256 research outputs found
The impact of phenotypic and genetic heterogeneity on results of genome wide association studies of complex diseases
Phenotypic misclassification (between cases) has been shown to reduce the power to detect association in genetic studies. However, it is conceivable that complex traits are heterogeneous with respect to individual genetic susceptibility and disease pathophysiology, and that the effect of heterogeneity has a larger magnitude than the effect of phenotyping errors. Although an intuitively clear concept, the effect of heterogeneity on genetic studies of common diseases has received little attention. Here we investigate the impact of phenotypic and genetic heterogeneity on the statistical power of genome wide association studies (GWAS). We first performed a study of simulated genotypic and phenotypic data. Next, we analyzed the Wellcome Trust Case-Control Consortium (WTCCC) data for diabetes mellitus (DM) type 1 (T1D) and type 2 (T2D), using varying proportions of each type of diabetes in order to examine the impact of heterogeneity on the strength and statistical significance of association previously found in the WTCCC data. In both simulated and real data, heterogeneity (presence of "non-cases") reduced the statistical power to detect genetic association and greatly decreased the estimates of risk attributed to genetic variation. This finding was also supported by the analysis of loci validated in subsequent large-scale meta-analyses. For example, heterogeneity of 50% increases the required sample size by approximately three times. These results suggest that accurate phenotype delineation may be more important for detecting true genetic associations than increase in sample size
Modifiers of (CAG)(n) instability in Machado-Joseph disease (MJD/SCA3) transmissions: an association study with DNA replication, repair and recombination genes.
Twelve neurological disorders are caused by gene-specific CAG/CTG repeat expansions that are highly unstable upon transmission to offspring. This intergenerational repeat instability is clinically relevant since disease onset, progression and severity are associated with repeat size. Studies of model organisms revealed the involvement of some DNA replication and repair genes in the process of repeat instability, however, little is known about their role in patients. Here, we used an association study to search for genetic modifiers of (CAG)n instability in 137 parent-child transmissions in Machado-Joseph disease (MJD/SCA3). With the hypothesis that variants in genes involved in DNA replication, repair or recombination might alter the MJD CAG instability patterns, we screened 768 SNPs from 93 of these genes. We found a variant in ERCC6 (rs2228528) associated with an expansion bias of MJD alleles. When using a gene-gene interaction model, the allele combination G-A (rs4140804-rs2972388) of RPA3-CDK7 is also associated with MJD instability in a direction-dependent manner. Interestingly, the transcription-coupled repair factor ERCC6 (aka CSB), the single-strand binding protein RPA, and the CDK7 kinase part of the TFIIH transcription repair complex, have all been linked to transcription-coupled repair. This is the first study performed in patient samples to implicate specific modifiers of CAG instability in humans. In summary, we found variants in three transcription-coupled repair genes associated with the MJD mutation that points to distinct mechanisms of (CAG)n instability.This work was supported by the Canadian Institutes of Health Research; and the Levesque Chair for research in Neurogenetics [to G. A. R.]; and the Portuguese Foundation for Science and Technology [SFRH/BPD/77969/2011 to S.M]
Novel integrative genomic tool for interrogating lithium response in bipolar disorder
We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery
A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia.
Advances in human genetics in recent years have largely been driven by next-generation sequencing (NGS); however, the discovery of disease-related gene mutations has been biased toward the exome because the large and very repetitive regions that characterize the non-coding genome remain difficult to reach by that technology. For autosomal-dominant spinocerebellar ataxias (SCAs), 28 genes have been identified, but only five SCAs originate from non-coding mutations. Over half of SCA-affected families, however, remain without a genetic diagnosis. We used genome-wide linkage analysis, NGS, and repeat analysis to identify an (ATTTC)n insertion in a polymorphic ATTTT repeat in DAB1 in chromosomal region 1p32.2 as the cause of autosomal-dominant SCA; this region has been previously linked to SCA37. The non-pathogenic and pathogenic alleles have the configurations [(ATTTT)7-400] and [(ATTTT)60-79(ATTTC)31-75(ATTTT)58-90], respectively. (ATTTC)n insertions are present on a distinct haplotype and show an inverse correlation between size and age of onset. In the DAB1-oriented strand, (ATTTC)n is located in 5' UTR introns of cerebellar-specific transcripts arising mostly during human fetal brain development from the usage of alternative promoters, but it is maintained in the adult cerebellum. Overexpression of the transfected (ATTTC)58 insertion, but not (ATTTT)n, leads to abnormal nuclear RNA accumulation. Zebrafish embryos injected with RNA of the (AUUUC)58 insertion, but not (AUUUU)n, showed lethal developmental malformations. Together, these results establish an unstable repeat insertion in DAB1 as a cause of cerebellar degeneration; on the basis of the genetic and phenotypic evidence, we propose this mutation as the molecular basis for SCA37.We thank the families who participated in this study. We are grateful to Goncalo Abecasis, Miguel Costa, Tito Vieira, and Andre Torres for help with MERLIN analysis; Beatriz Sobrino, Jorge Amigo, and Pilar Cacheiro for next-generation sequencing analysis, performed at the Santiago de Compostela node of the Spanish National Genotyping Center; Nuno Santarem and Anabela Cordeiro-da-Silva for assistance with cloning; Antonio Amorim, Laura Vilarinho, and Paula Jorge for samples from the Portuguese population; and Paula Magalhaes from the Institute for Molecular and Cell Biology Cell Culture and Genotyping Core for DNA extraction. This work was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020 Operational Program for Competitiveness and Internationalization (POCI) of Portugal 2020 and by Portuguese funds through the Fundacao para a Ciencia e a Tecnologia (FCT) and Ministerio da Ciencia, Tecnologia, e Inovacao in the framework of the project "Institute for Research and Innovation in Health Sciences" (POCI-01-0145-FEDER-007274); and by FCT grant PTDC/SAU-GMG/098305/2008 to I.S. A. I.S. was the recipient of an FCT scholarship (SFRH/BD/30702/2006). J.R.L. was supported by scholarships from PEst-C/SAU/LA0002/2013 and the European Molecular Biology Organization (ASTF494-2015). C.L.O. was supported by a scholarship from PEst-C/SAU/LA0002/2013. This work was also financed by the Porto Neurosciences and Neurologic Disease Research Initiative at the Instituto de Investigacao e Inovacao em Saude (Norte-01-0145-FEDER-000008), supported by Norte Portugal Regional Operational Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement through FEDER, and by the Fondo de Investigacion Sanitaria of the Instituto de Salud Carlos III (grant PI12/00742)
Genome-Wide Association Study Meta-Analysis for Parkinson Disease Motor Subtypes
Objective: To discover genetic determinants of Parkinson disease (PD) motor subtypes, including tremor dominant (TD) and postural instability/gait difficulty (PIGD) forms. Methods: In 3,212 PD cases of European ancestry, we performed a genome-wide association study (GWAS) examining 2 complementary outcome traits derived from the Unified Parkinson's Disease Rating Scale, including dichotomous motor subtype (TD vs PIGD) or a continuous tremor/PIGD score ratio. Logistic or linear regression models were adjusted for sex, age at onset, disease duration, and 5 ancestry principal components, followed by meta-analysis. Results: Among 71 established PD risk variants, we detected multiple suggestive associations with PD motor subtype, including GPNMB (rs199351, psubtype = 0.01, pratio = 0.03), SH3GL2 (rs10756907, psubtype = 0.02, pratio = 0.01), HIP1R (rs10847864, psubtype = 0.02), RIT2 (rs12456492, psubtype = 0.02), and FBRSL1 (rs11610045, psubtype = 0.02). A PD genetic risk score integrating all 71 PD risk variants was also associated with subtype ratio (p = 0.026, Ăź = -0.04, 95% confidence interval = -0.07-0). Based on top results of our GWAS, we identify a novel suggestive association at the STK32B locus (rs2301857, pratio = 6.6 Ă— 10-7), which harbors an independent risk allele for essential tremor. Conclusions: Multiple PD risk alleles may also modify clinical manifestations to influence PD motor subtype. The discovery of a novel variant at STK32B suggests a possible overlap between genetic risk for essential tremor and tremor-dominant PD
Genetic and Epigenetic Alterations of the NF2 Gene in Sporadic Vestibular Schwannomas
BACKGROUND: Mutations in the neurofibromatosis type 2 (NF2) tumor-suppressor gene have been identified in not only NF2-related tumors but also sporadic vestibular schwannomas (VS). This study investigated the genetic and epigenetic alterations in tumors and blood from 30 Korean patients with sporadic VS and correlated these alterations with tumor behavior. METHODOLOGY/PRINCIPAL FINDINGS: NF2 gene mutations were detected using PCR and direct DNA sequencing and three highly polymorphic microsatellite DNA markers were used to assess the loss of heterozygosity (LOH) from chromosome 22. Aberrant hypermethylation of the CpG island of the NF2 gene was also analyzed. The tumor size, the clinical growth index, and the proliferative activity assessed using the Ki-67 labeling index were evaluated. We found 18 mutations in 16 cases of 30 schwannomas (53%). The mutations included eight frameshift mutations, seven nonsense mutations, one in-frame deletion, one splicing donor site, and one missense mutation. Nine patients (30%) showed allelic loss. No patient had aberrant hypermethylation of the NF2 gene and correlation between NF2 genetic alterations and tumor behavior was not observed in this study. CONCLUSIONS/SIGNIFICANCE: The molecular genetic changes in sporadic VS identified here included mutations and allelic loss, but no aberrant hypermethylation of the NF2 gene was detected. In addition, no clear genotype/phenotype correlation was identified. Therefore, it is likely that other factors contribute to tumor formation and growth
Sporadic ALS is not associated with VAPB gene mutations in Southern Italy
Mutations in the Cu/Zn superoxide dismutase (Sod1) gene have been reported to cause adult-onset autosomal dominant Amyotrophic Lateral Sclerosis (FALS). In sporadic cases (SALS) de novo mutations in the Sod1 gene have occasionally been observed. The recent finding of a mutation in the VAMP/synaptobrevin-associated membrane protein B (VAPB) gene as the cause of amyotrophic lateral sclerosis (ALS8), prompted us to investigate the entire coding region of this gene in SALS patients. One hundred twenty-five unrelated patients with adult-onset ALS and 150 healthy sex-age-matched subjects with the same genetic background were analyzed. Genetic analysis for all exons of the VAPB gene by DHPLC revealed 5 variant profiles in 83 out of 125 SALS patients. Direct sequencing of these PCR products revealed 3 nucleotide substitutions. Two of these were found within intron 3 of the gene, harbouring 4 variant DHPLC profiles. The third nucleotide variation (Asp130Glu) was the only substitution present in the coding region of the VAPB gene, and it occurred within exon 4. It was found in three patients out of 125. The frequency of the detected exon variation in the VAPB gene was not significantly different between patients and controls. In conclusion, our study suggests that VAPB mutations are not a common cause of adult-onset SALS
Longitudinal evaluation of quality of life in 288 patients with Neurofibromatosis 2
Advances in molecular biology have resulted in novel therapy for neurofibromatosis 2-related (NF2) tumours, highlighting the need for robust outcome measures. The disease-focused NF2 impact on quality of life (NFTI-QOL) patient questionnaire was assessed as an outcome measure for treatment in a multi-centre study. NFTI-QOL was related to clinician-rated severity (ClinSev) and genetic severity (GenSev) over repeated visits. Data were evaluated for 288 NF2 patients (n = 464 visits) attending the English national NF2 clinics from 2010 to 2012. The male-to-female ratio was equal and the mean age was 42.2 (SD 17.8) years. The analysis included NFTI-QOL eight-item score, ClinSev graded as mild, moderate, or severe, and GenSev as a rank order of the number of NF2 mutations (graded as mild, moderate, severe). The mean (SD) 8.7 (5.4) score for NFTI-QOL for either a first visit or all visits 9.2 (5.4) was similar to the published norm of 9.4 (5.5), with no significant relationships with age or gender. NFTI-QOL internal reliability was good, with a Cronbach’s alpha score of 0.85 and test re-test reliability r = 0.84. NFTI related to ClinSev (r = 0.41, p < 0.001; r = 0.46 for all visits), but weakly to GenSev (r = 0.16, p < 0.05; r = 0.15 for all visits). ClinSev related to GenSev (r = 0.41, p < 0.001; r = 0.42 for all visits). NFTI-QOL showed a good reliability and ability to detect significant longitudinal changes in the QOL of individuals. The moderate relationships of NFTI-QOL with clinician- and genetic-rated severity suggest that NFTI-QOL taps into NF2 patient experiences that are not encompassed by ClinSev rating or genotype
Gene expression profiling of meningiomas: current status after a decade of microarray-based transcriptomic studies
Purpose This article provides a review of the transcriptomic expression profiling studies that have been performed on meningiomas so far. We discuss some future prospects and challenges ahead in the field of gene expression profiling. Methods We performed a systematic search in the PubMed and EMBASE databases in May 2010 using the following search terms alone or in combination: “meningioma”, “microarray analysis”, “oligonucleotide array sequence analysis”, or “gene expression profiling”. Only original research articles in English that had used RNA hybridized to high-resolution microarray chips to generate gene expression profiles were included. Results We identified 13 articles matching the inclusion criteria. All studies had been performed during the last decade. Conclusions The main results of the studies can be grouped in three categories: (1) several groups have identified meningioma-specific genes and genes associated with the three WHO grades, and the main histological subtypes of grade I meningiomas; (2) one publication has shown that the general transcription profile of samples of all WHO grades differs in vivo and in vitro; (3) one report provides evidence that microarray technology can be used in an automated fashion to classify tumors. Due to lack of consensus on how microarray data are presented, possible general trends found across the studies are difficult to extract. This could obstruct the discovery of important genes and pathways universally involved in meningioma biology
- …