29 research outputs found

    High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa).

    Get PDF
    CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 (9-cis-EPOXYCAROTENOID DIOXYGENASE4), a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4, were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T1) and 368 T2 plants by deep amplicon sequencing revealed that 57% of T1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T1 and more than 100 T2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature

    A novel and rapid method for Agrobacterium-mediated production of stably transformed Cannabis sativa L. plants

    Full text link
    [EN] The development of genetically transformed plants is an elusive landmark in Cannabis sativa L. breeding. Despite its economic interest, at present, protocols for producing transgenic C. sativa plants are scarce. We studied the ability of hypocotyl, cotyledon and meristem explants from six C. sativa hemp varieties for transgenic plant regeneration. For this, we firstly evaluated in vitro regeneration rates of hypocotyls cultured in medium without plant growth regulators, and cotyledons cultured in medium supplemented with 0.4 mg L- 1 of thidiazuron (TDZ) and 0.2 mg L- 1 of ¿-naphthaleneacetic (NAA). Subsequently, the effect of different kanamycin concentrations (50, 100, 200, 500 and 750 mg L- 1) on hypocotyl regeneration rate was determined. Finally, we assessed transformation rates after hypocotyl, cotyledon and meristem co-culture with Agrobacterium tumefaciens strain LBA4404 carrying the binary plasmid pBIN19 containing the ß-glucuronidase (uidA) reporter gene and the kanamycin resistance neomycin phosphotransferase (nptII) genes. Plant transformation was validated through in vitro culture of regenerating shoots in kanamycin-containing selective regeneration medium, by GUS histochemical assay for uidA expression, and by PCR amplification of uidA and nptII genes. Our results showed that hypocotyls reached a higher regeneration rate (53.3 %) than cotyledons (18.1 %) without Agrobacterium coculture. On the other hand, 100 mg L- 1 kanamycin proved to be the best concentration in terms of regeneration rate (63.3 %) and spontaneous rooting rate of hypocotyl regenerating shoots (12.2 %), which displayed a 7.1 % of albinism rate. After co-culture with A. tumefaciens and subsequent culture in antibiotic-containing selective regeneration medium, hypocotyl was the best explant type achieving 23.1 % of regeneration rate, which contrasts with the 1.0 % regeneration rate detected for cotyledons. Transgenic plants were obtained from all explant types evaluated. Although there were significant differences among varieties evaluated, hypocotyls proved to be superior to already-developed meristems, reaching a transformation rate of 5.0 % and 0.8 % respectively. Despite the extremely low regeneration rate of cotyledons after A. tumefaciens co-culture, all cotyledon-derived regenerating shoots analyzed were successfully transformed. Our hormone-free protocol doubles the transformation rate of regenerating shoots, also producing transgenic plants three times faster than other already published protocols. This has relevant implications for C. sativa breeding, enabling not only genetic transformation, but also the use of new plant breeding techniques such as targeted genome editing by using CRISPR/Cas systems. This may foster the development of C. sativa varieties with specific biochemical profiles, or tolerant to biotic and abiotic stresses among others.The authors received no specific funding for this work. Pietro Gramazio is grateful to Japan Society for the Promotion of Science (JSPS) for a post-doctoral grant (P19105, FY2019 [Standard])Galán-Ávila, A.; Gramazio, P.; Ron, M.; Prohens Tomás, J.; Herraiz García, FJ. (2021). A novel and rapid method for Agrobacterium-mediated production of stably transformed Cannabis sativa L. plants. Industrial Crops and Products. 170:1-15. https://doi.org/10.1016/j.indcrop.2021.113691S11517

    A dual sgRNA approach for functional genomics in Arabidopsis thaliana

    Get PDF
    Reverse genetics uses loss-of-function alleles to interrogate gene function. The advent of CRISPR/Cas9-based gene editing now allows the generation of knock-out alleles for any gene and entire gene families. Even in the model plant Arabidopsis thaliana, gene editing is welcomed as T-DNA insertion lines do not always generate null alleles. Here, we show efficient generation of heritable mutations in Arabidopsis using CRISPR/Cas9 with a workload similar to generating overexpression lines. We obtain for several different genes Cas9 null-segregants with bi-allelic mutations in the T2 generation. While somatic mutations were predominantly generated by the canonical non-homologous end joining (cNHEJ) pathway, we observed inherited mutations that were the result of synthesis-dependent microhomology-mediated end joining (SD-MMEJ), a repair pathway linked to polymerase theta (PolQ). We also demonstrate that our workflow is compatible with a dual sgRNA approach in which a gene is targeted by two sgRNAs simultaneously. This paired nuclease method results in more reliable loss-of-function alleles that lack a large essential part of the gene. The ease of the CRISPR/Cas9 workflow should help in the eventual generation of true null alleles of every gene in the Arabidopsis genome, which will advance both basic and applied plant research

    The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis

    Get PDF
    Most living organisms developed systems to efficiently time environmental changes. The plant-clock acts in coordination with external signals to generate output responses determining seasonal growth and flowering time. Here, we show that two Arabidopsis thaliana transcription factors, FAR1 RELATED SEQUENCE 7 (FRS7) and FRS12, act as negative regulators of these processes. These proteins accumulate particularly in short-day conditions and interact to form a complex. Loss-of-function of FRS7 and FRS12 results in early flowering plants with overly elongated hypocotyls mainly in short days. We demonstrate by molecular analysis that FRS7 and FRS12 affect these developmental processes in part by binding to the promoters and repressing the expression of GIGANTEA and PHYTOCHROME INTERACTING FACTOR 4 as well as several of their downstream signalling targets. Our data reveal a molecular machinery that controls the photoperiodic regulation of flowering and growth and offer insight into how plants adapt to seasonal changes

    Transcriptional Regulation of Arabidopsis Polycomb Repressive Complex 2 Coordinates Cell Type Proliferation and Differentiation

    Get PDF
    Spatiotemporal regulation of transcription is fine-tuned at multiple levels, including chromatin compaction. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of Histone 3 at lysine 27 (H3K27me3), which is the hallmark of a repressive chromatin state. Multiple PRC2 complexes have been reported in Arabidopsis thaliana to control the expression of genes involved in developmental transitions and maintenance of organ identity. Here, we show that PRC2 member genes display complex spatiotemporal gene expression patterns and function in root meristem and vascular cell proliferation and specification. Furthermore, PRC2 gene expression patterns correspond with vascular and non-vascular tissue-specific H3K27me3-marked genes. This tissue-specific repression via H3K27me3 regulates the balance between cell proliferation and differentiation. Using enhanced yeast-one-hybrid analysis, upstream regulators of the PRC2 member genes are identified, and genetic analysis demonstrates that transcriptional regulation of some PRC2 genes plays an important role in determining PRC2 spatiotemporal activity within a developing organ

    The Receptor for the Fungal Elicitor Ethylene-Inducing Xylanase Is a Member of a Resistance-Like Gene Family in Tomato

    No full text
    An ethylene-inducing xylanase (EIX) is a potent elicitor of plant defense responses in specific cultivars of tobacco (Nicotiana tabacum) and tomato (Lycopersicon esculentum). The LeEix locus in tomatoes was characterized by map-based cloning, which led to the identification of a novel gene cluster from which two members (LeEix1 and LeEix2) were isolated. Similar to the tomato Ve resistance genes in tomato plants, the deduced amino acid sequences encoded by LeEix1 and LeEix2 contain a Leu zipper, an extracellular Leu-rich repeat domain with glycosylation signals, a transmembrane domain, and a C-terminal domain with a mammalian endocytosis signal. Silencing expression of the LeEix genes prevented the binding of EIX to cells of an EIX-responsive plant and thus inhibited the hypersensitive response. Overexpression of either LeEix1 or LeEix2 genes in EIX-nonresponsive tobacco plants enabled the binding of EIX, although only LeEix2 could transmit the signal that induced the hypersensitive response. Overexpressing LeEix2 in mammalian COS-7 cells enables binding of EIX, indicating physical interaction between the EIX elicitor and LeEix2 gene product. Structural analysis of the LeEix proteins suggests that they belong to a class of cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Mutating the endocytosis signal in LeEix2 (Tyr 993 to Ala) abolished its ability to induce the hypersensitive response, suggesting that endocytosis plays a key role in the signal transduction pathway

    Truncation of a Protein Disulfide Isomerase, PDIL2-1, Delays Embryo Sac Maturation and Disrupts Pollen Tube Guidance in Arabidopsis thaliana[W]

    No full text
    Pollen tubes must navigate through different female tissues to deliver sperm to the embryo sac for fertilization. Protein disulfide isomerases play important roles in the maturation of secreted or plasma membrane proteins. Here, we show that certain T-DNA insertions in Arabidopsis thaliana PDIL2-1, a protein disulfide isomerase (PDI), have reduced seed set, due to delays in embryo sac maturation. Reciprocal crosses indicate that these mutations acted sporophytically, and aniline blue staining and scanning electron microscopy showed that funicular and micropylar pollen tube guidance were disrupted. A PDIL2-1-yellow fluorescent protein fusion was mainly localized in the endoplasmic reticulum and was expressed in all tissues examined. In ovules, expression in integument tissues was much higher in the micropylar region in later developmental stages, but there was no expression in embryo sacs. We show that reduced seed set occurred when another copy of full-length PDIL2-1 or when enzymatically active truncated versions were expressed, but not when an enzymatically inactive version was expressed, indicating that these T-DNA insertion lines are gain-of-function mutants. Our results suggest that these truncated versions of PDIL2-1 function in sporophytic tissues to affect ovule structure and impede embryo sac development, thereby disrupting pollen tube guidance
    corecore