2,566 research outputs found

    Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is generally a fatal disease with no efficacious treatment modalities. Elucidation of signaling mechanisms that will lead to the identification of novel targets for therapy and chemoprevention is urgently needed. Here, we review the role of Yes-associated protein (YAP) and WW-domain-containing Transcriptional co-Activator with a PDZ-binding motif (TAZ) in the development of PDAC. These oncogenic proteins are at the center of a signaling network that involves multiple upstream signals and downstream YAP-regulated genes. We also discuss the clinical significance of the YAP signaling network in PDAC using a recently published interactive open-access database (www.proteinatlas.org/pathology) that allows genome-wide exploration of the impact of individual proteins on survival outcomes. Multiple YAP/TEAD-regulated genes, including AJUBA, ANLN, AREG, ARHGAP29, AURKA, BUB1, CCND1, CDK6, CXCL5, EDN2, DKK1, FOSL1,FOXM1, HBEGF, IGFBP2, JAG1, NOTCH2, RHAMM, RRM2, SERP1, and ZWILCH, are associated with unfavorable survival of PDAC patients. Similarly, components of AP-1 that synergize with YAP (FOSL1), growth factors (TGFα, EPEG, and HBEGF), a specific integrin (ITGA2), heptahelical receptors (P2Y2R, GPR87) and an inhibitor of the Hippo pathway (MUC1), all of which stimulate YAP activity, are associated with unfavorable survival of PDAC patients. By contrast, YAP inhibitory pathways (STRAD/LKB-1/AMPK, PKA/LATS, and TSC/mTORC1) indicate a favorable prognosis. These associations emphasize that the YAP signaling network correlates with poor survival of pancreatic cancer patients. We conclude that the YAP pathway is a major determinant of clinical aggressiveness in PDAC patients and a target for therapeutic and preventive strategies in this disease

    Cooperation of Gq, Gi, and G12/13 in Protein Kinase D Activation and Phosphorylation Induced by Lysophosphatidic Acid

    Get PDF
    To examine the contribution of different G-protein pathways to lysophosphatidic acid (LPA)-induced protein kinase D (PKD) activation, we tested the effect of LPA on PKD activity in murine embryonic cell lines deficient in Galpha q/11 (Galpha q/11 KO cells) or Galpha 12/13 (Galpha 12/13 KO cells) and used cells lacking rhodopsin kinase (RK cells) as a control. In RK and Galpha 12/13 KO cells, LPA induced PKD activation through a phospholipase C/protein kinase C pathway in a concentration-dependent fashion with maximal stimulation (6-fold for RK cells and 4-fold for Galpha 12/13 KO cells in autophosphorylation activity) achieved at 3 µM. In contrast, LPA did not induce any significant increase in PKD activity in Galpha q/11 KO cells. However, LPA induced a significantly increased PKD activity when Galpha q/11 KO cells were transfected with Galpha q. LPA-induced PKD activation was modestly attenuated by prior exposure of RK cells to pertussis toxin (PTx) but abolished by the combination treatments of PTx and Clostridium difficile toxin B. Surprisingly, PTx alone strikingly inhibited LPA-induced PKD activation in a concentration-dependent fashion in Galpha 12/13 KO cells. Similar results were obtained when activation loop phosphorylation at Ser-744 was determined using an antibody that detects the phosphorylated state of this residue. Our results indicate that Gq is necessary but not sufficient to mediate LPA-induced PKD activation. In addition to Gq, LPA requires additional G-protein pathways to elicit a maximal response with Gi playing a critical role in Galpha 12/13 KO cells. We conclude that LPA induces PKD activation through Gq, Gi, and G12 and propose that PKD activation is a point of convergence in the action of multiple G-protein pathways

    Bombesin and bombesin antagonists: studies in Swiss 3T3 cells and human small cell lung cancer.

    Get PDF
    Bombesins are potent growth factors for murine Swiss 3T3 cells. Using these cells in chemically defined conditions we have been able to characterise the bombesin receptor and the early signals preceding DNA synthesis. We describe two substance P analogues [DArg1, DPro2, DTrp7,9, Leu11] substance P and [DArg1, DPhe5, DTrp7,9, Leu11] substance P which competitively block the binding of bombesins to their receptor and all the events leading to mitogenesis. Bombesins are secreted by human small cell lung cancers (SCLC) and may act as autocrine growth factors for these tumours, so the development of peptide bombesin antagonists could have therapeutic implications. We demonstrate that the antagonists can reversibly inhibit the growth of SCLC in vitro, with relatively little effect on other lung tumours

    Intracellular Ca2+ oscillations generated via the extracellular Ca2+-sensing receptor (CaSR) in response to extracellular Ca2+ or l-phenylalanine: Impact of the highly conservative mutation Ser170Thr

    Get PDF
    The extracellular Ca2+-sensing receptor (CaSR) is an allosteric protein that responds to changes in the extracellular concentration of Ca2+ ([Ca2+]e) and aromatic amino acids with the production of different patterns of oscillations in intracellular Ca2+ concentration ([Ca2+]i). An increase in [Ca2+]e stimulates sinusoidal oscillations in [Ca2+]i whereas aromatic amino acid-induced CaR activation in the presence of a threshold [Ca2+]e promotes transient oscillations in [Ca2+]i. Here, we examined spontaneous and ligand-evoked [Ca2+]i oscillations in single HEK-293 cells transfected with the wild type CaSR or with a mutant CaSR in which Ser170 was converted to Thr (CaSRS170T). Our analysis demonstrates that cells expressing CaSRS170T display [Ca2+]i oscillations in the presence of low concentrations of extracellular Ca2+ and respond to L-Phe with robust transient [Ca2+]i oscillations. Our results indicate that the S170T mutation induces a marked increase in CaSR sensitivity to [Ca2+]e and imply that the allosteric regulation of the CaSR by aromatic amino acids is not only mediated by an heterotropic positive effect on Ca2+ binding cooperativity but, as biased agonists, aromatic amino acids stabilize a CaSR conformation that couples to a different signaling pathway leading to transient [Ca2+]i oscillations.Fil: Young, Steven H.. University of California at Los Angeles; Estados UnidosFil: Rey, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Rozengurt, Enrique. Veterans Affairs West Los Angeles Healthcare System; Estados Unidos. University of California at Los Angeles; Estados Unido

    Allosteric inhibition of muscle pyruvate kinase by phenylalanine

    Get PDF
    Fil:Rozengurt, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:de Asúa, L.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Carminatti, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    corecore