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Novel integrative genomic tool for interrogating lithium
response in bipolar disorder
JG Hunsberger1,10, FL Chibane1, AG Elkahloun2, R Henderson3, R Singh4, J Lawson5, C Cruceanu6,7, V Nagarajan3, G Turecki6,
A Squassina8, CD Medeiros6, M Del Zompo8, GA Rouleau7, M Alda9 and D-M Chuang1,10

We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool
Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool
and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the
capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic
treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-
therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a
severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly
effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in
every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived
lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA
gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis
in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this
miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this
analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their
patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery.
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INTRODUCING THE PROBLEM: LARGE COMPLEX DATA SETS
FOR HUMAN DISORDERS ARE DIFFICULT TO ANALYZE
Bipolar disorder (BD) is a complex psychiatric disease, affecting
1–4% of the population1–4 worldwide, and characterized by
recurrence of depressive, hypomanic or manic episodes alternat-
ing with intervals of full remission.5 Lithium (Li) represents the
mainstay for the management of BD, however, there is only ~30%
of patients in long-term cohorts showing excellent response.5–7

Nevertheless, the mechanism underlying the mood-stabilizing
effect of Li is still not completely understood. Early studies have
shown that Li directly inhibits two enzymes of the inositol
pathway, inositol-monophosphatase and inositol polyphosphate
1-phosphatase, in addition to glycogen synthase kinase-3 (GSK-3),
a key kinase involved in the regulation of transcription, apoptosis,
mood state, circadian rhythm and neurotransmission.8 However,
pharmacogenetic studies focusing on known or putative targets of
Li have so far provided little evidence for a major role of single
genes predisposing patients to clinically respond to Li.9

Li is also known to indirectly interfere with a large number of
molecular processes. This complexity, in conjunction with the

heterogeneity of BD and wide phenotypic response to Li,
significantly contributes to the lack of conclusive findings from
studies based on the candidate gene approach. By interrogating
the whole genome, transcriptomic analysis represents a promising
approach with great potential for untangling the molecular
underpinnings of complex phenotypes. However, high-
throughput approaches produce large complex data sets con-
tributing to the difficulty in interrogation and analysis. Therefore,
the benefit of applying whole-genome exploration approaches to
complex phenotypes is unrealized, unless a network-based
approach is used to interrogate and interpret molecular networks
and interactions.
To this aim, we applied GRANITE (Genetic Regulatory Analysis of

Networks Investigational Tool Environment), an integrative
genomic tool that provides visualization of complex data sets
and generates interactive networks. GRANITE is unique in its
attention to a data-processing pipeline for producing microRNA
(miRNA)/messenger RNA (mRNA) graphs. Discovering miRNA
networks was the proof-of-principle problem for GRANITE, and
as a result, GRANITE makes it easy to produce not just the graphs,
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but also downstream measures, such as the rank-order charts, that
are particularly useful for analyzing miRNA networks. We applied
GRANITE to genome-wide mRNA and miRNA expression data from
lymphoblasts derived from BD patients classified as excellent
responders or non-responders to Li treatment, as described
previously.10,11 Lymphoblasts were cultured with either a ther-
apeutic dose of Li (1.0 mM l− 1) or vehicle in order to highlight
genetic networks differentially influenced by the treatment in the
responder and non-responder patients. The network analysis
algorithms and visualizations implemented in GRANITE may be
instrumental in biomarker identification that potentially could aid
in predicting Li responsiveness in patients, as well as providing
insights in other similarly complex phenotypes.

INTRODUCING THE SOLUTION: AN INTEGRATIVE GENOMIC
TOOL FOR COMPLEX DATA ANALYSIS
The solution for making sense of large complex data sets is to use
an integrative genomic tool. We developed GRANITE as a software
workbench for representing, combining and interpreting biologi-
cal models, particularly network models. GRANITE allows related
models, for example, patient versus control or responder versus
non-responder, to be composed using the logical operators AND/
NOT/OR. Each unique combination of these operators results in a
distinct way to partition the set of all available relationships into
those that are part of the network and those that are not. For
instance, responder AND non-responder yields the ‘common’ or
‘intersection’ network made up of the relationships that are
common to both responder and non-responder groups. GRANITE
supports six different methods to partition a graph using these
logical operators:

1. Responder: relationships significant to the responder group;
2. Non-responder: relationships significant to the non-

responder group;
3. Responder-only: responder AND NOT non-responder;
4. Non-responder-only: NOT responder AND non-responder;
5. Common network: responder AND non-responder;
6. Union network: responder OR non-responder;

The exclusion networks, responder-only and non-responder-
only, are often the most useful because they capture relationships
that are unique to treatment responders or non-responders,
making those relationships particularly interesting research
targets.
The relevant network models are constructed by inducing a

subgraph on larger, more universal networks. For our exemplar,
GRANITE begins with the TargetScan (http://www.targetscan.org/)
Predicted Pairs network, which is a large graph database defining
predicted regulatory relationships between miRNAs and mRNAs.
The miRNAs and mRNAs are the nodes in that network, and a link
exists between a miRNA and mRNA where a regulatory relation-
ship is predicted. Note that this is a bipartite graph (miRNAs link
only to mRNAs and mRNAs link only to miRNAs). The TargetScan
graph is the superset of all the graphs we investigate, and for our
purposes, TargetScan is the source of all network links. If there is a
regulatory relationship between a miRNA and a mRNA, we assume
that TargetScan captures that relationship. Importantly, this
database is not specific to any disease or treatment. Expression
data that is disease/treatment specific is used to select the set of
nodes on which the subgraph will be induced. The graph
induction process is deterministic. If, say, we induce on the
responder mRNA expression data (responder-only), the induced
graph contains exactly the edges from the TargetScan graph that
are incident on the nodes representing mRNAs that are
significantly differentially expressed by responder cells under Li
treatment. For a complete workflow of this process that illustrates

the data inputs, please see Supplementary Figure 1, and for
additional information on GRANITE, please see Supplementary
Table 1.
For our example, data were collected from patients with bipolar

I disorder divided into responder (N= 8) and non-responder (N= 8)
groups based on their clinical response to Li. Supplementary
Figure 2 illustrates the experimental design and methods. Briefly,
two cohorts of BD patients (see Supplementary Table 2 for
demographic and clinical data)—excellent responders and non-
responders to Li treatment were chosen. All patients were
recruited through a specialty mood disorders program and
followed prospectively. Diagnostic and Statistical Manual of
Mental Disorders-IV and Research Diagnostic Criteria diagnoses
were based on all available information including Schedule for
Affective Disorders and Schizophrenia-Lifetime interviews carried
out in blind fashion and independently reviewed by a panel of
senior clinical researchers. Li response was evaluated using
prospective follow-up data and quantified using a rating scale
previously validated.5 The responders had to have a minimum of
three illness episodes before Li treatment (4.13 ± 1.55 on average)
and remained stable for an average of 12.13 ± 7.26 years of Li
monotherapy at therapeutic levels (Li plasma level of 0.6 mEq l− 1

or higher). The non-responders were treated with Li monotherapy
for a minimum of 2 years and experienced at least two episodes
while on Li monotherapy with documented compliance (Li plasma
levels of 0.6 mEq l− 1 or higher).
Blood samples from all subjects were obtained for DNA, and

Epstein–Barr virus-transformed B-lymphoblastoid cell lines (LCLs)
were prepared using standard procedures as described
previously.12,13 The transformation protocol was uniform for cells
from all subjects; these were transformed and grown in a single
passage prior to being frozen. All transformed cell lines were
stored in liquid nitrogen after Epstein–Barr virus transformation,
for each sample according to ‘LCL frozen storage’ time until the
samples were selected for the experiment, thawed and regrown
(three passages for each sample) and then processed in a
sequential fashion as described below. The patient-derived LCLs
from each of these patient groups were grown in Iscove’s
modified Dulbecco's medium supplemented with 15% fetal
bovine serum, 1% Fungizone and 1% penicillin/streptomycin/L-
glutamine (Invitrogen) in a 5% CO2 humidified incubator at 37 °C,
in the continuous presence of LiCl (1.0 mM l− 1) in the vehicle or
vehicle alone for 7 days after which cell pellets were collected and
frozen at − 80 °C. Seven days of treatment with 1 mM l− 1 Li is
considered in the literature to mimic chronic exposure and
treatment concentrations of Li in patients’ brains.14–16 Further-
more, all samples were matched for patient age and sex. Thus
samples from individual patients were chronically (7 days) treated
independently in cell culture (in triplicate experiments), as well as
for RNA and miRNA extractions. Per-individual replicates were
pooled at the high-throughput microarray (miRNA chips 3.0 and
U133-Plus 2.0 Human gene profiling mRNA arrays) level yielding
N= 8 Li-treated and N= 8 vehicle-treated independent data points
per responder and non-responder group, respectively.
The rationale for this experimental design is based on our

hypothesis that miRNA and mRNA changes in patient-derived
peripheral blood cells may have clinical utility as biomarkers for
BD. Our expectation is that comparing baseline vs Li treatment will
identify a Li-responsive miRNA–mRNA signature that could be
used clinically in the future for (a) investigating the Li-regulated
miRNA networks that are differentially expressed in responders vs
non-responders, and determining the genetic mechanisms that
may underlie these responses (that is, single-nucleotide poly-
morphisms (SNPs)); (b) predicting a naive BD patient’s response to
Li; and (c) identifying network nodes for novel drug discovery. We
anticipate that an effective biomarker will not come from simply
profiling a patient-derived cell type at baseline. A more effective
biomarker is to challenge the patient-derived cells in such a way
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that it reveals a potential endophenotype. In this case, we are
investigating the response to Li in a peripheral cell line, namely
LCL, because they are readily available, whereas neuronal cells
from live patients are difficult to acquire. LCLs are Epstein–Barr-
transformed B-cells, thus it is expected that there will be many
changes in gene expression caused by the virus and culturing.
Nonetheless, as we are comparing the biological effects of
exposure to Li in the same cell lines, most biases should be
eliminated. Future studies using patient-derived neuronal cultures
differentiated from induced pluripotent stem cells (iPSCs) should
be conducted to generate Li response networks in this more
disease-relevant cell type. However, several studies have been
successful in defining blood gene signatures associated with brain
disorder.17–20

The BD LCL expression data following this experimental design
is shown in Figure 1, which highlights both the miRNA (Figures 1a
and b) and mRNA (Figures 1c and d) data sets. Note that the
patient code designation follows R = responder and NR=non-
responder, which is then followed by age and then by F for female
and M for male. A full list of this data in a table format is also
included (Supplementary Table 3). These data highlight differen-
tially expressed miRNA and mRNA in both responders and non-
responders, but fail to provide a comprehensive network that one
can visualize to gain access to complex interactions that cannot

readily be ascertained. We employed GRANITE to visualize this
genome-wide data set, which integrated over 1000 mRNAs and
almost 300 miRNAs (see Supplementary Table 7 for relative graph
sizes) into different networks.
Three networks are visualized in Figure 2 pertaining to a

responder network (Figure 2a), a non-responder network
(Figure 2b) and a common network (Figure 2c). The visualizations
created are based on clustering the miRNAs and mRNAs based on
the number of connections (degrees). High-degree entities are
clustered near the center and are color-coded blue, whereas low-
degree entities surround the periphery and are color-coded red.
Intermediate-degree entities are in the middle and are color-
coded yellow.
The node selection criteria involve the significance of differ-

ential expression (either mRNA expression or miRNA expression)
with drug treatment verses a control. These selection criteria may
involve statistical significance, that is, Po0.05, or fold change
ratios, that is, |f|41.2, or both. Typically, for this study, selection
criteria filter only on the differential expression of one type of
node (either miRNA or mRNA). GRANITE allows more complex
filtering with multiple passes, but that has not proven critical. A
common choice is to induce a subgraph on all miRNAs, plus their
conjunction with those mRNAs whose differential expression
satisfies a Po0.05 threshold criteria. The induced subgraph is the

Responders

Responders

Non-responders

Non-responders

Li

Li Li
Li

Li Veh

Veh
Veh

VehLi Li

Figure 1. Bipolar disorder lymphoblastoid cell expression data in vehicle versus chronic lithium treatment. Affymetrix arrays (miRNA chips 3.0
for a and b; U133-Plus 2.0 Human gene profiling messenger RNA (mRNA) arrays for c and d) are shown depicting microRNAs (miRNAs) or
mRNAs differentially expressed between lithium vs vehicle in responders (a and c) and non-responders (b and d) and then subject to
hierarchical clustering. Significantly regulated miRNAs (determined by meeting these criteria ± 1.5-fold regulation and unadjusted P-value
o0.05) are shown for both groups (a and b). Note that in the responder group (a) when R31F-lithium (orange) is placed in a separate group, it
then clusters with responder vehicle group rather than responder lithium group. Also, in the non-responder group (b) when 18M_veh (purple)
is placed in the outlier group, it clusters with the non-responder lithium group. Also note the increased heterogeneity in the non-responder
group where the vehicle group shows two sets of clusters. Significantly regulated mRNAs (determined by meeting these criteria ± 1.2-fold
regulation and unadjusted P-value o0.05) are shown for both groups (c and d). Note that in the responder group (c) when R39F-lithium and
45M_lithium (red) are placed in a separate group, they cluster with responder vehicle treatment. Also, in the non-responder group (d)
10F_Veh (gray) shows abnormal hybridization and is placed in a new group. This greatly enhances clustering in non-responder groups (lithium
vs vehicle). There are fewer genes that pass the same significance/fold filter in the non-responder group (d) compared with the responder
group (c). These results illustrate a greater heterogeneity in the non-responder group than the responder group, and this may be indicative of
an intrinsic lithium influence on transcriptional targets in the responder group.
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selected (unfiltered) subset of the nodes of the network together
with any links from the universal network, whose end points are
both contained in this subset. This gives a gene regulatory
network that is disease/treatment specific, and which is also a
subgraph of the universal network. GRANITE drops nodes of zero
degree (spurious/no connections) in the induced subgraph.
Network models are induced in this way for both the responder
group and the non-responder group, and then analysis is
performed on the partitions defined above through graph
visualization and graph measures.
Although graph induction is deterministic, graph visualization is

not. Graph layout is the most critical aspect of graph visualization,
and layout algorithms tend to be heuristic and incremental. They
are also computationally expressive, and so typically the heuristic
runs for as long as we can afford to run, and then the layout stops
although further improvements in the layout would be possible.
Owing to the complexity of large graphs, visual cues are often the
most important analytics available. Although there have been
advances in the layout of large graphs in recent years, most of that
work has focused on power-law graphs where there are many
low-degree (low connectivity) nodes and only a few highly
connected nodes. The miRNA graphs do not satisfy this
description. They tend to be very dense graphs with many high-
degree nodes and relatively few low-degree nodes. In fact, the
low-degree nodes in miRNA graphs are of special interest. Further,
clustering in bipartite graphs usually has a different interpretation
than in general graphs, and these differences parallel the
difference between a complete bipartite graph and a complete
general graph. In general graphs, nodes in a cluster tend to link to
one another forming cliques (complete general graphs that are
subgraphs of the main graph). In a bipartite graph, nodes in the
same set are forbidden to connect to one another. So clustering is
more often decided by topology; two nodes in one set that link to
the same nodes in the other set are usually considered to be in the
same cluster (complete bipartite graphs that are subgraphs of the
main graph). Although GRANITE supports a number of network

layout algorithms, we have found the Fruchterman–Reingold
algorithm,21 a force-directed layout algorithm, which dates from
1991, to be the most useful for miRNA graphs. Because the
Fruchterman–Reingold algorithm minimizes link crossings, it tends
to place nodes with similar topology together on the display,
nodes with high connectivity at the center of the display and
nodes with low connectivity at the perimeter. This yields a
visualization pattern where similarly connected miRNAs, that is, in
regulatory relationships with the same mRNAs, are usually placed
very near to one another and vice versa. Clusters of miRNAs that
form in these displays are likely to have similar biological function.
Usually their underlying sequences are similar, but sometimes not.
In any case, proximity and other such visual cues are important to
establishing biological insight, and often we have found it useful
to apply different layout algorithms—usually other force-directed
algorithms—to the same graph, because each layout algorithm
leads to different kinds of visual cues. We have also found
chromaticity extremely useful in visualization. We use this arcane
term to distinguish what we are doing from graph coloring, which
has a very specific and mathematically precise meaning that is
orthogonal to our purposes. We choose a drawing color for each
node based on the degree (number of incident edges). Say we
choose blue for high-degree nodes and red for low-degree nodes.
We then draw each link in the color that is a blend of the two
colors of the nodes it connects. In a network with hundreds of
thousands of links, we can, for example, identify at a glance links
that connect low-degree nodes, or low-degree nodes to high-
degree nodes, high-degree nodes to high-degree nodes
and so on.
We also use degree-based graph measures to gain insight into

these networks. Again, the complexity of these networks can be
daunting. But the low-degree (low connectivity) and high-degree
nodes are of particular interest, although for different reasons. The
high-degree nodes are important because they contribute to the
regulation of many functions, whereas the low-degree nodes are

Let-7 family

Figure 2. MicroRNA (miRNA)–messenger RNA (mRNA) network visualization. Depicted are three miRNA–mRNA networks generated by
GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) using an mRNA filter (41.2-fold regulation), where
target scan is used to predict miRNAs that are targeted by lithium-regulated mRNAs taken from the arrays. Each dot represents either a miRNA
(in blue) or mRNA (in yellow or red) node. The blue core represents high edge density miRNA nodes and the outer mantel clusters represent
relatively lower-density nodes, with the red ones representing the lowest density. The responder (a) network shows the greatest gulf between
the blue core and the mantle of visualization due to the high degree of miRNAs contained at the core, with many having over 500
connections. The non-responder (b) network has a less-pronounced core that may be due to more sample heterogeneity. There is a cluster of
miRNAs in the Let-7 family as shown. The common (c) network was generated to identify common lithium networks that are conserved
between responders and non-responders.
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important as the functions they affect may be the easiest to
control and around which to build hypotheses/experiments.
From this analysis, there are many options on how one might

proceed to interrogate the networks. We chose to focus on the
high-degree miRNAs (Table 1). These are miRNAs with the most
connections, which potentially have the most predominant global
control of the network. Our strategy focuses on identifying these
critical high-degree nodes, which are either common to both
groups or different. The common nodes may reflect pathways that
Li activates in BD patients that do not readily translate into
therapeutic benefits, whereas the unique nodes may reflect
pathways that are preferentially activated in responders, leading
to a clinical response.
We also took another approach by focusing on a miRNA family

that was implicated in our data set to be preferentially regulated
by Li, the Let-7 family (Supplementary Table 8). The Let-7 family
was consistently downregulated by Li in both groups, although
preferentially more family members (11 versus only 6 in the non-
responder group) were downregulated by Li in the responder
group (Supplementary Table 8). The Let-7 family could represent a
novel target for Li response, although further investigation is
warranted. For instance, one could overlay responder and non-
responder SNP data and determine whether there are Let-7
targets where these SNPs alter miRNA-binding sites. Figure 3
depicts genes controlled by Let-7 that may be implicated in the Li
response. Interestingly, let-7e expression was found upregulated
in schizophrenia patient dorsal lateral prefrontal cortex and
temporal lobe epilepsy.22,23 Let-7f is upregulated in newborn
brains following maternal stress.24

In addition, microRNA let-7 is elevated in the cerebrospinal fluid
from patients with Alzheimer’s disease, and has an unconven-
tional role to cause neurodegeneration by activating Toll-like
receptor 7.25 In addition, Let-7c was reported to suppress the
expression of the major anti-apoptotic protein Bcl-xl.26 The Let-7
family has also been suggested to have effects on synaptic
development and function,27 and its expression in the brain is
regulated by sleep deprivation.28 Finally, let-7 miR expression is
suppressed by the Wnt-β-catenin signaling pathway,29 thus being

consistent with a role in conferring the responsiveness to Li
treatment.
We also performed quantitative reverse transcription (qRT)-PCR

validation on a subset of Li-downregulated mRNAs in the
responder group (Supplementary Table 9). These genes include
THRAP3, CDC27, TRP, TFAM and LARS. Although there was a trend
for all the qRT-PCR data to confirm the array data, only THRAP3
and TFAM were nominally significant (paired T-test).
Finally, we computed a list of miRNAs for responders and non-

responders based on the normalized weighted difference
(Table 2). A glance at the degree rank tables (Table 1) reveals
that the highest ranked responder miRNAs are also the highest
ranked non-responder miRNAs. In fact, 18 miRNAs are common to
both of the top 20 rank tables, and in both cases, the two miRNAs
that are not present in the other table just barely missed the
cutoff. To make sense of the degree rank information, we
developed a measure of difference between responder and non-
responder for each miRNA. That measure is computed in four
steps: first, the degree of each miRNA in each graph is normalized.
We call this the ‘normalized weight’. So if a miRNA is an end point
of 0.40% of all graph edges in the responder graph, its normalized
weight for that graph will be 0.0040. It will have a different
normalized weight for the non-responder graph. Second, the
magnitude of the difference in normalized weight between the
responder and non-responder graph is computed. This is the
‘normalized difference’. So if a miRNA has a normalized weight of
0.0040 in the responder graph and 0.0038 in the non-responder
graph, the normalized difference for this miRNA is 0.0002. As this
is treated as a difference measure, its absolute value is used. Third,
the mean (9.38E− 5) and s.d. (6.11E− 5) of the normalized
differences for all miRNAs in the study are computed. Finally, a
z-score is computed for each miRNA based on its normalized
difference, and the mean and s.d. computed from step 3. So if the
normalized difference for a miRNA is 0.0002, its z-score is (2E− 4–
9.38E− 5)/6.11E− 5 or 1.74. The normalized weights computed in
step 1 constitute discrete nominal probability distributions. Tests
do not indicate significant differences between the responder and
non-responder distributions. This is consistent with the similarities
in the degree rank tables. Instead, we expect the differences to be
limited to a few miRNAs that become the targets of further
investigation. Those miRNAs will have z-scores of high magnitude.
For 95% confidence, |z|41.96. The miRNAs satisfying these criteria
are presented in Table 2.
We also performed pathway analysis of the targets of these

miRNAs to understand their functional role. For this analysis, the
targets of the miRNAs were obtained from miRWalk database30

and run through QIAGEN’s Ingenuity Pathway Analysis (IPA,
QIAGEN Redwood City, www.qiagen.com/ingenuity) core analysis
scheme, using the default parameters specific to human species.
The top three enriched pathways for each of these miRNAs target
genes along with their –log(P-value) are presented in Table 2.
Some interesting candidate-enriched pathways for further inves-
tigation into Li’s beneficial effects include (a) semaphorin signaling
in neurons, (b) sonic hedgehog signaling, (c) agrin interactions at
neuromuscular junction and (d) serotonin signaling. Interestingly,
one of Li’s known targets, GSK-3, has been implicated in
modulating semaphorin signaling to influence cortical neuron
migration and dendritic orientation,31 whereas knockouts of GSK-3
resulted in hyperproliferation of neural progenitors and resulting
dysregulation of beta-catenin, sonic hedgehog, notch and
fibroblast growth factor signaling.32 Although additional investi-
gation is warranted, perhaps some of these GSK-3-mediated
pathways including semaphorin or sonic hedgehog signaling may
also be mediated by Li-regulated miRNAs listed in Table 2 to
promote neuronal migration, dendritic orientation and neurogen-
esis. Overall, this methodology enables one to identify potentially
critical miRNAs and associated pathways that are different

Table 1. High-degree miRNAs with global control

miRNA (responders) Degree miRNA (non-responders) Degree

1935 genes total 1075 genes total

hsa-miR-214-3p 1494 hsa-miR-186-5p 805
hsa-miR-3619-5p 1494 hsa-miR-590-3p 805
hsa-miR-761 1493 hsa-miR-214-3p 801
hsa-miR-590-3p 1467 hsa-miR-3619-5p 801
hsa-miR-539-Sp 1445 hsa-miR-761 801
hsa-miR-186-5p 1440 hsa-miR-185-5p 794
hsa-miR-326 1430 hsa-miR-4306 794
hsa-miR-330-5p 1430 hsa-miR-4644 794
hsa-miR-495-3p 1423 hsa-miR-873-5p 793
hsa-miR-185-Sp 1421 hsa-miR-129-5p 777
hsa-miR-4306 1421 hsa-miR-491-5p 775
hsa-miR-4644 1421 hsa-miR-150-5p 774
hsa-miR-873-Sp 1412 hsa-miR-326 763
hsa-miR-494 1404 hsa-miR-330-5p 763
hsa-miR-129-Sp 1398 hsa-miR-495-3p 763
hsa-miR-150-5p 1383 hsa-miR-544a 763
hsa-miR-128 1379 hsa-miR-128 762
hsa-miR-485-Sp 1371 hsa-miR-539-5p 762
hsa-miR-371a-5p 1360 hsa-miR-494 762
hsa-miR-203a 1356 hsa-miR-485-5p 758

Abbreviations: mRNA, messenger RNA; miRNA, microRNA. Depicted is a
list of high-degree miRNAs for both responders and non-responders that
have the potential to exert control over many lithium-regulated mRNA
transcripts.
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between the responder and non-responder groups, which may be
useful for interrogating treatment response.
There are several limitations that should be addressed properly

with our current study. As regards to the fold change differences,
we can explain this as follows. First, the Li concentration used in
this experiment is chosen to mimic clinical treatment levels and
thus is not expected to induce marked changes in cell function
responses, but rather fine-tuning of the system. Other studies
focusing on Li toxicity have used higher levels, and achieved
higher fold changes, but these conditions would be toxic in
patients33 or would lead to severe side effects and thus not be
tolerated.33,34 Second, the lower fold changes are a limitation of
the hybridization probe design of microarrays and the intrinsic
aspect of background noise. Likely, future studies using RNAseq
will be able to achieve somewhat higher fold changes, although
not markedly increased given the first reason mentioned.

CURRENT AND FUTURE APPLICATIONS TO INTERROGATE
STATIC AND DYNAMIC DATA SETS
The current application of GRANITE is to integrate genome-wide
miRNA and mRNA data sets following Li treatment. This
application compares vehicle treatment (baseline) versus chronic
Li treatment. More dynamic states are possible. For instance,
GRANITE could be used to develop interactive networks for acute
versus chronic treatment (for example, 0-, 1-, 3-, 7-, 14-, 21- and
28-day treatments) or also across different doses (for example,
sub-therapeutic, therapeutic and toxic). Moving forward, we
envision assembling a database for investigators to upload their
data sets to create and share their interactive networks to gain
insight into complex, large data sets.
With larger data sets, this tool may provide a foundation for

clinicians to predict whether their patients will respond to certain
medications. We envision in future applications, that with larger
data sets, this tool could allow clinicians to predict Li response by
simply genotyping their patients. The genotypes would then be
coded for SNPs that either interfere or enhance miRNA-binding
sites within nodes that are known to be correlated with either Li
response or non-response. In this way, an algorithm could be used
to calculate the likelihood that a patient would respond to Li.
Further, this model could be transplanted to other phenotypically

complex and heterogeneous disease processes, thus yielding
predictions of most any response, and thereby revolutionizing the
field of psychiatry and moving it towards personalized medicine.
This tool could also be used by industry to develop novel

medications or repurpose existing Food and Drug Administration-
approved medications in a more cost effective and efficient
manner. In particular, with the advent of iPSCs-based technolo-
gies, disease-relevant cell types could be used for patients to
construct interactive networks for safety and efficacy studies that
could be used to find a correct drug dose, avoid toxicity and select
for patients who have the highest probability of responding to a
current new therapy.
In advancing towards personalized medicine, Supplementary

Figure 3 illustrates three representative Li networks derived from
the top 20 Li-regulated miRNAs in responders, non-responders
and common networks. The responder (A) and non-responder (B)
networks are generated using a different force-directed graph
layout algorithm, which organizes the heaviest or highest-degree
items and separates them from the lower-degree items (blue
nodes are mRNAs; red nodes are miRNAs). In both responder and
non-responder networks, we find has-miR-491-5p to be the right
red node and has-miR-544a to be the left red node. This analysis
suggests that there may not be overwhelming differences in the
high-degree miRNA networks between Li responders and non-
responders. Rather, differences may be more apparent with low-
degree miRNA networks. Nevertheless, we have created a
visualization tool that enables one to interrogate these networks
in new ways. One could imagine using a personalized medicine
approach where each patient could have a ‘drug’ response
network made that would be created based on a patient-specific
cellular response to a given medication. This analysis could be
applied toward prescribing a more efficacious dose initially to the
patient. With further data sets and combining a patient’s genomic
data, we envision that correlations can be made that will allow
clinicians to predict treatment response with improved
confidence.

SUMMARY AND CONCLUSIONS
In summary, we have developed an integrative genomic systems
biology-based tool, GRANITE, which can effectively analyze large

All let-7 miRNAs show
exactly the same
connectivity (let-7c is
used here as a
distinguished
representative). 

This gulf is an area where the high-
degree miRNAs are displayed. Since
the miRNAs connect only to genes,
we expect this to be empty in this graph.

The blue genes are high-
degree genes; genes that
connect to genes involved in
regulatory relationships with
many miRNAs. Possibly
important, but hard to isolate.

The red genes are low-
degree genes; genes
that meet the selection
criteria but are only
weakly connected by a
few miRNAs. They
might be easier to
isolate and their
functions might be less
robust (because they
are controlled by fewer
miRNAs, and therefore
better targets).

Figure 3. Genes controlled by Let-7. Depicted is an illustration of genes that have microRNA (miRNA)-binding sites to be regulated by Let-7 in
the non-responder (NR) GRANITE network.
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complex data sets to generate interactive networks. This tool is
open source and is available for use and collaboration (the link to
the code is: http://exon.niaid.nih.gov/granite/). As a proof-of-
concept study, we used GRANITE to interrogate Li response in BD

by measuring a large data set of mRNAs and miRNAs, and found
that the Let-7 miRNA family was consistently and preferentially
downregulated by Li in the BD responder group. We anticipate
that the dynamic networks created by GRANITE will lead to a more

Table 2. Normalized weighted miRNA list

miRNA name Normalized weight
responders

Normalized weight
non-responders

Normalized
difference

(z-score) Enriched pathways − log
(P-value)

hsa-miR-551a 0.0017 0.00141 0.000282 3.08 CXCR4 signaling
Semaphorin signaling in neurons
Agrin interactions at the
neuromuscular junction

2.03E+00
2.01E+00
1.80E+00

hsa-miR-551b-3p 0.0017 0.00141 0.000282 3.08 Agrin interactions at the
neuromuscular junction
ErbB signaling
Renin–angiotensin signaling

2.83E+00
2.62E+00
2.42E+00

hsa-miR-326 0.00457 0.00434 0.000231 2.25 α-Adrenergic signaling
IL-1 signaling
Gαs signaling

2.70E+00
2.62E+00
2.41E+00

hsa-miR-330-5p 0.00457 0.00434 0.000231 2.25 Role of Oct4 in mammalian
embryonic stem cell pluripotency
p70S6K signaling
AMPK signaling

2.92E+00
2.10E+00
2.00E+00

hsa-miR-216b 0.00358 0.00381 0.000229 2.21 Extrinsic prothrombin activation
pathway
Coagulation system
Semaphorin signaling in neurons

2.92E+00
2.25E+00
1.91E+00

hsa-miR-1 0.00355 0.00377 0.000222 2.09 Flavin biosynthesis IV (mammalian)
Role of IL-17F in allergic inflammatory
airway diseases
TREM1 signaling

2.25E+00
2.23E+00
1.79E+00

hsa-miR-206 0.00355 0.00377 0.000222 2.09 Gαi signaling
Serotonin receptor signaling
G-protein-coupled receptor signaling

2.17E+00
2.07E+00
2.04E+00

hsa-miR-613 0.00355 0.00377 0.000222 2.09 Xenobiotic metabolism signaling
Hepatic cholestasis
CDK5 signaling

2.79E+00
2.72E+00
2.37E+00

hsa-miR-15a-5p 0.00435 0.00413 0.00022 2.07 Sonic hedgehog signaling
Pyridoxal 5'-phosphate salvage
pathway
Salvage pathways of pyrimidine
ribonucleotides

1.53E+00
1.20E+00
1.04E+00

hsa-miR-15b-5p 0.00435 0.00413 0.00022 2.07 Sonic hedgehog signaling
Pyridoxal 5'-phosphate salvage
pathway
Salvage pathways of pyrimidine
ribonucleotides

1.53E+00
1.20E+00
1.04E+00

hsa-miR-16-5p 0.00435 0.00413 0.00022 2.07 Sonic hedgehog signaling
Pyridoxal 5'-phosphate salvage
pathway
Salvage pathways of pyrimidine
ribonucleotides

1.53E+00
1.20E+00
1.04E+00

hsa-miR-195-5p 0.00435 0.00413 0.00022 2.07 Sonic hedgehog signaling
Pyridoxal 5'-phosphate salvage
pathway
Salvage pathways of pyrimidine
ribonucleotides

1.53E+00
1.20E+00
1.04E+00

hsa-miR-424-5p 0.00435 0.00413 0.00022 2.07 L-carnitine biosynthesis
Sucrose degradation V (mammalian)
Calcium transport I

2.48E+00
2.06E+00
2.01E+00

hsa-miR-497-5p 0.00435 0.00413 0.00022 2.07 Phospholipase C signaling
Complement system
Inhibition of matrix metalloproteases

1.63E+00
1.49E+00
1.41E+00

hsa-miR-384 0.00388 0.0041 0.000218 2.03 Lysine degradation II
Leukocyte extravasation signaling
Pathogenesis of multiple sclerosis

1.80E+00
1.63E+00
1.55E+00

hsa-miR-448 0.00325 0.00346 0.000215 1.98 nNOS signaling in neurons
Glutathione biosynthesis
Ephrin A signaling

2.06E+00
2.04E+00
2.03E+00

Abbreviation: miRNA, microRNA. Shown is a normalized weighted list of miRNAs for the responder and non-responder groups along with computed z-scores.
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effective and reliable tool for clinical use in predicting patients’
response to medications, and will assist the industry in reducing
costs and time during the drug development process.
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