7 research outputs found

    Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    Get PDF
    International audienceThe advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances

    Femtosecond polarization shaping of free-electron laser pulses

    Get PDF
    We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with time-dependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrödinger equation. The stability limit of the scheme is mainly set by electron-beam energy fluctuations, however, at a level that will not compromise experiments in the XUV. Our results demonstrate the potential to improve the resolution and element selectivity of methods based on polarization shaping and may lead to the development of new coherent control schemes for probing and manipulating core electrons in matter

    A single-shot terahertz time-domain spectrometer using 1550 nm probe pulses and diversity electro-optic sampling

    No full text
    Classical terahertz spectroscopy usually requires the use of Fourier transform or Time-Domain Spectrometers. However, these classical techniques become impractical when using recent high peak power terahertz sources – based on intense lasers or accelerators – which operate at low repetition rate. We present and test the design of a novel Time-Domain Spectrometer (TDS), that is capable of recording a whole terahertz spectrum at each shot of the source, and that uses a 1550 nm probe fiber laser. Single-shot operation is obtained using chirped-pulse electro-optic sampling in Gallium Arsenide, and high bandwidth is obtained by using the recently introduced Diversity Electro-Optic Sampling (DEOS) method. We present the first real-time measurements of THz spectra at the TeraFERMI Coherent Transition Radiation source. The system achieves 4 THz bandwidth, and a 25 dB dynamic range. By reducing the required measurement time from minutes to a split-second, this strategy dramatically expands the application range of high power low-repetition rate THz sources

    Polarization Characterization of Soft X-Ray Radiation at FERMI FEL-2

    No full text
    The control of polarization state in soft and hard X- ray light is of crucial interest to probe structural and symmetry properties of matter. Thanks to their Apple-II type undulators, the FERMI-Free Electron Lasers are able to provide elliptical, circular or linearly polarized light within the extreme ultraviolet and soft X- ray range. In this paper, we report the characterization of the polarization state of FERMI FEL-2 down to 5 nm. The results show a high degree of polarization of the FEL pulses, typically above 95%. The campaign of measurements was performed at the Low Density Matter beamline using an electron Time-Of-Flight based polarimeter

    Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge

    Get PDF
    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser throughcarbon \ufb01lms of varying thickness, quantifying nonlinear effects of pulses above and below the carbonK-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption atphoton energies above and below the K-edge, \ue001308 and \ue001260 eV, respectively; whereas two-photonabsorption becomes signi\ufb01cant slightly below the K-edge, \ue001284.2 eV. The measured two-photonabsorption cross section at 284.18 eV (\ue0016 \ue003 10\ue00448cm4s) is 7 orders of magnitude above what is expectedfrom a simple theory based on hydrogen-like atoms \u2013 a result of resonance effects

    Pulse Duration of Seeded Free-Electron Lasers

    Get PDF
    The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extremeultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seeded FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. The measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory
    corecore