4,306 research outputs found
Bifurcation into functional niches in adaptation
One of the central questions in evolutionary biology concerns the dynamics of adaptation and diversification. This issue can be addressed experimentally if replicate populations adapting to identical environments Call be investigated in detail. We have studied 501 such replicas Using digital organisms adapting to at least two fundamentally different functional niches (survival strategies) present in the same environment: one in which fast replication is the way to live, and another where exploitation of the environment's complexity leads to complex organisms with longer life spans and smaller replication rates. While these two modes of survival are closely analogous to those expected to emerge in so-called r and K selection scenarios respectively, the bifurcation of evolutionary histories according to these functional niches occurs in identical environments, under identical selective pressures. We find that the branching occurs early, and leads to drastic phenotypic differences (in fitness, sequence length, and gestation time) that are permanent and irreversible. This study confirms an earlier experimental effort using microorganisms, in that diversification can be understood at least in part in terms of bifurcations on saddle points leading to peak shifts, as in the picture drawn by Sewall Wright
Cluster luminosity function and n^th ranked magnitude as a distance indicator
We define here a standard candle to determine the distance of clusters of
galaxies and to investigate their peculiar velocities by using the n^{th} rank
galaxy (magnitude m). We address the question of the universality of the
luminosity function for a sample of 28 rich clusters of galaxies () in order to model the influence on of cluster richness. This
luminosity function is found to be universal and the fit of a Schechter profile
gives and in the range
[-21,-17]. The uncorrected distance indicator is more efficient for the
first ranks n. With n=5, we have a dispersion of 0.61 magnitude for the
(m,5log(cz)) relation. When we correct for the richness effect and subtract
the background galaxies we reduce the uncertainty to 0.21 magnitude with n=15.
Simulations show that a large part of this dispersion originates from the
intrinsic scatter of the standard candle itself. These provide upper bounds on
the amplitude of cluster radial peculiar motions. At a confidence
level of 90%, the dispersion is 0.13 magnitude and is limited to
1200 km/s for our sample of clusters.Comment: 9 pages, 7 postscript figures, LateX A&A, accepted in A&
Tipstreaming of a drop in simple shear flow in the presence of surfactant
We have developed a multi-phase SPH method to simulate arbitrary interfaces
containing surface active agents (surfactants) that locally change the
properties of the interface, such the surface tension coefficient. Our method
incorporates the effects of surface diffusion, transport of surfactant from/to
the bulk phase to/from the interface and diffusion in the bulk phase.
Neglecting transport mechanisms, we use this method to study the impact of
insoluble surfactants on drop deformation and breakup in simple shear flow and
present the results in a fluid dynamics video.Comment: Two videos are included for the Gallery of Fluid Motion of the APS
DFD Meeting 201
Evolution of swarming behavior is shaped by how predators attack
Animal grouping behaviors have been widely studied due to their implications
for understanding social intelligence, collective cognition, and potential
applications in engineering, artificial intelligence, and robotics. An
important biological aspect of these studies is discerning which selection
pressures favor the evolution of grouping behavior. In the past decade,
researchers have begun using evolutionary computation to study the evolutionary
effects of these selection pressures in predator-prey models. The selfish herd
hypothesis states that concentrated groups arise because prey selfishly attempt
to place their conspecifics between themselves and the predator, thus causing
an endless cycle of movement toward the center of the group. Using an
evolutionary model of a predator-prey system, we show that how predators attack
is critical to the evolution of the selfish herd. Following this discovery, we
show that density-dependent predation provides an abstraction of Hamilton's
original formulation of ``domains of danger.'' Finally, we verify that
density-dependent predation provides a sufficient selective advantage for prey
to evolve the selfish herd in response to predation by coevolving predators.
Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital
evolutionary model, refines the assumptions of the selfish herd hypothesis, and
generalizes the domain of danger concept to density-dependent predation.Comment: 25 pages, 11 figures, 5 tables, including 2 Supplementary Figures.
Version to appear in "Artificial Life
Comparison of the properties of two fossil groups of galaxies with the normal group NGC 6034 based on multiband imaging and optical spectroscopy
We collected multiband imaging and spectroscopy for two fossil groups (RX
J1119.7+2126 and 1RXS J235814.4+150524) and one normal group (NGC 6034). We
computed photometric redshifts in the central zones of each group, combining
previous data with the SDSS five-band data. For each group we investigated the
red sequence (RS) of the color-magnitude relation and computed the luminosity
functions, stellar population ages and distributions of the group members.
Spectroscopy allowed us to investigate the large-scale surroundings of these
groups and the substructure levels in 1RXS J235814.4+150524 and NGC 6034. The
large-scale environment of 1RXS J235814.4+150524 is poor, though its galaxy
density map shows a clear signature of the surrounding cosmic web. RX
J1119.7+2126 appears to be very isolated, while the cosmic environment of NGC
6034 is very rich. At the group scale, 1RXS J235814.4+150524 shows no
substructure. Galaxies with recent stellar populations seem preferentially
located in the group outskirts. A RS is discernable for all three groups in a
color-magnitude diagram. The luminosity functions based on photometric redshift
selection and on statistical background subtraction have comparable shapes, and
agree with the few points obtained from spectroscopic redshifts. These
luminosity functions show the expected dip between first and second brightest
galaxies for the fossil groups only. Their shape is also regular and relatively
flat at faint magnitudes down to the completeness level for RX J1119.7+2126 and
NGC 6034, while there is a clear lack of faint galaxies for 1RXS
J235814.4+150524. RX J1119.7+2126 is definitely classified as a fossil group;
1RXS J235814.4+150524 also has properties very close to those of a fossil
group, while we confirm that NGC 6034 is a normal group.Comment: Accepted in A&A, english-improved, 5 jpeg figures, and shortened
abstrac
POSFET tactile sensing arrays using CMOS technology
This work presents fabrication and evaluation of novel POSFET (Piezoelectric Oxide Semiconductor Field Effect Transistor) devices based tactile sensing chip. In the newer version presented here, the tactile sensing chip has been fabricated using CMOS (Complementary Metal Oxide Semiconductor) technology. The chip consists of 4 x 4 POSFET touch sensing devices (or taxels) and both, the individual taxels and the array are designed to match spatio–temporal performance of the human fingertips. To detect contact events, the taxels utilize the contact forces induced change in the polarization level of piezoelectric polymer (and hence change in the induced channel current of MOS). The POSFET device on the chip have linear response in the tested dynamic contact forces range of 0.01–3 N and the sensitivity (without amplification) is 102.4 mV/N
Fast solitons on star graphs
We define the Schr\"odinger equation with focusing, cubic nonlinearity on
one-vertex graphs. We prove global well-posedness in the energy domain and
conservation laws for some self-adjoint boundary conditions at the vertex, i.e.
Kirchhoff boundary condition and the so called and boundary
conditions. Moreover, in the same setting we study the collision of a fast
solitary wave with the vertex and we show that it splits in reflected and
transmitted components. The outgoing waves preserve a soliton character over a
time which depends on the logarithm of the velocity of the ingoing solitary
wave. Over the same timescale the reflection and transmission coefficients of
the outgoing waves coincide with the corresponding coefficients of the linear
problem. In the analysis of the problem we follow ideas borrowed from the
seminal paper \cite{[HMZ07]} about scattering of fast solitons by a delta
interaction on the line, by Holmer, Marzuola and Zworski; the present paper
represents an extension of their work to the case of graphs and, as a
byproduct, it shows how to extend the analysis of soliton scattering by other
point interactions on the line, interpreted as a degenerate graph.Comment: Sec. 2 revised; several misprints corrected; added references; 32
page
Exact Static Cylindrical Solution to Conformal Weyl Gravity
We present the exact exterior solution for a static and neutral cylindrically
symmetric source in locally conformal invariant Weyl gravity. As a special case
the general relativity analogue still can be attained, however only as a
sub-family of solutions. Our solution contains a linear term that would thus
result in a potential that grows linearly over large distances. This may have
implications for exotic astrophysical structures as well as matter fields on
the extremely small scale.Comment: 8 pages, Physical Review
- …