376 research outputs found
Current Methods for Modeling and Simulating Icing Effects on Aircraft Performance, Stability and Control
Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design
Demonstration of an Ice Contamination Effects Flight Training Device
The development of a piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD) was recently completed. This device demonstrates the ability to accurately represent an iced airplane s flight characteristics and is utilized to train pilots in recognizing and recovering from aircraft handling anomalies that result from airframe ice formations. The ICEFTD was demonstrated at three recent short courses hosted by the University of Tennessee Space Institute. It was also demonstrated to a group of pilots at the National Test Pilot School. In total, eighty-four pilots and flight test engineers from industry and the regulatory community spent approximately one hour each in the ICEFTD to get a "hands on" lesson of an iced airplane s reduced performance and handling qualities. Additionally, pilot cues of impending upsets and recovery techniques were demonstrated. The purpose of this training was to help pilots understand how ice contamination affects aircraft handling so they may apply that knowledge to the operations of other aircraft undergoing testing and development. Participant feedback on the ICEFTD was very positive. Pilots stated that the simulation was very valuable, applicable to their occupations, and provided a safe way to explore the flight envelope. Feedback collected at each demonstration was also helpful to define additional improvements to the ICEFTD; many of which were then implemented in subsequent demonstration
Improved coloration of hemp fabrics via low-pressure argon plasma assisted surface modification
Interest in hemp as a viable cellulosic fibre for clothing has increased, driven partly by its economic benefits and the importance of natural renewable materials in emerging circular economies. However, the coloration and chemical finishing of lignocellulosic fibres such as hemp typically require large quantities of water and chemicals. Argon plasma pretreatment provides a way of modulating the physical properties of hemp fibres to improve the coloration process without compromising other bulk properties such as tensile strength. Such plasma treatments may contribute to alleviating the negative environmental impacts associated with liquid pretreatments, heating, or the use of auxiliary chemicals. Dyeing of hemp fibres is particularly challenging due to its crystalline chemical structure. In this study, low-pressure argon plasma-assisted surface modification of woven hemp fabrics up to 600 s at 40 and 80 Hz was explored for enhanced dyeability, resulting in enhanced dye-fibre bonding. Fourier-transform infrared spectroscopy and Raman spectroscopy of argon plasma pretreated hemp fabrics produced no noticeable changes in the functional groups of the fibres, but a physiochemical modification was observed in terms of the density of polar groups. Scanning electron microscopy (SEM) images revealed marked morphological changes including nano-etching of the fibre surface at certain argon plasma process conditions. The pretreatment process increased fibre hydrophilicity, and enhanced reactivity of the surficial –OH groups towards fibre-reactive and vat dyes, resulting in higher colour strength in dyed woven hemp fabrics. Overall, we envisage such plasma pretreatments may impact positively on the material and energy efficiency of the hemp fabric dyeing process
A methodology for determining amino-acid substitution matrices from set covers
We introduce a new methodology for the determination of amino-acid
substitution matrices for use in the alignment of proteins. The new methodology
is based on a pre-existing set cover on the set of residues and on the
undirected graph that describes residue exchangeability given the set cover.
For fixed functional forms indicating how to obtain edge weights from the set
cover and, after that, substitution-matrix elements from weighted distances on
the graph, the resulting substitution matrix can be checked for performance
against some known set of reference alignments and for given gap costs. Finding
the appropriate functional forms and gap costs can then be formulated as an
optimization problem that seeks to maximize the performance of the substitution
matrix on the reference alignment set. We give computational results on the
BAliBASE suite using a genetic algorithm for optimization. Our results indicate
that it is possible to obtain substitution matrices whose performance is either
comparable to or surpasses that of several others, depending on the particular
scenario under consideration
Chain Length Dependence of the Photovoltaic Properties of Monodisperse Donor-Acceptor Oligomers as Model Compounds of Polydisperse Low Band Gap Polymers
Well-defined conjugated oligomers (Sn) containing from 1 to 8 units of a tricyclic building block involving a dioctyloxybenzothiadiazole unit with two thienyl side rings (S1) are synthesized by a bottom-up approach. UV–Vis absorption data of solutions show that chain extension produces a narrowing of the HOMO–LUMO gap (ΔE) to values slightly smaller than that of the parent polymer (P1). Plots of ΔE and of the band gap of films (E g) versus the reciprocal chain length show that ΔE and E g converge towards a limit corresponding to an effective conjugation length (ECL) of 7–8 S1 units. UV–Vis absorption and photoluminescence data of solutions and solid films show that chain extension enhances the propensity to inter-chain aggregation. This conclusion is confirmed by GIXD analyses which reveal that the edge-on orientation of short-chain systems evolves toward a face-on orientation as chain length increases while the π-stacking distance decreases beyond 7 units. The results obtained on solution-processed BHJ solar cells show a progressive improvement of power conversion efficiency (PCE) with chain extension; however, the convergence limit of PCE remains inferior to that obtained with the polymer. These results are discussed with regard to the role of mono/polydispersity and chain aggregation
Configuration Of Grafted Polystyrene Chains In The Melt: Temperature And Concentration Dependence
The concentration profiles of carboxy-terminated polystyrene chains in the melt grafted onto oxide-covered silicon substrates were measured using secondary-ion mass spectroscopy. The grafting density increased with temperature and an enthalpy of +7.4 kcal/mole was deduced for the grafting reaction, SiOH + R(COOH) ⇄ R(COOSi) + H2O. Relatively high grafting densities (σ∼6.6·mg/m2) were achieved with minimal chain distortion or displacement of long chains by shorter ones. Significant stretching of the grafted chains occurred for σ > 10 mg/m2. An equilibrium constant for the grafting reaction incorporating entropy is discussed.69577677
- …