally
longer than Phase I, and this would presumably be even more
true in real galaxies since the amplitude of thermal oscilla-
tions is much lower than in our simulations implying a longer
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time to reach the Brownian regime. We discuss these three
regimes in detail below.

3.2. Phase I

The extent of Phase I is clearly indicated in the plots of BH
energy vs. time (e.g. Fig. 3): a distinct “knee” appears in the
E(t) curves marking the end of this phase. Values ofTI , the
elapsed time from the kick until the end of Phase I, are given
in Table 2.

We compared the evolution of the BH’s motion in Phase
I with the predictions of Chandrasekhar’s dynamical friction
theory (Chandrasekhar 1943). Such comparisons are prob-
lematic since much of the energy exchange between BH and
stars occurs during passages through the galaxy’s core, and
the core density changes significantly with time due to the
BH’s motion. We dealt with this problem by breaking the
BH’s motion into segments, each containing one passage
through the center, and assuming that the galaxy’s density re-
mained constant during each segment.

Chandrasekhar (1943) derived his expression for the dy-
namical friction accelerationFdf assuming an infinite, homo-
geneous and unchanging background of perturbers (stars). In
the limit that the mass of the heavy object greatly exceeds the
masses of the stars, the acceleration is predicted to be

Fdf ≈ −2πG2ρMBH ln(1+ Λ
2)V−2N(< V, r), (9)

whereρ(r) is the mass density of stars at the BH’s position,
(1/2) ln(1+ Λ2) is the Coulomb logarithm,V is the BH’s in-
stantaneous velocity, andN(< V,r) is the fraction of stars at
r that are moving (in the frame of the galaxy) with velocities
less thanV.

Some care must be taken in the definition of the Coulomb
logarithm. One commonly writes

ln
(

1+ Λ
2
)

≈ 2lnΛ ≈ 2ln(pmax/pmin) (10)

wherepmin andpmax are the minimum and maximum effective
impact parameters of the stars that contribute to the frictional
force, andpmax≫ pmin. However,pmin depends on the field-
star velocity (White 1949; Merritt 2001) andpmax is likewise
ill-defined since a realistic stellar system is inhomogeneous
and has no outer boundary.

NumerousN-body simulations have been carried out to
evaluate Chandrasekhar’s formula in the case of a mas-
sive particle inspiraling toward the center of a galaxy
(White 1983; Bontekoe & van Albada 1987; Bontekoe 1988;
Weinberg 1989; Cora et al. 1997; Bertin et al. 2003). Early
work was typically based on approximateN-body schemes
and the results were often discrepant from study to study
(Zaritsky & White 1988). These differences appear to have
been resolved in the last few years through the use of direct-
summation codes (Spinnato et al. 2003; Merritt 2006), which
consistently find 4. lnΛ . 6 for inspiral of massive point
particles, on circular or near-circular orbits, into the centers
of galaxies with steeply-rising density profiles. Fewer exper-
iments have been done with highly eccentric orbits, although
Just & Peñarrubia (2005), using an approximate method, find
2 . lnΛ . 3 for orbits with moderate eccentricities.

In general, we expect the effective value of lnΛ to be
smaller for radial orbits than for circular motion. The dy-
namical friction force arises from a polarization of the stellar
density which produces an over-dense region, or wake, be-
hind the massive object (Mulder 1983). A finite time, of order
a galaxy crossing time, is presumably required for this wake

to be set up. In the case of a gradually-decaying circular or-
bit, the galaxy is able to reach a quasi-steady state after a few
orbits of the massive object. In our case, the position and
velocity of the BH are changing dramatically over one cross-
ing time, so that the wake never has a chance to establish its
steady-state amplitude; indeed just after apocenter passages,
the over-dense region can be seen to lie infront of the BH.

In order to determine the effective value of lnΛ in the N-
body integrations, we computed BH trajectories using Chan-
drasekhar’s formula (equation9) with various values of the
ln

(

1+ Λ2
)

term (henceforth written simply as 2 lnΛ) and
compared them with theN-body trajectories. The following
procedure was followed.

1. The density center of the galaxy moves slightly with
respect to the origin of the coordinates due to transfer of mo-
mentum from the kicked BH to the galaxy. In order to accu-
rately determine the distance of the BH from the galaxy center
as a function of time, we recorded full snapshots of the par-
ticle positions at frequent intervals, then used the Casertano-
Hut (1985) algorithm to find the density center of the stars
in each snapshot. A smoothing spline was fit through the
measured positions to give a continuous estimate of the center
displacement as a function of time, and this displacement was
subtracted from the BH positions. (The instantaneous velocity
of the density center was ignored, which is a good approxima-
tion at least until the end of Phase I.) The resulting correction
was at most∼ 0.02; at late times the displacement reached a
constant value since the center-of-mass velocity of the system
was zero by construction.

2. In order to apply Chandrasekhar’s formula we needed
to specify the galaxy model. The galaxy’s mass distribu-
tion changes with time due to the BH’s motion; most of
this change takes place in the core just after the BH passes
through. We therefore fixed all the parameters in equation (2)
except for the core radiusrb. We determined the effective
value ofrb at the discrete times when the BH passed through
the galaxy center by assuming a flat core (γ = 0) and finding
the value ofrb such that the mass contained withinrb accord-
ing to equation (2), withα = 2, was the same as the mass in
theN-body model in a sphere of radiusrb centered on the BH.
This procedure was always found to yield a uniquerb and ac-
curately recovered the known value ofrb in the initial models.

3. BH trajectories were then computed in a piecewise
fashion using Chandrasekhar’s formula, starting from one ex-
tremum in the BH displacement and continuing until the next
extremum, using the value ofrb corresponding to the central
passage lying between the two extrema. This was repeated
for several values of lnΛ. We used equation (5) of Szell et al.
(2005) to computeN(<V, r) in equation (9) from the assumed
ρ(r).

Figure 5 shows the results for Model A1 withVkick/Vesc=
0.7 and Model B withVkick/Vesc= 0.8. During each inward
leg of the trajectory, the dynamical friction force hardly af-
fects the motion; only when passing through the dense center
is the motion significantly non-ballistic. (This could be seen
already in Figures 2 and 3.) The best-fit value of lnΛ was
found to lie in the range 2. lnΛ . 3, and for such values,
Chandrasekhar’s formula did a good job of reproducing the
motion. We found no evidence of a systematic change in the
effective value of lnΛ from one time interval to the next.

3.3. Phase III

The BH trajectories in Figure 5 are displayed until the am-
plitude of the oscillations has decayed down to roughly the
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FIG. 5.— Comparison between BH trajectories computed via theN-body
integrations (open circles) and via Chandrasekhar’s formula (9) (lines). The
N-body models were A1 (MBH = 0.001) withVkick = 0.7Vesc(a) and B (MBH =
0.003) withVkick = 0.8Vesc (b). Theoretical trajectories were computed in a
piecewise manner, starting from extrema in the BH’s trajectory (vertical solid
lines) and continuing until the next extremum; the core radiusrb of the galaxy
model was adjusted as described in the text to give the same core density as
in the N-body model at the time when the BH passed through the center.
Horizontal dashed lines show the adopted values ofrb. Line colors/styles
correspond to different values of lnΛ: 1 (blue/solid), 2 (magenta/dashed), 3
(red/dash-dotted), 4 (black/dotted).

core radius. As discussed above, the BH’s motion is well pre-
dicted by Chandrasekhar’s dynamical friction formula in this
regime. Shortly after returning to the core, however, the BH’s
motion was found to depart strikingly from the predictions of
Chandrasekhar’s formula. A detailed discussion of the mo-
tion in “Phase II” is presented below. Before doing so, we
consider the motion of the BH at still later times, “Phase III,”
when it has reached thermal equilibrium with the stars.

Figure 6 shows the squared velocity of the BH,V2 = V2
x +

V2
y + V2

z , over the full integration interval, for kick veloci-
ties Vkick ≥ 0.3Vesc in Model B. ForVkick & 0.4Vesc the BH
moves substantially beyond the core during its first oscillation
(Fig. 2). At late times, the motion of the BH in each of these
integrations appears to be stochastic (i.e. non-quasi-periodic)
but with roughly constant amplitude.

The dashed (blue) lines in this figure show
〈

V2
〉

, the mean
square velocity of the BH averaged over Phase III. (The pre-
cise definition of the start of Phase III is given below.) Also
shown (dotted red lines) are estimates of the expected value
of

〈

V2
〉

for the BH once it reaches statistical equilibrium with
the stars. The latter velocity,V2

Brown, was computed using

V2
Brown = 3

m⋆

MBH
σ̃2. (11)

FIG. 6.— Squared BH velocity in sevenN-body integrations of Model B.
For Vkick & 0.4Vesc the BH moves completely out of the core before falling
back. Ticked, horizontal lines demarcate Phase II. Blue (dashed) lines show
〈V2〉 during Phase III, and red (dotted) lines show the mean squarevelocity
predicted by equation (11), which assumes that the BH particle has reached
thermal equilibrium with the stars in its vicinity.

Equation (11) equates the kinetic energy of the BH with the
mean kinetic energy of a single star in the core. The quantity
σ̃ is defined as the 1D velocity dispersion of stars within a
sphere of radiusK × rh centered on the BH, withrh the BH’s
influence radius (the radius containing a mass in stars equal
to twiceMBH) andK a constant of order unity. Merritt et al.
(2007) usedN-body simulations to evaluateK for massive
particles at the centers of galaxies with power-law nuclear
density profiles,ρ ∼ r−γ . They found thatK increases slowly
with decreasingγ, to K ≈ 0.8 whenγ = 0.5. We setK = 1
when computingVBrown in Figure 6; the agreement with the
measured values is quite good, confirming that the BH be-
haves as a Brownian particle in Phase III.

Figure 7 shows the rms amplitude of the BH’s motion aver-
aged over Phase III. Since the density center of the galaxy
drifts, as described above, smoothing splines were first fit
to the X(t) values for the BH and the rms deviations were
computed with respect to the smoothed trajectories. Figure7
shows a general trend of increasingRrms with decreasing core
density, as expected if the motion in this regime obeys the
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FIG. 7.— RMS amplitude of the BH oscillations in the Brownian
regime, Phase III, for models A1 (black/circles), A2 (blue/squares) and B
(red/triangles).

virial theorem,

〈V2〉 ≈ 4
3
πGρc〈R2〉. (12)

This relation (cf. Bahcall & Wolf 1976) assumes a constant-
density core, ignores the back-reaction of the BH’s motion
on the stars, and ignores any coupling between random grav-
itational perturbations from the stars and the quasi-periodic
motion of the BH in the smooth potential of the core. Nev-
ertheless, equation (12) was found to reproduce the measured
Rrms values in Figure 7 quite well ifρc was defined as the
mean density of stars withinrh. Fluctuations inRrms about the
mean relation in Figure 7 appear to be due primarily to fluc-
tuations inVrms and would presumably be smaller if theRrms
values were averaged over longer time intervals. The near
agreement between theRrms values for the runs with small
and largeMBH is a consequence of the larger core size / lower
core density in runs with largerMBH, which compensates for
the lower〈V2〉 ∝ M−1

BH.
We note here that the amplitude of the BH’s Brownian mo-

tion is always a factor 10 or more smaller than the final core
radii of the models (Table 3). This implies that the motion of
the BH when it first returns to the core – at the start of Phase
II – should not be appreciably affected by discreteness effects,
i.e. by perturbations from individual stars. This conclusion is
confirmed below.

We note also that the amplitude of Brownian oscillations
of BHs in real galaxies (expressed as a fraction of the galaxy
effective radius, say) would be smaller than in our models by
the factor∼

√

(Mgal/m⋆)/N, i.e. ∼ 50 for Mgal = 109M⊙ and
∼ 500 forMgal = 1011M⊙. The time required for a BH to reach
these lower kinetic energies would also presumably be longer
than in our simulations, as discussed in more detail below.

3.4. Phase II

As noted above, the motion of the BH after returning to the
core, and before reaching the Brownian regime, is not well
described by Chandrasekhar’s formula. Here we consider the
motion in this regime (“Phase II”).

Figure 6 reveals the following qualitative features.
1. The motion in Phase II is essentially oscillatory, with a

period similar to that at the end of Phase I, i.e. roughly equal
to the period of oscillation of a test particle moving in the
stellar core.

2. There is evidence of additional frequencies affecting the
BH’s motion. For instance, the amplitude of the oscillations
sometimes appears toincreasetemporarily over several peri-
ods in a manner suggestive of beats.

3. Averaged over many periods, the mean amplitude of
the oscillations decays, but with a time constant that is much
longer than observed toward the end of Phase I.

4. Near the end of Phase II, the motion becomes increas-
ingly stochastic, presumably due to perturbations from indi-
vidual stars. Eventually the BH rms velocity falls to the Brow-
nian (thermal) level marking the start of Phase III.

5. Phase II always begins roughly when the stellar mass in-
terior to the BH’s orbit is equal toMBH. WhenVkick . 0.3Vesc,
the BH never escapes the core, and its motion appears to tran-
sition directly from Phase I to Phase III.

Based on Figure 6, the elapsed time in Phase II can be sub-
stantially longer than the time spent in Phase I. Understanding
the character of the motion in this regime is therefore crucial
for predicting the expected displacement of a supermassive
BH in a real galaxy following a kick.

We begin by considering a simple model for damped oscil-
lations of a massive particle in a constant-density core. While
this model will fail to quantitatively reproduce the motionin
Phase II, it provides a useful framework for discussing what
is observed in the simulations.

In the absence of dynamical friction, and neglecting the in-
fluence of the massive particle’s presence on core structure,
the motion of the massive particle is simple harmonic oscilla-
tion with frequencyωc =

√

(4π/3)Gρc; ρc is the core density,
assumed constant within a radiusrc. To this motion we add
the acceleration due to dynamical friction. If the velocitydis-
tribution of the stars that produce the friction is Maxwellian
with 1D velocity dispersionσc, and if the BH’s velocity sat-
isfiesV ≪ σc, the resulting equation of motion in any coordi-
natexi is

Ẍi + T−1
df Ẋi + ω2

cXi = 0 (13)

where

Tdf =
3
8

√

2
π

σ3
c

G2ρcMBH lnΛ
(14)

is the dynamical friction damping time (Merritt 1985). The
condition for underdamped oscillations is 2ωcTdf > 1, where

2ωcTdf =

√
6

2
σ3

c

G3/2ρ
1/2
c MBH lnΛ

(15)

=

√
6π

9
F3 Mc

MBH lnΛ
, (16)

with Mc ≡ (4/3)πρcr3
c the core mass; the second relation

uses the “core-fitting” formula of Rood et al. (1972),

σ2
c = F2 4π

9
Gρcr

2
c. (17)

F ≈ 2 for our models. Thus

2ωcTdf ≈ 4
Mc

MBH lnΛ
(18)
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FIG. 8.— Evolution of the BH kinetic energy in a series of integrations of
model B with variousN, andVkick = 0.6Vesc. Top panel:Squared velocity of
the BH versus time. Dashed lines at the right show the predicted values of
V2 in the Brownian regime (eq. 11).Bottom panel:Binned values ofV2 in
Phases II and III. Dotted lines are least-squares fits to the binned data. These
fits are plotted until the time at which they intersect the BrownianV2; these
times are marked by the vertical solid lines. The latter are found to be spaced
with roughly constant separation indicating that the time required for the BH
to reach thermal equilibrium with the stars increases roughly as lnN.

In our simulations (and in real galaxies), the right hand side
of this expression is& 1, since core masses are∼ a fewMBH
(Merritt 2006) and 2. lnΛ . 3 (§ 3.2). It follows that the mo-
tion of the BH should be under-damped, though not far from
critically damped, after it re-enters the core. The solutions to
equation (13) in the under-damped regime are

Xi(t) = Ai e
−t/2Tdf sin(ωct + φi) . (19)

Writing Θ ≡ 2ωcTdf & 1 andTc ≡ 2π/ωc, the energy decay
time is predicted to beTdf = (Θ/4π)Tc, i.e. shorter than the
orbital period. Such short decay times are in fact observed
near the end of Phase I (Figure 5).

However, Figure 6 shows that this is not the case in Phase II:
the mean damping time is substantially longer than an orbital
period. The abrupt decrease in the energy dissipation rate at
the start of Phase II can also be seen in Figure 3(a).

A possible explanation for the slower damping in Phase
II is discreteness effects: perturbations from individualstars,
some of which act to accelerate the BH, become increasingly
competitive with mean-field effects (including dynamical fric-
tion) as the BH moves more slowly. Indeed, in the Brownian
regime (Phase III), the accelerating perturbations are equally
as strong, in a time-averaged sense, as dynamical friction.

While the amplitude of the BH oscillations at the onset of
Phase II is always much greater than the Brownian ampli-
tude in these simulations (cf. Fig. 7 and the accompanying
discussion), it is still conceivable that discreteness effects are
responsible for the anomalously slow decay of the BH’s orbit
at this time.

To securely rule out this possibility, we repeated the inte-
gration of model B withVkick = 0.6Vesc, increasingN up to
N = 2×106. Figure 8 shows the results. The slowly-damped
oscillations in Phase II are clearly not an artifact of a too-small
N. In all cases, for instance, the fifth extremum inV2 (which
occurs att ≈ 1.42) is comparable or greater in amplitude to the
fourth extremum (att ≈ 1.16), rather than being much lower
in amplitude as would be expected from the above analysis or
from Figure 5. We also carried out a number of tests varying
the integration time-step parameterη; again, no systematic
dependence of the evolution in Phase II on this parameter was
observed.

Particularly striking in Figure 8 is the accurately exponen-
tial decay of the BH’s kinetic energy throughout Phase II; this
is clearest in the simulation with largestN, where the expo-
nential damping continues over two decades in energy. We
note again that an exponentially decaying energy is predicted
by the simple model just presented, but the model predicts a
much shorter time constant than what is observed in theN-
body simulations.

Figure 9 suggests why Chandrasekhar’s (1943) formula
might break down in Phase II. The approximation of a station-
ary galaxy is strongly violated in this regime. The galaxy’s
density center oscillates with opposite phase to the BH, and
with roughly the same frequency and amplitude. This is
consistent with the observation that Phase II always begins
roughly when the mass in stars inside the BH’s orbit is similar
to MBH. Evidently, in this regime, the BH and the core oscil-
late about their common center of mass as a two-body sys-
tem. Chandrasekhar’s derivation, which assumed a body on
a linear trajectory through an infinite homogeneous medium,
is unlikely to apply to oscillations like those in Figure 9,
since the BH is periodically accelerated, then decelerated,
by the density peak. The rate at which such oscillations de-
cay is known to be sensitively dependent on resonant interac-
tions (Tremaine & Weinberg 1984) and can be arbitrarily low
(Louis & Gerhard 1988; Sridhar 1989; Sridhar & Nityananda
1989; Mineau et al. 1990), although we are not aware of any
theoretical treatment that is directly applicable to oscillations
like those in Figure 9.

Ours is not the firstN-body study to observe persistent os-
cillations of massive objects at the centers ofN-body mod-
els. Miller & Smith (1992) and Miller (1996) reported a series
of N-body integrations, using a grid-based code, of a disk at
the center of an axisymmetric galaxy model. They observed
what appeared to be over-stable oscillations of particles ini-
tially at rest near the center of the disk; the oscillation fre-
quency was roughly

√

(4π/3)Gρc and the maximum ampli-
tude was roughly the size of the core. All of these features are
characteristic of the oscillations that we observe in PhaseII.
Miller & Smith (1992) also reported “a couple of experiments
in which a massive object was put into orbit within a galaxy
model,” presumably near the center, and observed “residual
oscillations” with amplitude roughly equal to the radius at
which the enclosed mass was equal to the object’s mass, again
similar to what we observe. Miller & Smith (1992) briefly de-
scribe a model for the oscillations, in which periodic motion
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FIG. 9.— Core-BH oscillations in Phase II. This is theN = 2×106 integra-
tion of Model B shown as the filled (red) circles in Fig. 8. Contours are sep-
arated by 0.034 in log10 of the projected density. Filled circles mark the BH
and crosses mark the approximate location of the (projected) stellar density
maximum. Times aret = 2.1875,2.21875,2.25, ...2.46875, increasing from
upper left to lower right. The elapsed time in this figure spans approximately
1/2 oscillation period of the BH.

of the core as a whole, at roughly the same frequency as core
internal frequencies, drives the oscillations.

A number of otherN-body studies have noted a decrease in
the effective value of lnΛ once a massive object has spiraled
into a constant-density core. Typically the observed decrease
is modest, a factor∼ 2 − 3 or so (Bontekoe & van Albada
1987; Bontekoe 1988; Weinberg 1989; Cora et al. 1997), al-
though one recent study (Read et al. 2006) found a nearly
complete disappearance of dynamical friction after the in-
falling particle reached the core. Read et al. proposed that
the apparent vanishing of the dynamical friction force in their
simulations could be explained by the degeneracy of orbital
frequencies in the harmonic-oscillator potential correspond-
ing to a precisely flat, central density profile. In such models,
Read et al. found that the disappearance of the dynamical fric-
tion force was critically dependent on whether the plane de-
fined by the inspiralling particle’s orbit remained fixed; pre-
cession, induced e.g. by finite-N perturbations, caused dy-
namical friction to turn on again, though at a rate much slower
than expected from Chandrasekhar friction. While Read et al.
did consider the effect of varying the initial log-slope of the
background distribution, their models were always spherical.
The cores in our models are not precisely flat nor are our mod-
els precisely spherical (once the BH particle has been ejected)
and these differences (coupled with the fact that the gravita-
tional potential of the core is highly oscillatory in Phase II)
may explain why we do not observe the dramatic stalling re-
ported by Read et al. In any case, the apparent lack of an
N-dependence in our simulations (Figure 8) suggests that the
critical difference between our results and those of Read etal.
is not particle number.

The Phase II oscillations were clearly visible in every in-
tegration withVkick ≥ 0.4Vesc. For Vkick = 0.3Vesc there were
hints of a delayed return to the Brownian regime in some of
the integrations (e.g. Fig. 6) but not to the extent that we were
able to estimate damping times. We could not detect the Phase
II oscillations at all forVkick ≤ 0.2Vesc; in these integrations,
the BH kinetic energy appears to drop very rapidly after the
return to the core, more or less as expected based on the an-
alytic model presented above or by an extrapolation of the
behavior in Phase I. In any case, we assume in the remain-
der of this paper that the Phase II oscillations are absent when
Vkick ≤ 0.3Vesc. Integrations with much largerN might modify
this conclusion.

The occasionalincreasein the amplitude of the Phase II
oscillations, which is seen in virtually all the integrations, is
suggestive of a dynamical instability (Tremaine 2005). How-
ever an instability would presumably act even in the case of
small kicks, while as noted above, Phase II oscillations appear
to be absent forVkick . 0.3Vesc. We speculate that the BH must
be kicked completely out of the core in order for the BH-core
oscillations to be excited, as suggested by Miller & Smith
(1992). The roughly sinusoidal variations in the envelope of
V2(t), with a much lower frequency thanωc, could naturally
be explained in terms of beating, e.g. between the frequency
of motion in the core and the frequency at which the core itself
oscillates in the galactic potential.

Figures 6 and 8 suggest that the core-BH oscillations in
Phase II decay roughly as an exponential in time, at least when
viewed through a window of several orbital periods or longer.
We investigated a number of ways to quantify the time con-
stantτ associated with the energy damping:

1. Plots of BH energy versus time (equation 8, Fig. 3)
were found not to be very useful in this regard since the total
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FIG. 10.— Energy-decay time constantsτ for the BH in Phase II, for
models A1 (black/circles), A2 (blue/squares) and B (red/triangles).

energy is dominated by the potential energy which exhibits
fairly large fluctuations from time step to time step.

2. In a constant-density core, the unperturbed motion is
simple harmonic oscillation with frequencyω and energy

ESHO =
1
2

3
∑

i=1

(

ω2X2
i +V2

i

)

.

We determined the dominant frequency of the BH’s motion
in Phase II by carrying out discrete Fourier transforms of the
complex functionsXi(t) + iVi(t) and constructing power spec-
tra (e.g. Laskar 1990). Least-squares fits to lnESHO vs. t were
then carried out to find the damping time constant. This ap-
proach was reasonably objective and robust, but can be criti-
cized on the grounds that the core density is not constant and
the density center is moving with time (Fig. 9), making the
interpretation ofESHO problematic.

3. Given the difficulties with evaluating and interpreting the
total energy of the BH, we chose in the end to quantify the en-
ergy damping purely in terms of the the BH’s kinetic energy.
As noted above (Fig. 8 and associated text),V2(t) exhibits a
nicely exponential decay with a well-defined time constant,
and the decay is observed to continue over∼ 2 decades in ki-
netic energy in the case of the simulation with the largestN,
until the BH’s kinetic energy reaches the Brownian value. We
evaluated the associated time constant by carrying out least-
squares fits of lnV2 to time, yielding the coefficients (V2

I , τ )
in the expression

V2(t) ≈V2
I e−(t−TI )/τ . (20)

Table 2 gives theτ values derived from this method. We
present results only fromN-body integrations withVkick ≥
0.4Vescsince the smaller kicks did not excite distinct BH-core
oscillations, as discussed above. To the extent that the mo-
tion approximates a damped SHO, the energy damping time
is identical to the time constant for decay of the kinetic en-
ergy alone, and henceforth we will refer toτ as the “energy
damping time constant.” However in practice, we will use
equation (20) only to predict changes in〈V2〉.

The energy damping times in Table 2 can immediately be
scaled to physical units using equation (2). Such a scaling pre-
sumes that the core properties of ourN-body models – which

TABLE 2
T IMES ASSOCIATED WITH THE EVOLUTION INPHASES I AND II

Vkick/Vesc TI τ TII TII , Ngal = ...
3×109 3×1010 3×1011 3×1012

A1
0.1 0.3 – – – – – –
0.2 0.3 – – – – – –
0.3 0.3 – – – – – –
0.4 0.4 1.6 2.9 16.8 20.5 24.2 27.9
0.5 0.7 1.3 3.2 14.5 17.5 20.5 23.4
0.6 1.5 1.9 4.6 21.1 25.5 30.0 34.2
0.7 3.0 3.4 5.8 35.3 43.2 51.0 58.8
0.8 7.3 3.8 8.5 41.6 50.3 59.0 67.8
0.9 20.2 2.5 6.5 28.3 34.0 39.8 45.5

A2
0.1 0.3 – – – – – –
0.2 0.3 – – – – – –
0.3 0.3 – – – – – –
0.4 0.4 1.0 1.5 10.2 12.5 14.8 17.1
0.5 0.7 0.95 1.9 10.2 12.4 14.5 16.7
0.6 1.3 1.3 3.4 14.7 17.7 20.6 23.6
0.7 2.7 2.1 4.4 22.7 27.5 32.3 37.2
0.8 6.5 2.4 4.6 25.4 31.0 36.5 42.0
0.9 20.0 2.8 6.7 31.1 37.5 43.9 50.4

B
0.1 0.5 – – – – – –
0.2 0.5 – – – – – –
0.3 0.5 – – – – – –
0.4 0.55 2.2 3.9 23.0 28.1 33.2 38.2
0.5 0.7 2.8 6.7 31.1 37.5 43.9 50.4
0.6 1.3 2.6 10.8 33.4 39.4 45.3 51.4
0.7 2.3 2.9 10.1 35.3 42.0 48.7 55.3
0.8 4.5 5.2 14.7 60.0 71.9 83.9 95.8
0.9 11.5 4.3 14.9 52.3 62.2 72.1 82.0

presumably determineτ – are related to global properties in
the same way as in real galaxies. A better scheme would re-
lateτ directly to the parameters (ρc,σc,MBH) that describe the
conditions in the core. Since we do not understand the mech-
anism(s) responsible for the orbital damping in Phase II, we
experimented with several ways of plottingτ versus core pa-
rameters.

Figure 10 shows that a reasonably tight correlation exists
whenωcτ is plotted againstσ3

c/(G3/2ρ
1/2
c MBH). This is the

expected dependence if dynamical friction is responsible for
the damping (cf. equation 15). However, the effective value
of lnΛ needed to produce the measured damping times is very
small, 0.1. lnΛ . 0.3 (Figure 10). This is yet another way of
stating that orbital decay in Phase II is much slower than pre-
dicted by Chandrasekhar’s formula – roughly a factor 10−20,
if we adopt lnΛ ≈ 2.5 for the expected value of the Coulomb
parameter (Fig. 5).

In terms of this scaling, Figure 10 allows us to express the
damping times in Phase II as

τ ≈15
σ3

c

G2ρcMBH
(21)

≈3×107yr
( σc

200kms−1

)−3.86
(

rc

30pc

)2

(22)

where the second line uses theMBH − σ relation
(Ferrarese & Ford 2005). Based on Figure 8 and on the other
arguments given above, we expect the scaling in equation (22)
to be independent ofN, i.e. of stellar mass.
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Table 2 also gives estimates ofTII , the elapsed time in Phase
II. We definedTII as the time, measured from the end of Phase
I, required for the BH’s velocity to fall to its rms value in
Phase III, assuming the time dependence of equation (20). Ta-
ble 2 shows thatTII is typically longer thanTI .

In a galaxy with≫ 106 stars,V2
Brown would be much lower,

andTII correspondingly longer, than in our models. Assuming
that the exponential dependence of energy on time persists to
arbitrarily low values ofE, the additional time spent in Phase
II would be

τ ln
(

Ngal/N
)

(23)

whereNgal is the number of stars in the galaxy. We used
the set ofN-body simulations in Figure 8 to test this depen-
dence. According to equation (23), doubling the number of
particles should extend the elapsed time in Phase II by an ad-
ditive amount ofτ ln2 = 0.693τ ≈ 2.2, given that the meanτ
value for the four integrations is 3.2. Figure 8 confirms this
prediction for 0.25×106 ≤ N ≤ 2×106.

Accordingly, Table 2 also gives values ofTII calculated
from this formula, forNgal = (3× 109,3× 1010,3× 1011,3×
1012). Conversion from theN-body units of Table 2 to years
is discussed in § 6.

The exponential nature of the damping implies that the dis-
tribution of displacements during Phase II is approximately
uniform in ln∆r.

4. EFFECTS ON THE STELLAR DISTRIBUTION

The displacement of the BH due to gravitational radiation
recoil affects the stellar distribution and therefore the den-
sity profile of the host galaxy. We expect the stellar struc-
ture inside the core to be particularly affected by the motion
of the BH, with important implications for the shape of the
brightness profile in the inner region. In order to evaluate the
changes induced by the escaping BH, we constructed spatial
and projected density profiles for all models at the end of the
simulations, when the BH is well into the Brownian regime.

Figure 11 shows the space (left plots) and projected (right
plots) density profiles in models A1, A2, B forVkick =
(0.1,0.3,0.5,0.9)Vesc. We constructed these density profiles
using the kernel-based algorithm of Merritt et al. (2006a).
Particle positions were first shifted to coordinates that placed
the BH at the origin. The algorithm uses an angle-averaged
Gaussian kernel and modifies the kernel width based on a pi-
lot (nearest-neighbor) estimate of the density in order to main-
tain a roughly constant ratio of bias to variance in the final
density profile. The projected densityΣ(R) was computed via
numerical projection of the space density. In order to reduce
the noise still further, we combined multiple snapshots at late
times and performed the fit on the combined data sets.

Figure 11 shows that a large core develops in the simula-
tions due to the escape of the BH and its several passages
through the central region. As the BH oscillates under the ef-
fect of the kick, it transfers energy to the surrounding stars,
thus pushing them to larger distances. The stellar density
in the core drops and the slope of the inner distribution de-
creases, leaving an inner profile that is flatter than the initial
one. The amount of flattening in the profile or, equivalently,
the mass deficit with respect to the initial profile (shown in
the figure with the black solid lines), increases monotonically
with the kick velocity.

It is interesting to assess whether the finalN-body profiles
are consistent with the core-Sérsic law, which is commonly
fit to galaxies with evacuated cores (Graham et al. 2003). The

TABLE 3
FIT PARAMETERS FOR MODELSA1, A2 AND B.

Vkick rb n α γ Re Σb

A1
0.1 0.013 4.04 3.1 0.21 0.93 6.3
0.2 0.016 4.05 4.2 0.24 0.93 5.6
0.3 0.017 4.05 4.1 0.19 0.93 5.4
0.4 0.018 4.06 3.7 0.14 0.93 5.1
0.5 0.019 4.06 3.6 0.11 0.93 4.9
0.6 0.020 4.06 3.5 0.08 0.93 4.6
0.7 0.021 4.07 3.1 0.04 0.92 4.3
0.8 0.022 4.07 2.8 0.02 0.92 4.1
0.9 0.024 4.05 2.9 0.05 0.93 3.9

A2
0.1 0.014 4.04 7.4 0.34 0.93 6.5
0.2 0.015 4.04 6.7 0.31 0.93 6.2
0.3 0.016 4.04 6.5 0.25 0.92 5.9
0.4 0.015 4.05 3.5 0.14 0.92 5.9
0.5 0.017 4.05 4.0 0.12 0.92 5.4
0.6 0.019 4.05 4.2 0.16 0.92 4.9
0.7 0.018 4.07 2.7 0.08 0.92 4.9
0.8 0.022 4.06 3.6 0.07 0.92 4.4
0.9 0.026 4.07 4.1 0.11 0.92 3.9

B
0.1 0.020 4.05 1.9 0.16 0.92 4.4
0.2 0.026 4.04 2.9 0.20 0.93 3.8
0.3 0.030 4.04 3.7 0.20 0.93 3.4
0.4 0.034 4.05 4.3 0.16 0.92 3.1
0.5 0.034 4.06 3.1 0.12 0.92 3.0
0.6 0.035 4.06 3.0 0.09 0.92 2.8
0.7 0.039 4.08 3.0 0.07 0.91 2.6
0.8 0.042 4.08 2.9 0.05 0.91 2.4
0.9 0.044 4.09 2.6 0.02 0.91 2.3

core-Sérsic law is:

Σ(R) =Σ
′

[

1+
(rb

R

)α]γ/α

e−b[(Rα+rα

b )/Rα

e ]1/nα

, (24)

Σ
′

=Σb2−γ/α e
b
“

21/α rb/Re

”1/n

, (25)

whereΣb is the density at the break radiusrb and the other
parameters are as in equations (2) and (3). To carry out the fits
in a manner as similar as possible to the procedure followed
by observers, we counted the projected particle positions in
bins equally spaced in logR. The parameters (Re, rb,α,n,Σ

′

)
were then varied until the summed residuals inµ = −2.5logΣ

were minimized.
The best-fit parameters for models A1, A2 and B are listed

in Table 3. Three of the best fits for model A1 are shown in
Figure 12 (lines) together with the projected density profiles
computed from theN-body data (points).

It appears that the host galaxies to recoiling BHs are well
represented by core-Sérsic profiles. In particular, the fits
show, once again, that the core tends to expand as the BH
oscillates in and out of it, and that the final core size scalesas
rb ∼ MBH Vβ

kick, with 0.3<
∼β <

∼0.6. In addition, the transition
from the inner power law to the outer Sérsic profile is rather
sharp, with best-fit values ofα in the range 2. α . 7. The
initial n = 4 de Vaucouleurs outer slope is not substantially
modified by the BH.

A flattening of the inner profile is also observed in the simu-
lations of Boylan-Kolchin et al. (2004), who follow the evolu-
tion of a spherical stellar bulge with a recoiling central black
hole using anN-body tree code. They find that the density
profile of the system evolves as a consequence of the gravi-
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FIG. 11.— Space (left) and projected (right) density profiles for models A1, A2 and B and different values of the kick velocity: Vkick = 0.1Vesc (green/dotted),
Vkick = 0.3Vesc (red/dashed),Vkick = 0.5Vesc (cyan/dot-dashed),Vkick = 0.9Vesc (blue/long dashed). The black solid lines represent the initial profile, which is the
same for each value ofVkick.

tational radiation recoil and flattens substantially. A core of
size equal to the BH sphere of influence forms on a relatively
short time-scale, and remains even after several dynamical
times. A flattening of the profile is observed for recoil veloc-
ities smaller and larger than the central escape speed, though
an additional flattening is present if the black hole returnsto
the core after the ejection.

A measurable signature of a recoiling BH is the mass
deficit, the net mass removed from the central regions
(Milosavljević et al. 2002). Mass deficits produced by recoil
will add to the depletion caused by the pre-existing BH bi-
nary, which ejects stars from the core during close encoun-
ters. The deficit produced by the binary is proportional to the
mass of the binary, with only a weak dependence on the mass
ratio and the initial density distribution (Merritt 2006).There-

fore, a binary BH can only produce a deficitMdef ≈ MBH.
This could explain the peak in the distribution of observed
mass deficits atMdef/MBH ≈ 1 (Graham 2004; Ferrarese et al.
2006). The tail of the distribution, however, extends to val-
ues ofMdef/MBH ∼ 5. While such large values might be ex-
plained as successive mergers (Merritt 2006), a recoiling BH
represents an interesting alternative.

We evaluated the mass deficits in the finalN-body models
by computing the difference in stellar mass, enclosed within a
sphere of radiusrs, between the initial and final space density
profiles. Given the fact that the deficits depend rather sensi-
tively on the value ofrs, we computedMdef as a function of
rs for a number of models and kicks. In all cases,Mdef first
increases rapidly withrs and then flattens out to an approxi-
mately constant value. Based on such tests, we concluded that
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FIG. 12.— Projected density profiles for model A1 computed from the
N-body data (points), compared with best-fitting core-Sérsic models (lines),
for three different values of the kick velocity (Vkick = 0.2,0.4,0.8Vesc). The
insert shows a zoom into the central region.

FIG. 13.— Mass deficits, as defined in the text, for the different runs: A1
(black), A2 (blue), B (red). Dashed lines show power-law fits.

the most appropriate values to use for the computation of the
mass deficits were as follows:rs = 0.05 for model A1, 0.04
for model A2 and 0.1 for model B. The results for all three
models are shown in Figure 13. Also shown are least-squares
fits toY = aXb, whereY ≡ Mdef/MBH andX ≡Vkick/Vesc. The
best-fit parameters are:

Model A1 :a= 4.83, b = 1.59
Model A2 :a= 5.08, b = 1.75
Model B :a= 4.31, b = 1.90 (26)

The largest kicks result in mass deficits as large as 4−5MBH,
which is consistent with the largest observed deficits (Merritt
2006). Our definition of mass deficits as the difference in inte-
grated mass between initial and final profiles implies that our
estimates do not take into account any depletion prior to the
kick. One should therefore add the contribution from the bi-
nary evolution phase (Mdef ≈ 1MBH) to our measured deficits
before comparing with the observed values.

The sensitivity ofMdef to rs, which presumably is a feature
of real luminosity profiles as well, suggests that a more objec-
tive way be found to measure mass deficits.

We compare the projected density profiles obtained from
theN-body simulations to the brightness profiles of a sample
of early-type galaxies in the Virgo cluster observed with the
Advanced Camera for Surveys(ACS) on the Hubble Space
Telescope (Ferrarese et al. 2006). In this study, the authors
find that, while simple Sérsic models generally provide a
good representation of the global galaxy profiles, the bright-
est galaxies require a power-law component within a charac-
teristic break radius and are therefore best modeled with core-
Sérsic profiles.

We select two representative galaxies in the sample and
compare their surface density profiles with each of the 27 fi-
nal profiles obtained from the simulations (9 values of the kick
velocities 0.1. . .0.9 for each of the 3 models A1, A2, B).

The brightest Virgo galaxy, VCC1226 (M49, NGC 4472),
has the largest value of mass deficit (Mdef/MBH ∼ 4) and has
a Sérsic index that is not too far from ourN-body models,
n ∼ 5.94. On the other hand, VCC 731 (NGC 4365) has a
relatively small core and a typical mass deficit of∼ 1MBH
(Merritt 2006). For each galaxy, we scale theN-body profiles
to have the samerb andΣ(rb) as the galaxy itself.

Figure 14 shows that the brightness profiles of both galaxies
can be reasonably well fit by (at least) one of theN-body mod-
els. In particular, the profile of VCC 1226 is well fit by mod-
els withVkick ≥ 0.4Vesc≈ 550kms−1 while VCC 731 is well
fit by models withVkick >

∼0.1Vesc≈ 110kms−1. This indicates
that observed brightness profiles, and even the largest cores,
can be well reproduced by the gravitational recoil kicks.

5. EVOLUTION TIMES IN REAL GALAXIES

Given a galaxy’s effective radiusRe and total massMgal,
equations (2) relate ourN-body units to physical units. We
adopt the scaling relations derived from the ACS Virgo clus-
ter survey of Côté et al. (2004) betweenRe and absolute blue
magnitudeMB for early-type galaxies. Ferrarese et al. (2006)
found, for Virgo E galaxies fainter thanMB ≈ −20.5, a mean
relation

log10Re = 0.144− 0.05(MB + 20) (27)

whereRe is in kpc. (Brighter galaxies obey a different relation
and are considered separately below.) We relateMB to galaxy
mass using Gerhard et al.’s (2001) expression for the mass to
light ratio in the blue band:

log10

[

(

M
L

)

/

(

M
L

)

⊙

]

B

≈ 1.17+ 0.67log10

(

LB

1011L⊙,B

)

.

(28)
Equation (28) was derived from dynamical modeling of galax-
ies withMB & −22.5 and represents an average for the matter
within the effective radius, including dark matter if present.

4 Most of the bright galaxies in the ACS sample haven>
∼7.
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FIG. 14.— Surface brightness profiles for the Virgo galaxies VCC1226
(top) and VCC 731 (bottom) from the ACS sample compared to theN-body
profiles obtained from the best fitting of the three models. The different lines
correspond to the 9 different kicksVkick/Vesc= 0.1. . .0.9.
Combining these relations gives

Re ≈ 1.2 kpc

(

Mgal

1010M⊙

)0.075

. (29)

The dependence ofRe on Mgal is weak, a consequence of
the low slope of theRe − MB relation. However we note that
the scatter in this relation is large (e.g. Ferrarese et al. 2006,
Fig. 136).

Some fiducial values, and their impliedN-body scalings
(from equation 2), are:

Mgal = 3×109M⊙ Re = 1.1 kpc

[T] = 1.0×107yr [V] = 110kms−1,

Mgal = 3×1010M⊙ Re = 1.3 kpc

[T] = 4.1×106yr [V] = 315kms−1,

Mgal = 3×1011M⊙ Re = 1.5 kpc

[T] = 1.7×106yr [V] = 910kms−1.

The trend of decreasing [T] with increasingMgal reflects
the well-known higher density of more massive galaxies
(Graham et al. 2003). The central escape velocities in our
models are 2.0.Vesc. 2.2 in N-body units, corresponding to
Vesc≈ 2.1× [V] ≈ 2000kms−1 when scaled to a 3×1011M⊙

galaxy. This agrees well with escape velocities of bright E-
galaxies derived from more detailed modeling (e.g. Fig. 2,
Merritt et al. 2004).

All of the times listed in Table 2 can be scaled to phys-
ical units using these relations. Figure 15 shows the result

for the three fiducial values ofMgal. We have used equa-
tion (23) to correct the measuredTII values to different values
of Ngal ≡ Mgal/m⋆ assumingm⋆ = M⊙; we also show, as con-
servative lower limits, theTII times obtained directly from the
simulations.

Figure 15 seem to suggest that return times depend discon-
tinuously onVkick, since Phase II does not appear to exist in
our simulations whenVkick . 0.3Vesc. As discussed above, this
might not be true in simulations with largerN, or in real galax-
ies. In any case, forVkick & 0.4Vesc, return times are dominated
by the time spent in Phase II (“BH-core oscillations”).

The brightest galaxies,MB . −21, appear to obey a dif-
ferent scaling relation betweenRe and MB than the rela-
tion (29) given above (Ferrarese et al. 2006). Furthermore,
these bright galaxies are typically fit by Sérsic indices in the
range 5. n . 10, larger than the valuen = 4 adopted here
for the N-body models. On the other hand, the brightest E
galaxies often have resolved cores with well-determined sizes
and densities (cf. § 4). Furthermore, equation (22) gives the
damping timeτ in Phase II in terms of core properties alone.

We define the Phase II return times for these galaxies as the
time for the BH’s energy to decrease from

1
2
ω2

cr2
c ≈

2
3
πGρcr

2
c, (30)

the BH’s energy when it first re-enters the core, to

1
2

V2
brown≈

3
2

m⋆

MBH
σ2

c , (31)

the Brownian energy, assuming an energy damping time con-
stant ofτ ; for the latter we take equation (22). This time is

TII = N τ,

τ ≈15
σ3

c

G2ρc MBH
(32)

≈1.2×107yr
( σc

250kms−1

)3
(

ρc

103M⊙ pc−3

)−1(

MBH

109M⊙

)−1

,

N = ln

(

1
F2

MBH

m⋆

)

≈ ln

(

1
F2

MBH

Mgal

Mgal

M⊙

)

, (33)

with F ≈ 2 the form factor defined above, and we have again
assumedm⋆ = M⊙.

Figure 16 shows estimates ofτ andN τ for the six bright-
est galaxies in the ACS Virgo sample excluding M87, which
has an active nucleus (Côté et al. 2004). Of course, this fig-
ure is only meaningful under the assumption that the BHs in
these galaxies have received large enough kicks to remove
them completely from the core, i.e.Vkick ≈ 103kms−1. But
if this did occur, Figure 16 suggests that return times would
be of order 1 Gyr. Such a long time is comparable with the
mean time between galaxy mergers in a dense environment
like the Virgo cluster. Hence, a SMBH might never return
fully to the center before another SMBH spirals in.

6. OBSERVABLE CONSEQUENCES

6.1. Likelihood of Large Kicks

Kicks large enough to remove SMBHs from cores,Vkick &
0.4Vesc, range from∼ 90kms−1 for Mgal = 3× 109M⊙, to
∼ 750kms−1 for Mgal = 3× 1011M⊙, to ∼ 1000kms−1 for
Mgal = 3×1012M⊙, based on the fiducial scalings in § 5. The
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FIG. 15.— Return times of kicked BHs. These are plots of theN-body
values given in Table 2, scaled to physical units using equations (2) and (29).
Lower (filled) symbols: TI ; Middle (open) symbols: TI + TII , with TII taken
directly from the simulations;Upper (filled) symbols: TI +TII , with TII scaled
to Ngal using equation (23). (a)Mgal = 3×109 M⊙; (b) Mgal = 3×1010M⊙;
(c) Mgal = 3×1011M⊙.

FIG. 16.— Estimates of the return time in Phase II for supermassive black
holes in the six brightest Virgo galaxies, excluding M87 (Côté et al. 2004).
This plot assumes that the SMBHs have received a kick large enough to re-
move them from the core initially. Lower (open) symbols showthe energy
decay time constant in the core,τ (equation 32), while upper (filled) symbols
showN τ , whereN is the estimated number of time constants required for
the BH’s velocity to decay to the Brownian value (equation 33).

most propitious configuration for the kicks appears to be an
equal-mass binary in which the individual spin vectors are
oppositely aligned and oriented parallel to the orbital plane
(Campanelli et al. 2007a; González et al. 2007a). Assuming
this most favorable orientation, and setting the spins to their
maximal values, the maximum kick (oriented parallel to the
binary angular momentum vector) is believed to scale with
binary mass ratioq≡ M2/M1 ≤ 1 as

Vmax≈ 6×104km s−1 q2

(1+ q)4
(34)

(Campanelli et al. 2007c). Mass ratios as small asq ≈ 0.2
can therefore result in kicks& 1000 km s−1. While the
assumption of near-maximal spins is probably not an ex-
treme one (e.g. Shapiro 2005; Gammie et al. 2004), ori-
enting the BHs with their spins perpendicular to the or-
bital angular momentum may seem odd, particularly in gas-
rich galaxies (Bogdanović et al. 2007). However there is
considerable circumstantial evidence that SMBH spin axes
bear no relation to the orientations of the gas disks that
surround them (Kinney et al. 2000; Gallimore et al. 2006;
Borguet et al. 2007) and this is presumably even more true
with respect to the directions of infalling BHs in gas-free
galaxies. If SMBH spins do orient parallel with orbital angu-
lar momenta, the maximum kick is more modest and contains
contributions from both the “mass asymmetry” (M1 6= M2) and
from the spins. The two kick components, both of which are
parallel to the orbital plane, are believed to be approximately
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independent and to scale roughly as

Vmass≈V1
q2(1− q)
(1+ q)5

, (35)

Vspin≈V2
q2

(1+ q)5
(α2 − qα1) ; (36)

V1 ≈ V2 ≈ 104 km s−1 and α denotes a dimensionless
spin,−1≤ α ≤ 1 (Campanelli et al. 2007c; Baker et al. 2007;
Lousto & Zlochower 2007).Vmasspeaks at∼ 200 km s−1 for
q ≈ 0.4 while Vspin peaks at∼ 600 km s−1 for q ≈ 1,α1 =
−α2 = 1. In this less-favorable configuration, kicks could re-
move SMBHs only from the cores of low-to-moderate lumi-
nosity galaxies. Estimates of the kick velocity distribution
(e.g. Schnittman & Buonanno 2007) are extremely uncertain
since they depend on the unknown distributions of SMBH
mass ratios, spins and spin orientations. In what follows, we
will focus on the consequences of kicks that are large enough
to remove SMBHs from galaxy cores and to excite the long-
lived oscillations that we described above.

6.2. Offset and Double Nuclei

Lauer et al. (2005) identified five galaxies in which the
point of maximum surface brightness is displaced from the
center of the isophotes defined by the galaxy on large scales.
All are luminous, “core” galaxies. Contour plots for two of
the galaxies, NGC 507 and 1374 (Figs. 17, 18 of Lauer et al.
2005), look strikingly similar to the “Phase II” isodensity
plots in Figure 9. Displacements are cited for NGC 507
(0′′.06≈ 19pc), NGC 1374 (0′′.02≈ 2.1pc), and NGC 7619
(0′′.04 ≈ 11pc), all of which are of order the core radii in
these galaxies. The five galaxies with offset nuclei comprise
12% of the Lauer et al. “core” galaxy sample; no offset nu-
clei were found among the “power-law” (non-cored) galax-
ies. Several of the offsets are close to the resolution limit,
and some offsets might go unobserved due to projection, so it
is likely that offset nuclei are quite common in “core” galax-
ies. If the offsets are produced by oscillations like those in
Figure 9, the SMBHs in these galaxies would be located on
the opposite side of the galaxy photocenter from the point
of peak brightness. Phase II oscillations can also produce a
“double nucleus” morphology (e.g. Figure 9, frame 8) with
the BH located at either the higher or secondary peak. This
is a reasonable model for the double nucleus in NGC 4486B
(Lauer et al. 1996), since the two peaks are closely matched
in brightness and are offset by similar amounts (∼ 6pc) from
the galaxy photocenter. Galaxies with central minima in the
surface brightness (e.g. NGC 4406, NGC 6876; Lauer et al.
(2002)) might also be explained in this way. This model is
probably not as appropriate for the more famous double nu-
cleus in M31, since M31 is not a “core” galaxy, and one of
the brightness peaks (the one associated with the SMBH) lies
close to the galaxy photocenter (Lauer et al. 1993).

6.3. Displaced AGN

An ejected SMBH can appear as a spatially or kinematically
displaced AGN (Kapoor 1976, 1983a,b). A recoiling SMBH
retains gas that is orbiting around it within a distance

reff ≈
GMBH

V2
kick

≈ 0.5pcM8V
−2
k,1000 (37)

with M8 ≡ MBH/108M⊙ andVk,1000≡Vkick/1000kms−1. An
accretion disk if present would mostly be retained, and for

kicks . 103kms−1, reff is large enough to encompass most
of the broad emission-line region gas as well. Narrow emis-
sion lines originate in gas moving in the gravitational potential
of the host galaxy and would not follow a recoiling SMBH
(Merritt et al. 2006b). Bonning et al. (2007) used this argu-
ment to search for kinematic offsets between spectral features
associated with the broad- and narrow emission line regions.
No convincing cases were found. This may be a consequence
of the rapid decrease in SMBH energy during Phase I (Fig. 3).
In the longer-lived oscillations that characterize Phase II, the
rms velocity of the SMBH drops from

∼ 90kms−1

(

ρc

103M⊙ pc−3

)1/2(

rc

30pc

)

(38)

when it first re-enters the core, to

∼ 0.03kms−1

(

MBH

108M⊙

)−1/2
( σc

200kms−1

)

(39)

in the Brownian regime. Such small velocity offsets would
be difficult to detect. An alternative approach would be to
search for linear displacements∆R between the AGN emis-
sion and the peak of the stellar surface brightness. This dis-
placement is∼ rc at the start of Phase II, dropping to∼
√

m⋆/MBHrc in the Brownian regime; the exponential nature
of the damping implies an approximately uniform distribu-
tion of ln∆Rduring Phase II. Relatively large (∼ 10− 100pc)
offsets between the AGN and either the stellar density peak
or the center of rotation have in fact been claimed in a
number of galaxies based on integral-field spectroscopy (e.g.
Mediavilla & Arribas 1993; Mediavilla et al. 2005).

6.4. Wiggling Jets

During Phase II, the SMBH oscillates sinusoidally within
the core with roughly constant period,

2π

ωc
≈ 1.4×106yr

(

ρc

103M⊙ pc−3

)−1/2

, (40)

and with velocities as given above. Such motion will induce
periodic deviations in the velocity and direction of a jet emit-
ted by the SMBH (Kaastra & Roos 1992). If the jet is oriented
perpendicularly to the direction of motion of the SMBH, the
jet direction is fixed, and the jet material moves on a cylin-
drical surface with radius equal to the radius of the SMBH’s
orbit. If the jet velocity has some component parallel to the
SMBH’s motion, the two velocities add and the cylinder be-
comes a cone over which the jet precesses (Roos et al. 1993).
Such models have been used to explain the helical distortions
observed in a number radio sources; the inferred orbital peri-
ods are typically 1− 100yr, and the jet accelerations are usu-
ally ascribed to the orbit of the jet-producing SMBH around
a second SMBH in a close (≪ 1pc) binary pair. However
some sources are fit by models with longer periods. For in-
stance, the morphology of theC-type source 3C 449 has been
reproduced assuming jet forcing with a period of∼ 107yr
(Hardee et al. 1994). Such long periods are sometimes ex-
plained in terms of bulk motion of the galaxy hosting the ra-
dio source (Blandford & Icke 1978), but oscillations of the
SMBH within the core might provide a tenable alternative in
some cases.

6.5. Oversized Cores and Hypermassive Black Holes



Ejection of Supermassive Black Holes from Galaxy Cores 17

Cores generated by kicked SMBHs can be substantially
larger than those produced by “core scouring” from a binary
SMBH (Milosavljevíc & Merritt 2001; Merritt 2006), partic-
ularly whenVkick & 0.4Vesc. As shown in § 4 (Figures 11-
14), kick-induced cores can be as large as those observed in
some of the brightest “core” galaxies, having mass deficits of
4− 5MBH and core radii several times the SMBH influence
radius, or∼ 5% of the galaxy’s half-light radius. (Similar
conclusions were reached already by Boylan-Kolchin et al.
(2004) and Merritt et al. (2004).) While the majority of ob-
served mass deficits lie in the range 0.5 . Mdef/MBH . 1.5,
some E galaxies haveMdef/MBH & 3, too large to be easily
explained by core scouring. Lauer et al. (2007) invoked the
oversized cores, along with other circumstantial evidence, to
argue that the SMBHs in the brightest E galaxies are “hyper-
massive,”MBH & 1010M⊙. An alternative possibility is that
the largest cores have been enlarged by kicks. Figure 13, com-
bined with earlierN-body results (Merritt 2006), suggests that
the total mass deficit generated by a binary SMBH following
a single galaxy merger is

Mdef = Mdef,bin + Mdef,kick

Mdef,bin≈0.7q0.2MBH,

Mdef,kick ≈5MBH
(

Vkick/Vesc
)1.75

(41)

whereMdef,bin and Mdef,kick are the mass deficits generated
by “core scouring” and by the kick respectively andq ≡
M2/M1 ≤ 1 is the binary mass ratio. It has been argued
(Merritt 2006) that the ratioMdef,bin/MBH increases in mul-
tiple mergers, and the same is likely to be true for kick-
induced core growth. Thus, the decrease in typical values of
of Vkick/Vesc with increasing galaxy luminosity might be off-
set by the greater number of mergers that contribute to the
growth of luminous galaxies, leading to comparable values
of Mdef/MBH. In any case, the possibility that core growth is
dominated by the kicks should be considered in future studies.
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