20 research outputs found
Uniformity of V minus Near Infrared Color Evolution of Type Ia Supernovae, and Implications for Host Galaxy Extinction Determination
From an analysis of SNe 1972E, 1980N, 1981B, 1981D, 1983R, 1998bu, 1999cl,
and 1999cp we find that the intrinsic V-K colors of Type Ia SNe with
multi-color light curve shape (MLCS) parameter -0.4 < Delta < +0.2 suggest a
uniform color curve. V-K colors become bluer linearly with time from roughly
one week before B-band maximum until one week after maximum, after which they
redden linearly until four weeks after maximum. V-H colors exhibit very similar
color evolution. V-J colors exhibit slightly more complex evolution, with
greater scatter. The existence of V minus near infrared color relations allows
the construction of near infrared light curve templates that are an improvement
on those of Elias et al. (1985).
We provide optical BVRI and infrared JHK photometry of the Type Ia supernovae
1999aa, 1999cl, and 1999cp. SN 1999aa is an overluminous "slow decliner" (with
Delta = -0.47 mag). SN 1999cp is a moderately bright SN unreddened in its host.
SN 1999cl is extremely reddened in its host. The V minus near infrared colors
of SN 1999cl yield A_V = 2.01 +/- 0.11 mag. This leads to a distance for its
host galaxy (M 88) in agreement with other distance measurements for members of
the Virgo cluster.Comment: 57 pages, 13 postscript figures, to appear in the August 20, 2000,
issue of the Astrophysical Journal. Contains updated references and a number
of minor corrections dealt with when page proofs were correcte
Towards Space-like Photometric Precision from the Ground with Beam-Shaping Diffusers
We demonstrate a path to hitherto unachievable differential photometric
precisions from the ground, both in the optical and near-infrared (NIR), using
custom-fabricated beam-shaping diffusers produced using specialized
nanofabrication techniques. Such diffusers mold the focal plane image of a star
into a broad and stable top-hat shape, minimizing photometric errors due to
non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and
telescope-induced variable aberrations seen in defocusing. This PSF reshaping
significantly increases the achievable dynamic range of our observations,
increasing our observing efficiency and thus better averages over
scintillation. Diffusers work in both collimated and converging beams. We
present diffuser-assisted optical observations demonstrating
ppm precision in 30 minute bins on a nearby bright star
16-Cygni A (V=5.95) using the ARC 3.5m telescope---within a factor of 2
of Kepler's photometric precision on the same star. We also show a transit of
WASP-85-Ab (V=11.2) and TRES-3b (V=12.4), where the residuals bin down to
ppm in 30 minute bins for WASP-85-Ab---a factor of 4 of
the precision achieved by the K2 mission on this target---and to 101ppm for
TRES-3b. In the NIR, where diffusers may provide even more significant
improvements over the current state of the art, our preliminary tests have
demonstrated ppm precision for a star on the 200"
Hale Telescope. These photometric precisions match or surpass the expected
photometric precisions of TESS for the same magnitude range. This technology is
inexpensive, scalable, easily adaptable, and can have an important and
immediate impact on the observations of transits and secondary eclipses of
exoplanets.Comment: Accepted for publication in ApJ. 30 pages, 20 figure
Kuiper Belt Occultation Predictions
Here we present observations of seven large Kuiper Belt objects. From these observations, we extract a point source catalog with ∼0.01″ precision, and astrometry of our target Kuiper Belt objects with 0.04–0.08″ precision within that catalog. We have developed a new technique to predict the future occurrence of stellar occultations by Kuiper Belt objects. The technique makes use of a maximum likelihood approach which determines the best-fit adjustment to cataloged orbital elements of an object. Using simulations of a theoretical object, we discuss the merits and weaknesses of this technique compared to the commonly adopted ephemeris offset approach. We demonstrate that both methods suffer from separate weaknesses, and thus together provide a fair assessment of the true uncertainty in a particular prediction. We present occultation predictions made by both methods for the seven tracked objects, with dates as late as 2015. Finally, we discuss observations of three separate close passages of Quaoar to field stars, which reveal the accuracy of the element adjustment approach, and which also demonstrate the necessity of considering the uncertainty in stellar position when assessing potential occultations
Sloan Digital Sky Survey Multicolor Observations of GRB010222
The discovery of an optical counterpart to GRB010222 (detected by BeppoSAX;
Piro 2001) was announced 4.4 hrs after the burst by Henden (2001a). The Sloan
Digital Sky Survey's 0.5m photometric telescope (PT) and 2.5m survey telescope
were used to observe the afterglow of GRB010222 starting 4.8 hours after the
GRB. The 0.5m PT observed the afterglow in five, 300 sec g' band exposures over
the course of half an hour, measuring a temporal decay rate in this short
period of F_nu \propto t^{-1.0+/-0.5}. The 2.5m camera imaged the counterpart
nearly simultaneously in five filters (u' g' r' i' z'), with r' = 18.74+/-0.02
at 12:10 UT. These multicolor observations, corrected for reddening and the
afterglow's temporal decay, are well fit by the power-law F_nu \propto
nu^{-0.90+/-0.03} with the exception of the u' band UV flux which is 20% below
this slope. We examine possible interpretations of this spectral shape,
including source extinction in a star forming region.Comment: 8 pages, 4 figures, accepted for publication in ApJ. Two figures
added, minor changes to text in this draft. Related material can be found at:
http://sdss.fnal.gov:8000/grb
The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-up Observations
The Sloan Digital Sky Survey-II Supernova Survey has identified a large
number of new transient sources in a 300 sq. deg. region along the celestial
equator during its first two seasons of a three-season campaign. Multi-band
(ugriz) light curves were measured for most of the sources, which include solar
system objects, Galactic variable stars, active galactic nuclei, supernovae
(SNe), and other astronomical transients. The imaging survey is augmented by an
extensive spectroscopic follow-up program to identify SNe, measure their
redshifts, and study the physical conditions of the explosions and their
environment through spectroscopic diagnostics. During the survey, light curves
are rapidly evaluated to provide an initial photometric type of the SNe, and a
selected sample of sources are targeted for spectroscopic observations. In the
first two seasons, 476 sources were selected for spectroscopic observations, of
which 403 were identified as SNe. For the Type Ia SNe, the main driver for the
Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the
photometric SN Ia candidates were spectroscopically classified as non-SN Ia
instead, and the remaining 4% resulted in low signal-to-noise, unclassified
spectra. This paper describes the search algorithm and the software, and the
real-time processing of the SDSS imaging data. We also present the details of
the supernova candidate selection procedures and strategies for follow-up
spectroscopic and imaging observations of the discovered sources.Comment: Accepted for publication in The Astronomical Journal (66 pages, 13
figures); typos correcte
First-Year Spectroscopy for the SDSS-II Supernova Survey
This paper presents spectroscopy of supernovae discovered in the first season
of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for
and measures multi-band light curves of supernovae in the redshift range z =
0.05 - 0.4, complementing existing surveys at lower and higher redshifts. Our
goal is to better characterize the supernova population, with a particular
focus on SNe Ia, improving their utility as cosmological distance indicators
and as probes of dark energy. Our supernova spectroscopy program features
rapid-response observations using telescopes of a range of apertures, and
provides confirmation of the supernova and host-galaxy types as well as precise
redshifts. We describe here the target identification and prioritization, data
reduction, redshift measurement, and classification of 129 SNe Ia, 16
spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first
season. We also describe our efforts to measure and remove the substantial host
galaxy contamination existing in the majority of our SN spectra.Comment: Accepted for publication in The Astronomical Journal(47pages, 9
figures
First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Hubble Diagram and Cosmological Parameters
We present measurements of the Hubble diagram for 103 Type Ia supernovae
(SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall
2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data
fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We
combine the SDSS-II measurements with new distance estimates for published SN
data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space
Telescope, and a compilation of nearby SN Ia measurements. Combining the SN
Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS
Luminous Red Galaxy sample and with CMB temperature anisotropy measurements
from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a
spatially flat cosmological model (FwCDM) with constant dark energy equation of
state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia,
we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat)
+- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M
= 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the
discrepancy between these results to a difference in the rest-frame UV model
combined with a different luminosity correction from color variations; these
differences mostly affect the distance estimates for the SNLS and HST
supernovae. We present detailed discussions of systematic errors for both
light-curve methods and find that they both show data-model discrepancies in
rest-frame -band. For the SALT-II approach, we also see strong evidence for
redshift-dependence of the color-luminosity parameter (beta). Restricting the
analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better
agreement between the two analysis methods but with larger uncertainties.Comment: Accepted for publication by ApJ
GRB Afterglows and Other Transients in the SDSS
The Sloan Digital Sky Survey (SDSS) will image one quarter of the sky centered on the northern galactic cap and produce a 3‐D map of galaxies and quasars found in the sample. An additional 225 deg2 southern survey will be imaged repeatedly on varying timescales. Here we discuss both archival searches in the SDSS catalog (such as SDSS J24602.54+011318.8) and active searches with the SDSS instruments (such as for GRB 010222) for GRB afterglows and other transient objects. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87288/2/349_1.pd
Toward Space-like Photometric Precision from the Ground with Beam-shaping Diffusers
We demonstrate a path to hitherto unachievable differential photometric precisions from the ground, both in the optical and near-infrared (NIR), using custom-fabricated beam-shaping diffusers produced using specialized nanofabrication techniques. Such diffusers mold the focal plane image of a star into a broad and stable top-hat shape, minimizing photometric errors due to non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and telescope-induced variable aberrations seen in defocusing. This PSF reshaping significantly increases the achievable dynamic range of our observations, increasing our observing efficiency and thus better averages over scintillation. Diffusers work in both collimated and converging beams. We present diffuser-assisted optical observations demonstrating 62_(-16)^(+26) ppm precision in 30 minute bins on a nearby bright star 16 Cygni A (V = 5.95) using the ARC 3.5 m telescope—within a factor of ~2 of Kepler's photometric precision on the same star. We also show a transit of WASP-85-Ab (V = 11.2) and TRES-3b (V = 12.4), where the residuals bin down to 180_(-41)^(+66) ppm in 30 minute bins for WASP-85-Ab—a factor of ~4 of the precision achieved by the K2 mission on this target—and to 101 ppm for TRES-3b. In the NIR, where diffusers may provide even more significant improvements over the current state of the art, our preliminary tests demonstrated 137_(-36)^(+64) ppm precision for a K_S = 10.8 star on the 200 inch Hale Telescope. These photometric precisions match or surpass the expected photometric precisions of TESS for the same magnitude range. This technology is inexpensive, scalable, easily adaptable, and can have an important and immediate impact on the observations of transits and secondary eclipses of exoplanets