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ABSTRACT 32 
Spatiotemporal regulation of transcription is fine-tuned at multiple levels, including 33 
chromatin compaction. Polycomb Repressive Complex 2 (PRC2) catalyzes the 34 
trimethylation of Histone 3 at lysine 27 (H3K27me3), which is the hallmark of a repressive 35 
chromatin state. Multiple PRC2 complexes have been reported in Arabidopsis thaliana to 36 
control the expression of genes involved in developmental transitions and maintenance of 37 
organ identity. Here, we show that PRC2 member genes display complex spatiotemporal 38 
gene expression patterns and function in root meristem and vascular cell proliferation and 39 
specification. Furthermore, PRC2 gene expression patterns correspond with vascular and 40 
non-vascular tissue-specific H3K27me3-marked genes. This tissue-specific repression via 41 
H3K27me3 regulates the balance between cell proliferation and differentiation. Using 42 
enhanced yeast-one-hybrid analysis, upstream regulators of the PRC2 member genes are 43 
identified, and genetic analysis demonstrates that transcriptional regulation of some PRC2 44 
genes plays an important role in determining PRC2 spatiotemporal activity within a 45 
developing organ. 46 47 
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INTRODUCTION  48 
The formation of new organs involves transcriptional reprogramming of pluripotent stem 49 
cells in order to give rise to different cell types. This temporal and spatial regulation of 50 
gene expression are regulated at multiple levels, including chromatin compaction via 51 
histone post-translational modifications, a general mechanism by which promoter 52 
accessibility is regulated to enable interaction with transcription factors and RNA 53 
polymerase machinery. Despite the extensive chromatin modification data generated in 54 
recent years, few studies have evaluated the transcriptional regulation of chromatin 55 
modifiers themselves. Polycomb Repressive Complex 2 (PRC2) catalyzes the 56 
trimethylation of Histone 3 protein at the lysine 27 position (H3K27me3), the hallmark of a 57 
silent chromatin state that is correlated with gene repression and its maintenance across 58 
cell division.  59 
PRC2 structure is highly conserved, with four core sub-units conventionally named after 60 
their homologs in Drosophila, including an Enhancer of zeste (E(z)) catalytic SET domain-61 
containing protein, an Extra sex combs (Esc) protein, a nucleosome remodeling factor 62 
WD40-containing protein (Nurf55), and a Supressor of zeste 12 zinc finger protein in a 63 
stoichiometric ratio of 1:1:1:1 (Ciferri et al., 2012). However, the number of genes that 64 
encode each sub-unit varies between species (Mozgová and Hennig, 2015). The 65 
Drosophila genome has been described as containing a single gene for each subunit, 66 
which consequently constitute a single complex.  However, two copies of the Extra sex 67 
combs gene, ESC and ESCL, have been reported (Ohno et al., 2008). In mouse and 68 
human there are two copies of the E(z) gene – EZH1 and EZH2 (Ciferri et al., 2012; 69 
Margueron et al., 2008). In addition, distinct isoforms of Esc have been reported in human 70 
(Mozgová and Hennig, 2015; Kuzmichev et al., 2005). The Arabidopsis thaliana genome 71 
encodes three homologous genes for the E(z) methyltransferase subunit, MEDEA (MEA), 72 
CURLY LEAF (CLF) and SWINGER (SWN), one for Esc, FERTILIZATION 73 
INDEPENDENT ENDOSPERM (FIE), five WD40-containing protein genes, MULTICOPY 74 
SUPRESSOR OF IRA1-5 (MSI1–5), and three Su(z)12, FERTILIZATION INDEPENDENT 75 
SEED2 (FIS2), EMBRYONIC FLOWER2 (EMF2) and VERNALIZATION2 (VRN2).  76 
Together, these subunits have been reported to form three PRC2 complexes, with the 77 
methyltransferases acting partially redundantly (Ohno et al., 2008; Chanvivattana et al., 78 
2004; Bemer and Grossniklaus, 2012). Several thousand genes are regulated by PRC2, 79 
and distinct complexes have been reported to regulate the expression of genes involved in 80 
developmental transitions (Bouyer et al., 2011; Zhang et al., 2007a). The FIS2 complex 81 
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comprises FIS2, FIE, MEA, and MSI1 and functions in the female gametophyte and 82 
endosperm to repress PHERES (Köhler et al., 2005). The expression of key regulators of 83 
the vegetative-to-reproductive transition, such as LEAFY and AGAMOUS, are regulated by 84 
the EMF2 complex (EMF2, FIE, CLF or SWN and MSI1) (Kinoshita et al., 2001). A third 85 
complex (VRN2), which comprises VRN2, FIE, CLF or SWN and MSI1, represses 86 
FLOWERING LOCUS C to accelerate flowering in response to cold (De Lucia et al., 2008).  87 
The regulatory mechanisms that determine which of these complexes are able to act at 88 
these specific developmental transitions are unclear. Here, we describe spatiotemporal 89 
transcriptional regulation of PRC2 genes in the Arabidopsis root and characterize their 90 
function in cellular patterning, proliferation and differentiation. The Arabidopsis root has a 91 
simple structural and functional organization consisting of concentric cylinders of cell 92 
layers with radial symmetry. Briefly, root growth and development rely on the continuous 93 
activity of the apical meristem, where multipotent stem cells surround a small population of 94 
centrally located organizing cells, the quiescent center (Scheres, 2007; Terpstra and 95 
Heidstra, 2009). Owing to a stereotypical division pattern, stem cells, depending on their 96 
position, give rise to different cell files in which the spatial relationship of cells in a file 97 
reflects their age and differentiation status (Benfey and scheres, 2000; Dolan et al., 1993). 98 
The epidermis is present on the outside and surrounds the cortex, endodermis and 99 
pericycle layers. The internal vascular cylinder consists of xylem, phloem and procambium 100 
tissues.  101 
Here we demonstrate that PRC2 controls root meristem development and regulates 102 
vascular cell proliferation in the maturation zone. Distinct suites of genes are marked by 103 
H3K27me3 in vascular and non-vascular cells to regulate the balance between cellular 104 
proliferation and differentiation. Dozens of transcription factors bind to the promoters of 105 
genes that encode PRC2 subunits and regulate their expression in Arabidopsis. Together, 106 
this multilayered regulatory network provides key insights into the varied means by which 107 
gene expression is regulated to ensure appropriate morphogenesis and functioning of a 108 
plant organ. 109 
RESULTS 110 
PRC2 subunits show regulated transcript and protein abundance in the Arabidopsis 111 
root 112 
A variety of PRC2 complexes act at distinct developmental transitions during the 113 
Arabidopsis life cycle (Kinoshita et al., 2001; Chanvivattana et al., 2004).  Spatial and 114 
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temporal gene expression data in the Arabidopsis root (Supplemental Figure 1) suggest 115 
that transcriptional regulation may be an important component in determining the presence 116 
of specific PRC2 genes in different cell types.  SWN, EMF2 and VRN2 proteins have 117 
previously been reported in the root meristem and in root hairs (Ikeuchi et al., 2015). To 118 
further validate the spatiotemporal expression pattern of PRC2 subunits, we generated 119 
transcriptional fusions for each PRC2 gene (Figure 1A-H) and studied the respective 120 
reporter expression pattern within the root. MEA was not expressed within the root, while 121 
FIS2 was expressed in the columella (Figure 1C,F). The potential promoter regions of 122 
most subunits drove strong expression in all cell types in the meristematic zone that then 123 
became preferentially detectable in the vascular cylinder in the elongation and maturation 124 
zones (Figure1 A-H).  CLF in particular showed enrichment in the root vasculature in both 125 
the meristem and maturation region of the root, and this was corroborated by an in situ 126 
hybridization with a probe to the CLF transcript (Figure 1E, Supplemental Figure 2D).  127 
Translational fusions, for all but FIS2, were then used to determine if further regulatory 128 
mechanisms might also affect PRC2 protein abundance. SWN protein abundance was 129 
enriched within the epidermal and ground tissue layers in the meristem (Figure 2C). The 130 
CLF protein, in a complemented clf-29 mutant background, was found in the root meristem 131 
and enriched in the vascular tissue in the maturation zone (Figure 2E, Supplemental 132 
Figure 3B).  CLF protein in a complemented clf-28swn-7 background shows the same 133 
enrichment patterns (Supplemental Figure 2E).  Within the root meristem and elongation 134 
zone, SWN, EMF2, VRN2 and FIE  (in a complemented fie-1 mutant background) proteins 135 
are present (Figure 2A, B, C, F) (Ikeuchi et al., 2015; Kinoshita et al., 2001).  In the 136 
differentiation zone, however, SWN, EMF2, VRN2 and FIE proteins are present primarily 137 
in vasculature (Figure 2A, B, C, F), although VRN2, EMF2 and SWN protein has also been 138 
reported in root hairs (Ikeuchi et al., 2015).   139 
PRC2 activity is required for proper root development  140 
The expression and protein abundance patterns of PRC2 genes suggested that PRC2 141 
might influence cell patterning or specification in the Arabidopsis root. Since the MEA 142 
protein is not found within the Arabidopsis root, CLF and SWN are the only 143 
methyltransferases that are candidate regulators of root development. To test the 144 
consequences of loss of PRC2 in root cell specification and patterning, we analyzed the 145 
phenotypes of clf-28 swn-7, which produce viable embryos with PRC2 function eliminated 146 
after germination. In agreement with (Lafos et al., 2011), the clf-28 swn-7 mutants showed 147 
a complete loss of H3K27me3 deposition, as revealed using whole mount 148 
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immunocytochemistry (Figure 3A,B). However, both the clf-29 and swn-7 single mutants 149 
show nuclear H3K27me3 (Supplemental Figure 3, 4), suggesting that these proteins have 150 
partially redundant functions. Analysis of the single and double mutant combinations of 151 
CLF and SWN demonstrated that they interact genetically.  The swn-7 allele has a shorter 152 
root with no difference in meristem size, while clf-29 shows no difference in root length but 153 
has a significant increase in the number of cells in the root meristem, as previously 154 
reported (Figure 3J-K) (Aichinger et al., 2011). The roots of clf-28 swn-7 double mutants 155 
are shorter than those of wild type, with a small meristem containing fewer cells (Figure 156 
3C-D,J-K), as does a clf-29 swn-7 double mutant (Supplemental Figure 5C-D).  Although 157 
no defects in radial cell patterning were observed, the number of cells in the vascular 158 
cylinder was significantly increased (Figure 3E-G,I Supplemental Figure 5A). In striking 159 
similarity with the clf-28 swn-7 phenotype, the fie mutant (Bouyer et al., 2011) displayed a 160 
smaller meristem with fewer cells (Supplemental Figure 5B) in addition to a large increase 161 
in the number of cells within the vascular cylinder (Figure 3G). This increase in vascular 162 
cell number was characterized by an increase in protoxylem and metaxylem cells (Figure 163 
3L-M).  164 
Although there are several MSI1 homologs, immunopurification experiments determined 165 
that MSI1 is the primary WD40 protein required for PRC2 activity in Arabidopsis 166 
(Derkacheva et al., 2013). It should be noted however, that MSI1 is also a member of 167 
other chromatin modifying complexes (Jullien et al., 2008). Given the vascular phenotypes 168 
of mutations in other PRC2 genes and in order to circumvent the female gametophytic 169 
lethality of msi1 mutants (Köhler et al., 2003), we generated a transgenic line that 170 
expressed an artificial miRNA (amiRNA) targeting MSI1 under the WOODEN LEG (WOL) 171 
promoter (WOLpro:amiRNA_MSI1) (Inoue et al., 2001), the expression of which is 172 
restricted to the vascular cylinder of the root. To validate MSI1 silencing, we introduced the 173 
transgene into a line containing MSI1pro:MSI1:GFP (Figure 3N,O). We tested for changes 174 
in H3K27me3 deposition in MSI1 silenced lines and observed a reduction specifically in 175 
the vascular cylinder (Supplemental Figure 6). The MSI1pro:MSI1:GFP signal was 176 
undetectable in the WOLpro:amiRNA_MSI1 vascular cylinder (Figure 3I-J). Silencing of 177 
MSI1 in the vascular cylinder was sufficient to decrease overall root growth (Figure 3P,Q), 178 
with fewer cells in the meristem, similar to the phenotypes observed in clf-28 swn-7 and fie. 179 
However, in contrast to clf-28 swn-7 and fie, which showed an increase in cell number, a 180 
statistically significant decrease in vascular cell number was observed (Figure 3G,M).  181 
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Taken together, our results indicate that PRC2 regulates both root meristem cell number 182 
and vascular cell proliferation.  183 
Genes specifically marked by H3K27me3 in vascular and non-vascular tissue 184 
Many genes marked by H3K27me3 have distinct cell type or tissue-specific expression 185 
patterns (Turck et al., 2007; Zhang et al., 2007a; Deal and Henikoff, 2010; Lafos et al., 186 
2011) and the data presented above suggested that PRC2 likely regulates the expression 187 
of many genes in the vasculature as well as in other cell types within the root. In order to 188 
identify the genes specifically marked by H3K27me3 in the vascular tissue relative to the 189 
whole root, we carried out fluorescent activated cell sorting using the WOLpro:GFP marker 190 
line (Birnbaum et al., 2003) (Supplemental Figure 7A-C) coupled with ChIP-seq using an 191 
antibody specific for H3K27me3. As a control, we also carried out ChIP-seq with an 192 
antibody specific for H3K4me3, a chromatin modification associated with expressed genes. 193 
As expected from previous reports (Zhang et al., 2007b; Roudier et al., 2011), genes 194 
marked with H3K27me3 showed lower expression relative to genes with H3K4me3 (Figure 195 
4A). Comparison between the list of genes marked by H3K27me3 in the WOLpro 196 
population and in the root protoplast population (Figure 4B) identified 130 genomic regions 197 
marked by H3K27me3 specifically in the vascular cylinder (Figure 4B). In comparison, 198 
2859 genes were specifically enriched in H3K27me3 outside of the vascular tissue 199 
(Supplemental Data Set 1). To identify biological processes over-represented in 200 
H3K27me3-marked regions associated with the WOLpro:GFP sorted population relative to 201 
the whole root population, we carried out Gene Ontology (GO) enrichment analysis (Du et 202 
al., 2010).  Among these lists of H3K27me3-marked genes, 113 and 82 GO categories 203 
were significantly enriched in the WOLpro:GFP population and the whole root population, 204 
respectively (Supplemental Data Set 1). 37 GO terms were enriched only in the 205 
WOLpro:GFP  population, while 6 GO terms were enriched only in the whole root 206 
population and thus may represent non-vascular-specific GO terms, although they were 207 
not significantly under-represented within the WOLpro:GFP population (Supplemental 208 
Figure 6D, Supplemental Data Set 1). The set of non-vascular-specific GO terms are 209 
consistent with repression of biological processes associated with vascular development 210 
and include axis specification, adaxial/abaxial pattern formation, meristem maintenance, 211 
phloem or xylem histogenesis, xylem development, and cell wall organization or 212 
biogenesis. In the WOLpro:GFP -specific samples, H3K27me3-marked genes were 213 
enriched for floral development, gibberellin-related processes and terpenoid metabolism, 214 
suggesting differential regulation of these pathways within vascular cells.  215 
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Functional importance of tissue-specific PRC2-mediated repression 216 
In order to identify H3K27me3-marked genes that are transcriptionally repressed in the 217 
vascular cylinder or in non-vascular cells, we further restricted the lists of H3K27me3-218 
marked genes using cell type-specific gene expression data (Brady et al., 2007). The 219 
auxin response factor ARF17 is marked specifically by H3K27me3 in vascular tissue and 220 
is not expressed in the vascular cylinder. This non-vascular expression pattern was 221 
confirmed using a transcriptional fusion in which GFP is expressed under the ARF17 222 
promoter (Figure 4C) (Ciferri et al., 2012; Okushima, 2005). Conversely, VND7, a well-223 
described regulator of vascular development, was marked by H3K27me3 in non-vascular 224 
cells and is specifically expressed in vascular tissue, as confirmed by the use of a 225 
promoter:reporter (YFP) fusion (Mozgová and Hennig, 2015; Yamaguchi et al., 2010) 226 
(Figure 4E-F). 227 
In order to determine the functional importance of PRC2-mediated repression, we sought 228 
to over-ride/bypass the silencing in the vasculature presumably conferred by the PRC2 by 229 
expressing ARF17 under the control of a β-estradiol-inducible promoter (Ohno et al., 2008; 230 
Coego et al., 2014). This is a similar approach to one described for AGAMOUS, a PRC2 231 
target gene (Ciferri et al., 2012; Sieburth and Meyerowitz, 1997; Margueron et al., 2008) 232 
and other target genes (Mozgová and Hennig, 2015; Ikeuchi et al., 2015; Kuzmichev et al., 233 
2005).  The constitutive induction of ARF17 in the root caused a loss of organization of the 234 
root pattern, with frequent observations of ectopic cell proliferation (Figure 4G-J and 235 
Supplemental Figure 3A).  In contrast, ectopic expression of VND7 with the β-estradiol-236 
inducible promoter induced ectopic xylem cell differentiation, as has been previously 237 
reported (Ohno et al., 2008; Kubo, 2005; Chanvivattana et al., 2004; Bemer and 238 
Grossniklaus, 2012) (Figure 4E-F, K-L).  Thus, these PRC2-target genes regulate the 239 
correct balance between cell proliferation and cell differentiation. 240 
Transcriptional regulation of PRC2 core components in the Arabidopsis root  241 
The differential spatiotemporal expression patterns of PRC2 genes suggest a regulatory 242 
role for transcription factors in determining this specificity.  We thus utilized the 5’ flanking 243 
regions upstream of the translational start site of PRC2 genes in the synthesis of the 244 
transcriptional fusions as bait in an enhanced yeast one-hybrid assay (Bouyer et al., 2011; 245 
Lee et al., 2006; Zhang et al., 2007a; Brady et al., 2011; Taylor-Teeples et al., 2015).  In 246 
order to focus on the vascular-specific regulation of these genes, we screened the 247 
promoters against a set of root vascular-expressed transcription factors (Köhler et al., 248 
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2005; Gaudinier et al., 2011) (Kinoshita et al., 2001; Reece-Hoyes et al., 2011) 249 
(Supplemental Data Set 2). In total, 101 transcription factors (out of 653) interacted with 250 
these potential promoters (Figure 5), with ten TF families over-represented (C2H2, bHLH, 251 
Homeobox, MYB, AP2-EREBP, WRKY, GRAS, bZIP, C2C2-Dof, and ARF; p-value < 0.01). 252 
In order to validate these transcription factor-promoter interactions in planta, we performed 253 
two types of assays. Transcription factors were overexpressed using a β-estradiol-254 
inducible system (De Lucia et al., 2008; Coego et al., 2014) and expression of the 255 
respective target gene was measured 24 hours after induction (Supplemental Data Set 3). 256 
In addition, myc-tagged transcription factors were assessed for their ability to drive 257 
expression of the GUS reporter gene fused to the target promoter in Nicotiana 258 
benthamiana leaves (Supplemental Data Set 3).  Altogether, 71 of the 101 transcription 259 
factors in the network were tested in these in planta assays and a total of 63 interactions 260 
were successfully validated in planta (Supplemental Data Set 3, Figure 5, Supplemental 261 
Figure 8). We hypothesize that these transcription factors represent an important upstream 262 
regulatory component of PRC2 gene expression. We next postulated that distinct TFs 263 
could control the expression of PRC2 genes in different cell types. To address this 264 
question, we investigated the co-expression patterns between each TF and their target 265 
gene using spatial root transcriptome data (Scheres, 2007; Brady et al., 2007; Terpstra 266 
and Heidstra, 2009) (Supplemental Figure 7). A total of 9 TF-promoter interactions were 267 
significantly and highly correlated across cell types (r ≥ ±0.6) (Supplemental Data Set 3). 268 
Together, our data demonstrate that a diverse set of transcription factors is sufficient to 269 
regulate PRC2 expression in planta, along with other factors including the regulation of the 270 
chromatin environment, which likely act in a combinatorial regulatory code to specify PRC2 271 
gene expression. 272 
Transcriptional Regulation of PRC2 Components Contributes to PRC2-Mediated 273 
Regulation of Cell Proliferation and Differentiation 274 
In order to determine the functional contribution of transcription factors controlling PRC2 275 
gene expression that in turn regulate the expression of PRC2 target genes, we focused on 276 
the DOF6 transcription factor, which activates CLF expression both in transient and 277 
estradiol induction assays (Supplemental Data Set 1 and 3). The induction of DOF6 278 
causes severe inhibition of root growth but increases the number of cells in the meristem 279 
(Figure 6A, Supplemental Figure 2A-B). Both DOF6 and CLF are also both expressed in 280 
root vascular tissue, further supporting the possibility of this regulatory interaction in planta 281 
(Rueda-Romero et al., 2012) (Figure 1E and Supplemental Figure 2C-D). Since DOF6 is 282 
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sufficient to increase CLF expression (Figure 6C), our hypothesis was that DOF6 283 
overexpression could lead to an increase in CLF expression in non-vascular tissue, which 284 
in turn could result in an increase in PRC2 activity in these cell types, as determined by 285 
measuring gene expression and corresponding H3K27me3 levels. Our H3K27me3 ChIP-286 
seq data demonstrate that ARF17 is a vascular-specific target of PRC2, and the 287 
transcriptional fusion data demonstrate that ARF17 is only expressed outside of the 288 
vasculature (Figure 4C, Supplemental Data Set 1). ARF17 is a target of PRC2 complexes 289 
containing CLF but not SWN based on the increase in gene expression in clf-29 versus 290 
swn-7 mutants (Figure 6B). Furthermore, overexpression of a miRNA160-resistant version 291 
of ARF17 results in prominent vegetative and floral defects similar to those observed in clf-292 
29, including upward curling of leaf margins, reduced plant size, accelerated flowering time, 293 
and reduced fertility (Kinoshita et al., 2001; Mallory, 2005; Chanvivattana et al., 2004).  We 294 
thus chose ARF17 as a candidate to explore the influence of PRC2 gene expression 295 
manipulation on its target gene (ARF17) expression. 296 
 297 
Over-expression of DOF6 led to increased expression of CLF concomitantly with a 298 
decrease in ARF17 expression (Figure 6C). This decrease in ARF17 expression is 299 
dependent on CLF, as shown in the DOF6 estradiol-inducible line in the clf-29 mutant 300 
background (Figure 6E).   Furthermore, the domain of ARF17 expression expanded to the 301 
vascular cylinder in a clf-29 mutant background (Figure 6F), demonstrating that CLF is 302 
sufficient to regulate the spatial expression pattern of ARF17.  Finally, H3K27me3 of 303 
ARF17 is increased upon DOF6 induction (Figure 6D), demonstrating that DOF6 increases 304 
the expression of CLF and, in turn, CLF regulates the expression of the target gene 305 
ARF17 through changes in H3K27me3.  An additional influence of CLF was observed with 306 
respect to the regulation of root length.  When the clf-29 mutation was introduced into the 307 
DOF6 estradiol-inducible line, upon estradiol induction, no influence on root length was 308 
observed. Thus, we  identified transcription factors that are sufficient to control the 309 
expression of PRC2 genes in the root, and we demonstrated that altered expression of 310 
these transcription factors can disrupt the expression of a PRC2 subunit gene in addition 311 
to the levels of H3K27me3 and the corresponding expression of its target gene.  312 
DISCUSSION 313 
A Multi-tiered Regulatory Network for Gene Expression 314 
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We systematically characterized the regulation of PRC2 gene expression at cell type-315 
resolution using Arabidopsis roots as a model system.  We showed that there are distinct 316 
spatial and temporal transcript accumulation patterns for PRC2 components.  The 317 
heterologous (yeast/N. benthamiana) and in vivo (Arabidopsis) approaches we employed 318 
revealed a transcriptional network that controls PRC2 gene expression in the Arabidopsis 319 
root. Altogether, our data provide evidence that transcriptional control of the PRC2 320 
component CLF, and likely of other PRC2 components, plays an important role in 321 
determining H3K27me3 levels and the corresponding expression of H3K27me3 targets in 322 
a spatiotemporal manner. This regulation is likely complemented by other previously 323 
described modes of regulation in Arabidopsis, including cis-regulatory regions similar to 324 
the Polycomb Repressive Element in Drosophila (Ikeuchi et al., 2015; Deng et al., 2013), 325 
long non-coding RNAs, and protein–protein interactions via Polycomb Repressive 326 
Complex 1 (PRC1) and PRC1-like genes to determine target specificity and chromatin 327 
compaction (Ikeuchi et al., 2015; Margueron and Reinberg, 2011). 328 
Further dissection of these distinct tiers of this regulatory network is needed.  At the upper 329 
level of the network, the correlation of expression between transcription factors and their 330 
target PRC2 genes (Gu et al., 2014; Brady et al., 2007) suggests that distinct groups of 331 
transcription factors regulate the expression of these genes in space, in time, or in both 332 
space and time (Supplemental Data Set 1).  At the second tier of the network, analyses of 333 
PRC2 gene mutants demonstrated that CLF, SWN and FIE, key components of PRC2, 334 
functionally regulate root meristem and vascular development, likely at the level of cell 335 
division.  Additionally, the translational fusion patterns suggest that only a restricted 336 
number of complexes can form at a particular cell type or temporal stage of development.  337 
It will be interesting in the future to determine if the cell type- or tissue-specific expression 338 
patterns of CLF or SWN are necessary to regulate the H3K27me3 of distinct suites of 339 
genes.  In addition, in proximal meristematic vascular tissue, CLF and SWN protein were 340 
both present.  The mechanism by which different complexes form and how the affinity for 341 
different targets is determined remain to be described.  At the final tier of the network, 342 
whether distinct PRC2 complexes regulate distinct groups of genes within the root 343 
meristem remains to be determined.  However, our data showing vascular-specific 344 
H3K27me3 and silenced genes provide proof of such suites of genes at the level of 345 
individual tissues.  346 
Regulation of Cell Proliferation and Differentiation during Arabidopsis Root 347 
Development   348 
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In plants, PRC2 proteins maintain organ and cell-type identity, regulate developmental 349 
transitions, repress cell proliferation (Lafos et al., 2011; Hennig and Derkacheva, 2009) 350 
and regulate totipotency (Aichinger et al., 2009; He et al., 2012). Here, we report two 351 
additional functions of PRC2 in post-embryonic development: the regulation of cell 352 
proliferation in vascular tissue, and the appropriate execution of xylem cell differentiation 353 
(Figure 3E-G; L-M). In the developing root, procambium cells are the stem cell source 354 
responsible for vascular cell types and secondary growth (Bouyer et al., 2011; Mahonen, 355 
2006; 2000; De Rybel et al., 2014). Procambium cells proliferate and can undergo 356 
differentiation into either xylem cells or phloem cells depending on positional cues 357 
(Derkacheva et al., 2013; Fisher and Turner, 2007; Etchells et al., 2013; Etchells and 358 
Turner, 2010). The vascular proliferation phenotype of the clf-28 swn-7 mutant suggests 359 
that PRC2 represses division of the procambium cell population. CLF and SWN are not 360 
responsible for initiating division of these cells, but rather, when the appropriate number of 361 
cells has been produced, PRC2 activity likely negatively influences chromatin accessibility 362 
for transcription factors such as ARF17 in addition to cell cycle regulators. The over-363 
proliferation phenotype of the ARF17 over-expressor and its similarity to the phenotype of 364 
the clf28swn7 mutant suggest that ARF17 may be such a cell cycle regulator.   The lack of 365 
a vascular phenotype in the clf29 mutant implies that cell proliferation is likely also 366 
controlled by other SWN-dependent H3K27me3 targets. On the other hand, the fie-042 367 
ectopic xylem cell phenotype, the tissue-specific VND7 H3K27me3 deposition pattern, and 368 
the finding that over-riding this repression through ectopic expression results in ectopic 369 
xylem differentiation suggest that tissue-specific PRC2 activity ensures the appropriate 370 
execution of the xylem cell differentiation program.  371 
 372 
Knockdown of MSI1 in the vascular tissue resulted in a very different phenotype relative to 373 
that observed in mutants of other PRC2 subunits. In the vascular cylinder, the planes of 374 
division were altered suggesting that this particular gene likely plays a role in procambium 375 
cell patterning. Interestingly, WOLpro:amiRNA_MSI1 expression resulted in a short root 376 
phenotype despite being only driven in the vascular cylinder.  This could be due to cell 377 
non-autonomous effects, defects in vascular development influencing overall growth, or a 378 
defect in the vascular initial cells, which determine quiescent cell identity. MSI1 is a 379 
member of other chromatin modifying complexes including the CAF1 complex, which is 380 
associated with nucleosome deposition for chromatin assembly and histone deacetylation 381 
(Jullien et al., 2008; Hennig et al., 2003). Thus, the phenotypes observed may reflect 382 
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developmental decisions occurring during early root patterning or independent of PRC2 383 
activity. 384 
A Comparative Perspective on PRC2 Function in Plants and Animals 385 
In animal embryonic stem cells and outside of the embryo, PRC2 is required for the 386 
maintenance of differentiation potential (Köhler et al., 2003; Laugesen and Helin, 2014). 387 
Mutations in PRC2 subunits can either delay differentiation of myogenic or neurogenic cell 388 
types or precociously advance the differentiation of particular cell types in addition to 389 
preserving the appropriate cell identity (Inoue et al., 2001; Stojic et al., 2011; Pasini et al., 390 
2007; Hirabayashi et al., 2009; Fasano et al., 2007; Sher et al., 2008; Aldiri and Vetter, 391 
2009). In contrast, in the plant procambial stem cell population, PRC2 regulates self-392 
renewal capabilities (Turck et al., 2007; Laugesen and Helin, 2014; Zhang et al., 2007a; 393 
Deal and Henikoff, 2010; Lafos et al., 2011).   Our data also demonstrate that in root cells, 394 
PRC2 ensures the correct cell type-specific differentiation state through spatially 395 
repressing the expression of cell type-specific developmental regulators (VND7). Thus, in 396 
plants, PRC2 regulates self-renewal of the procambial stem cell population in addition to 397 
cell differentiation.  398 
Uncontrolled abundance, increased activity, or loss of function of PRC2 components can 399 
lead to disease (Birnbaum et al., 2003; Bracken et al., 2003; Kleer et al., 2003; Takawa et 400 
al., 2011; Varambally et al., 2002; Wagener et al., 2010).  Thus, our findings indicate that 401 
transcription factors may be an important component in determining PRC2 gene 402 
expression in animals, and through this mechanism, the repression of their targets. 403 
Furthermore, in cases where multiple genes have been found to encode a single PRC2 404 
subunit, the expression patterns of these subunits and their upstream regulation should be 405 
systematically explored.  Epigenetic abnormalities are common in human cancer and play 406 
a key role in tumor progression, and hence, significant efforts have focused on developing 407 
inhibitors of these PRC2 proteins to treat disease (Zhang et al., 2007b; Helin and Dhanak, 408 
2013; Roudier et al., 2011). The characterization of cell type or tissue-specific regulation of 409 
PRC2 gene expression may provide an additional mode by which the negative effects 410 
caused by PRC2 misregulation could be abrogated. 411 
METHODS 412 
Plant material 413 
All transgenic Arabidopsis thaliana plants and mutants are in the Col-0 background except 414 
for the VRN2pro:VRN2:GUS line (kindly provided by Caroline Dean), which is in the Ler 415 
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background, as is the FIEpro:FIE:GFP line (Kinoshita et al., 2001). The clf-28 swn-7 416 
(SALK_139371, SALK_109121), clf-29 (SALK_021003), swn-7 (SALK_109121), and fie 417 
(SALK_042962) (Du et al., 2010; Bouyer et al., 2011) mutants were kindly provided by 418 
François Roudier and Daniel Bouyer, respectively. The DOF6 β-estradiol inducible, VND7 419 
and ARF17 transcriptional and FIE in fie-1, SWN and MEA in mea-3 translational fusions 420 
have been described elsewhere (Brady et al., 2007; Rueda-Romero et al., 2012; 421 
Yamaguchi et al., 2010; Rademacher et al., 2011) (Yadegari et al., 2000; Wang et al., 422 
2006). Transcription factor-inducible lines were obtained from the TRANSPLANTA 423 
collection (Coego et al., 2014).  424 
Plants were grown under standard conditions at 24ºC in a 16-h light 8-h dark cycle. For 425 
root analyses, plants surfaced sterilized and sown in 1% Sucrose Murashige and Skoog 426 
(1% MS) medium. Seeds were stratified for 3 days at 4ºC and dark and then transferred 427 
and kept vertical into a Percival growth chamber with a light intensity of ~700 mol·m−2 s−1 428 
illuminated by a daylight-white fluorescence lamp (FL40SS ENW/37; PANASONIC). 429 
Selection of transgenic seedlings were performed in 1% MS medium supplemented with 430 
50 mg L-1 kanamycin or 15 mg L-1 Glufosinate ammonium, depending on the transgene. 431 
Cloning strategies  432 
All oligonucleotides used in this study are described in Supplemental Data Set 4. All PCR-433 
amplified fragments were completely sequenced after subcloning, and only the clones 434 
without PCR-induced errors were used for subsequent cloning steps. For promoter 435 
amplification, Col-0 genomic DNA was used as template. For coding region amplification, 436 
Col-0 cDNA was used as template, except for the CLF coding region, which was amplified 437 
from genomic DNA and thus contains introns. For the generation of the transcriptional 438 
GUS fusions, each respective PCR product was introduced into pENTR D-TOPO 439 
(Invitrogen) and subsequently recombined into the pGWB4 and pGWB5 destination 440 
vectors (Nakagawa et al., 2007) with the exception of  the CLF promoter, which was 441 
assembled to Venus-N7 (rapidly folding YFP variant) by Hot Fusion reaction (Fu et al., 442 
2014) into the BsaI digested pGoldenGate-Se7 (Shahram Emami, 2013).   443 
 444 
For the CLF translational fusion shown in Figure 2, the CLF genomic region was amplified 445 
(primers CLF_TOPO_F_NO_ATG/CLF_R) and introduced into pENTR™/D-Topo® 446 
(Invitrogen).  The gCLF_D_Topo clone was introduced into the pB7WGC2 binary vector to 447 
generate a CFP:gCLF fusion. The ECFP:gCLF sequence was then amplified 448 
(ECFP_TOPO_F/CLF_R) and introduced into pENTR™/D-Topo®. The -2842 DNA 449 
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sequence corresponding to the CLF promoter was amplified (pCLF_F/pCLF_R) and 450 
cloned into pENTR 5’TA-TOPO®. A MultiSite Gateway reaction was performed using 451 
CLFpro-TA-Topo, CFP:gCLF-D-Topo and the pK7m34GW destination vector. The 452 
CLFpro:CFP:gCLF transgene was introduced into the clf-29 background by floral dip 453 
transformation {Clough:1998uf}, and a complementation assay was performed on T2 454 
plants to validate a 3:1 segregation ratio. For the CLF genomic fusion shown in 455 
Supplemental Figure 7B, a genomic region of CLF including 2175 bp upstream from the 456 
start codon and 1010 bp downstream from the stop codon was amplified with primers D-457 
TOPO-genomic_CLF_s2 and genomic_CLF_as2, following with primers genomic_CLF_s1 458 
and genomic_CLF_as1, using PrimeSTAR® Max DNA polymerase (Takara). The PCR 459 
product was cloned into pENTR™/D-Topo® (Thermo Fisher scientific), and an error-free 460 
entry clone, pENTR-gCLF, was confirmed by sequence analyses. A mGFP sequence with 461 
a GGGS-linker at its N-terminus was inserted into pENTR-gCLF at the site before the stop 462 
codon of CLF in frame by CPEC (circular polymerase extension cloning) method, following 463 
the amplification of pENTR-gCLF and linker-mGFP with primers CLF ter_s and CLF body-464 
∆stop_as and primers CLF body-mGFP_s and mGFP-CLF ter_as, respectively. A 465 
recombination reaction was performed between the resulting entry clone, pENTR-gCLF-466 
mGFP, and destination vector pGWB501 (Nakagawa et al., 2007) using LR Clonase II 467 
enzyme mix (Invitrogen™). Error-free destination clone was confirmed by sequence 468 
analyses and introduced into Agrobacterium tumefaciens strain GV3101::pMP90 by 469 
electroporation. The transgene was introduced into the clf-28+/-; swn-7-/- background by 470 
floral dip transformation of clf-28-/+; swn-7-/- plants. A complementation assay was 471 
performed to validate the function of the fusion protein.  For the other translational GFP 472 
fusions, gene promoters were also introduced into pENTR 5’TA-TOPO®; gene cDNAs 473 
were introduced into pENTR D-TOPO, and the mGFP5 reporter gene was introduced into 474 
pDONOR P2r-P3. Plasmids containing the promoter, gene and GFP were introduced into 475 
pB7m34GW (Karimi et al., 2005) by a Multisite Gateway reaction (Invitrogen).  476 
 477 
The design of the artificial miRNA for MSI1 was performed following WMD3 software 478 
(Ossowski et al., 2008) and cloned into pENTR D-TOPO. Afterwards, a Multisite Gateway 479 
reaction was performed in combination with the promoter of WOODEN LEG (kindly 480 
provided by Anthony Bishopp -University of Nottingham) and pK7m24GW (Karimi et al., 481 
2005). The resulting plasmids were introduced into Agrobacterium tumefaciens strain 482 
GV3101 carrying the pSoup plasmid (Hellens et al., 2000), and Col-0 wild type in addition 483 
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to MSI1pro:MSI1:GFP were transformed using floral dip (Clough and Bent, 1998). 484 
Transformation into the MSI1pro:MSI1:GFP background served as a control to ensure 485 
precise tissue-specific silencing of MSI1 with the designed artificial miRNA. 486 
Arabidopsis cross-sections 487 
Five-day-old roots were embedded in 3% agarose (PELCO® 21 Cavity EM Embedding 488 
Mold) and incubated overnight at 4ºC in Fixation Buffer (2.5% glutaldehyde + 2% 489 
paraformaldehyde in phosphate buffer 0.2M (pH 7). Dehydration was performed by 490 
incubating the sample for 2h in serial dilutions of ethanol (20%, 40%, 60%, 80%, 90% and 491 
95%). The sample was plastic embedded by performing the following steps: 2 hours 492 
incubation in 1:1 Ethanol:Acetone, 2 hours incubation in 100% Acetone, 12 hours 493 
incubation in  7:1 Acetone:Spurr’s resin, 12 hours incubation in 3:1 Acetone:Spurr’s resin, 494 
12 hours incubation in 100% Spurr’s resin, 12 hours incubation in Spurr’s resin. The resin 495 
was polymerized at 70ºC for 12 hours. Blocks were trimmed and 1.5 µM cross-sections 496 
were produced with a Leica 2050 SuperCut microtome. Toluidine blue staining (0.1% of 497 
Toluidine blue in 0.1M Phosphate buffer pH 6.8) was performed before microscopic 498 
analysis.  499 
 500 
The mPS-PI staining method (Truernit et al., 2008) combined with confocal microscopy 501 
was used for the acquisition of high resolution root longitudinal and Z-stack images of 502 
ARF17ox plants under Mock and β-Estradiol treatments.  503 
Gene regulatory network mapping 504 
Promoter sequences for PRC2 genes are described in Supplemental Data Set 2. Yeast 505 
One Hybrid Screening was performed as described (Gaudinier et al., 2011). Correlations 506 
between predicted transcription factors and targets were determined using root spatial 507 
temporal microarray datasets found in Brady et al. 2007. For simplicity, the data were 508 
transformed to contain the Log(2) mean expression value for each sample. A Pearson 509 
correlation was calculated for each network-predicted TF-promoter interaction set. 510 
Interactions with a Benjamini-Hochberg FDR corrected p-value less than or equal to 0.05 511 
were considered significant. P-values for the Benjamini-Hochberg correction were 512 
determined from correlations of all possible TF-promoter combinations of each node within 513 
the network. 514 
 515 
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Validation and the direction of the yeast one hybrid interactions were characterized in vivo 516 
by performing trans-activation assays in Nicotiana benthamiana leaves and gene 517 
expression analyses in Arabidopsis estradiol-inducible transcription factor lines. For trans-518 
activation assays transcription factors in PYL436 (effector) (Ma et al., 2013), collection 519 
kindly provided by Dinesh Kumar – UC Davis, promoter:GUS (reporter), 520 
35Spro:LUCIFERASE (internal control) and p19 (RNA silencing inhibitor) constructs were 521 
transformed into Agrobacterium tumefaciens (strain GV3101) and used as described in  522 
(Taylor-Teeples et al., 2015). In Arabidopsis, 12 hour and 24 hour treatments in liquid 1% 523 
MS supplemented with 10 μM β-Estradiol (from a 10mM stock in 100% DMSO) was used 524 
to induce the expression of each transcription factor in 5-day-old seedlings. Quantification 525 
of transcription factor and PRC2 gene expression was performed by Reverse-transcription 526 
-quantitative PCR. We calculated the mean from 3 independent experiments (biological 527 
replicates) and from the average of 3 technical replicates per biological replicate.  Each 528 
biological replicate captures expression from approximately 200 roots of each respective 529 
genotype. In each case, the ΔΔCt was calculated relative to a Ubiquitin10 control 530 
(At4g05320). In all cases, significance was tested using a t-test.  * = p<.05; ** = p<.01; *** 531 
= p<.001. 532 
We used Cytoscape software (Shannon et al., 2003) for data visualization and GO 533 
analysis of the network.  534 
Whole mount H3K27me3 immunohybridization of Arabidopsis roots 535 
The protocol was adapted from (She et al., 2014). Roots of 5-day-old plants were fixed in 536 
fixation buffer (1xPBS, 2mM EGTA, 1% Formaldehyde, 10% DMSO and 1% Tween-20) for 537 
30 minutes at room temperature and then mounted in 5% Acrylamide on a microscope 538 
slide. Samples were fixed by incubating them for 5 minutes in 100% ethanol, 5 minutes in 539 
100% methanol, 30 minutes in methanol:xylene (1:1), 5 minutes in methanol, 5 minutes in 540 
ethanol and 15 minutes in methanol:PBS (1.37M NaCl, 27mM KCl, 100mM Na2HPO4, 541 
18mM KH2PO4, pH 7.4) + 0.1% Tween 20 (1:1) + 2.5% Formaldehyde. The samples were 542 
then rinsed with PBS + 0.1% Tween 20 and cell walls were digested for 2h at 37ºC with 543 
cell wall digestion solution (0.5% cellulase, 1% driselase, 0.5% pectolyase in PBS). After 544 
rinsing with PBS + 0.1% Tween 20, the samples were permeabilized in PBS + 2% Tween 545 
20 for 2 hours. Immunodetection was performed using antibodies against H3K27me3 546 
(Millipore 07-449), H3K4me3 (Millipore 07-473) and H3 (ab1791) as a control at 0.01 μg/μl 547 
final concentration each, for 14 hours. Samples were washed for 4hours with PBS + 0.1% 548 
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Tween 20 and incubated for 12h with goat anti-rabbit (alexa fluor 488 conjugate) 549 
secondary antibody (Life Technologies A-11034A). Samples were washed with 1x PBS + 550 
0.1% Tween-20 for 1 hour and nuclei were counterstained with propidium iodide at a 551 
concentration of 5 μg/ml for 15 min, rinsed with PBS + 0.1% Tween 20, and mounted in 552 
Prolong Gold (Invitrogen) + 5 μg/ml propidium iodide. Samples were imaged using a Zeiss 553 
700 (Genome Center – University of California, Davis). Simultaneous detection of Alexa 554 
fluor 488 and Propidium Iodide signal was performed using the same settings among the 555 
different samples/mutants (10-15 roots were studied for each mutant line). 556 
Fluorescence Activated Cell Sorting 557 
Arabidopsis WOLpro:GFP  root protoplast were prepared as described in (Brady et al., 558 
2007). The MoFlo cell sorter’s electronic configuration was modified to identify intact 559 
protoplasts above electronic and sample buffer “noise” levels by choosing a side scatter 560 
electronic threshold and by applying logarithmic scaling to the forward angle and side 561 
angle 488nm laser light scatter signals.  To collect the GFP-positive protoplasts, the green 562 
fluorescence of the GFP (530/50 detection filter) was separated from the red fluorescence 563 
(emission 670/30) of chlorophyll (Supplemental Figure 5). Protoplast chromatin was 564 
crosslinked with 0.1% formaldehyde for 5 min and the reaction was stopped by adding 565 
glycine (0.125M final concentration).  566 
Chromatin Immunoprecipitation assay 567 
The chromatin immunoprecipitation assay performed in this study is a modification of the 568 
protocol described in (Bouyer et al., 2011). We used four independent biological replicates 569 
(100,000 GFP positive protoplast each) and two antibodies: H3K27me3 (Millipore 07-449) 570 
and H3K4me3 (Millipore 07-473). DNA recovered after ChIP and the input chromatin were 571 
both amplified using a SeqPlex Enhanced DNA amplification kit (SEQXE – Sigma) 572 
following the manufacturer’s instructions. Amplified DNA was used to synthesize a 573 
barcoded Illumina-compatible library (Kumar et al., 2012). Libraries were pooled and 574 
sequenced on the HiSeq2000 in the 50SR mode.    575 
ChIPseq data analysis 576 
Reads were filtered by length and quality and aligned to the Arabidopsis (TAIR10) genome 577 
using Bowtie (Langmead et al., 2009) and the parameters “-v2 -m1 --best --strata –S”.  578 
SCICER software was used to determine the differentially methylated islands using a 579 
200bp window size, 200bp gap size and an FDR of 0.005. The genomic regions containing 580 
the histone modification was determined using windowbed software (Quinlan and Hall, 581 
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2010) and -1000bp upstream and downstream of the gene body for H3K27me3 and 200bp 582 
upstream and 200bp downstream for H3K4me3. Genes that overlap in at least 3 of the 4 583 
biological replicates were considered as high confidence genes for the downstream 584 
analyses. 585 
 586 
Root cell type-specific expression of the H3K27me3 and H3K4me3 affected genes was 587 
obtained from (Brady et al., 2007). Raw expression values were log2 transformed and 588 
graphed with R software and the ggplot2 package.   589 
GUS expression analysis in Arabidopsis 590 
Plant tissue was fixed in 90% acetone for 30 minutes and washed twice with water before 591 
GUS staining. Roots were submerged in the GUS staining solution (50mM Phosphate 592 
buffer, 0.2% Triton TX-100, 1.5mM Potassium Ferrocyanide, 1.5mM Potassium 593 
Ferricyanide and 2mM X-Gluc (5-bromo-4-chloro-3-indolyl ß-D-glucuronide cyclohexamine 594 
salt dissolved in DMSO – Gold Biotechnology G1281C1), infiltrated under vacuum for 5 595 
minutes, and incubated at 37ºC in the dark for 18 hours. Roots were then washed with 596 
increasing concentrations of diluted ethanol (20%, 35%, 50% and 70%) and then mounted 597 
with Hoyer’s solution on microscope slides. The activity of the GUS reporter gene was 598 
observed under a Zeiss Axioscope 2 Fluorescence microscope.  599 
In situ hybridization 600 
The ARF17 and CLF coding region was PCR amplified using Col0 cDNA and the set of 601 
primers “ARF17_cDNA_F”/“ARF17_cDNA_ R” and “CLF_TOPO_F_NO_ATG”/” 602 
CLF_R(no_STOP)”. PCR product was cloned into pGEMTeasy (PROMEGA). Fluorescein 603 
labeled sense and antisense probes were performed as manufacturer indications 604 
(Fluorescein RNA Labeling Mix - Roche). Tissue fixation, permeabilization, probe 605 
hybridization and detection were adapted from (Bruno et al., 2011). Probe detection was 606 
performed using HRP conjugated anti-FITC antibody (1:100 dilution) (AB6656, Abcam), 607 
followed by tyramide signal amplification (TSA™ Reagent, Alexa Fluor® 488 Tyramide – 608 
Molecular probes (T20948)). Tissue was then counter stained with propidium iodide 609 
(5ug/mL) for 5 min, rinsed in water, and the samples were mounted with antifade reagent 610 
(Prolong gold – Molecular probes –(P36941)). Samples were imaged using a Zeiss 880 611 
with Ayriscan (SBBS –Durham University). Simultaneous detection of Alexa fluor 488 and 612 
Propidium Iodide signal was performed using the same settings among the different 613 
samples (10-15 roots were studied for each mutant line).  614 
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 615 
Accession numbers 616 
Sequence data from this article can be found in the GenBank/EMBL libraries under 617 
accession numbers GSE86429. Accession numbers of major genes mentioned are as 618 
follows: CLF = At2g23380; SWN = At4g02020; DOF6 = At3g45610; VND7 = At1g71930; 619 
FIE = At3g20740; ARF17 = At1g77850; MEA = At1g02580; MSI1 = At5g58230; FIS2 = 620 
At2g35670; EMF2 = At5g51230; VRN2 = At4g16845. 621 
 622 
Supplemental Data 623 
Supplemental Figure 1.   624 
Transcriptional profile of PRC2 genes in the Arabidopsis root.  625 
Supplemental Figure 2. DOF6 OX root phenotype, DOF6 and CLF root expression and 626 
CLF protein abundance in the clf28swn7 background. 627 
Supplemental Figure 3. ARF17ox ectopic cell proliferation data, CLFpro:CFP:CLF 628 
complementation assay and ARF17 RNA in-situ sense control.  629 
Supplemental Figure 4. Whole-mount immunostaining of H3K27me3 and H3K4me3 630 
deposition in Arabidopsis PRC2 mutant roots. 631 
Supplemental Figure 5. Root cellular resolution phenotypes of different PRC2 mutants 632 
Supplemental Figure 6.  Whole-mount immunostaining of H3K27me3 in the 633 
pWOL:amiRNA_MSI1 Arabidopsis line. 634 
Supplemental Figure 7.  Vascular-specific analysis of H3K27me3 deposition for the 635 
fluorescence activated cell sorting of the stele (WOLpro:GFP).  636 
Supplemental Figure 8. Transcriptional profiles of the transcription factors upstream of 637 
PRC2 genes.  638 
Supplemental Data Set 1: H3K27me3 and H3K4me3 genes in the vascular cylinder and 639 
whole root and associated GO categories. 640 
Supplemental Data Set 2: Protein-DNA Interaction Network and promoter sequences for 641 
the different PRC2 genes studied. 642 
Supplemental Data Set 3: PRC2 Network Validation. 643 
Supplemental Data Set 4: Primer sequences. 644 
 645 
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  910 
FIGURE LEGENDS 911 
Figure 1.  PRC2 genes are expressed in unique and overlapping cell types in the 912 
Arabidopsis thaliana root.  For each genotype, the top panel shows the root meristem 913 
while the bottom panel shows the maturation/differentiation zone of the root. All images 914 
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were taken under the same acquisition conditions.  (A) VRN2pro:GUS expression.  (B) 915 
EMF2pro:GUS expression. (C) FIS2pro:GUS expression. (D) SWNpro:GUS expression. (E) 916 
CLFpro:VenusN7 expression. (F) MEApro:GUS expression. (G) FIEpro:GUS expression.  (H) 917 
MSI1pro:GUS expression.  (I) Cartoon of the different cell types and tissues in the 918 
Arabidopsis thaliana root.  (J) Promoter lengths of the different PRC2 genes used in the 919 
reporter lines .  Translational start site = TSS. 920 
Figure 2: PRC2 proteins are found in unique and overlapping cell types in the Arabidopsis 921 
thaliana root. For each genotype, the left panel shows the root meristem while the right 922 
panel shows the maturation/differentiation zone of the root. (A) VRN2pro:VRN2:GUS (B) 923 
EMF2pro:EMF2:GFP (C) SWNpro:SWN:GFP (D) MEApro:MEA:YFP in mea-3 (E) 924 
CLFpro:CFP:gCLF in clf-29, F) MSI1pro:MSI1:GFP (G) FIEpro:FIE:GFP in fie-1.  925 
Figure 3: PRC2 regulates cell proliferation in the root meristem and vascular cylinder. (A-926 
B) Whole mount immunostaining with antibodies specific for H3K27me3 (green in the wild-927 
type Col-0) (A) and in the clf-28 swn-7 double mutant (B).  Nuclear staining is indicated 928 
with white arrows.  A magnified nucleus is shown in the inset.  (C-D) Differential 929 
Interference Contrast image of the root meristem of the wild-type Col-0 (C) and the clf-28 930 
swn-7 double mutant (D). White lines indicate the root meristematic zone (MZ).  (E-H) 931 
Cross-sections showing the root vascular cylinder in wild-type Col-0 (E), clf-28 swn-7 (F), 932 
fie042 (G), and in the WOLpro:amiRNA_MSI line (H). Green indicates pericycle cells, 933 
purple indicates procambium cells, red/orange indicates phloem cells.  (I-J) The MSI 934 
protein is expressed ubiquitously throughout the Arabidopsis thaliana root (I) but is 935 
depleted specifically from the vascular cylinder in the WOLpro:amiRNA_MSI1 line in the 936 
MSI1pro:MSI1:GFP background (white arrows with one head) (J).  Note the reduction in the 937 
length of the root meristem (white arrow with two heads). (K-L) Differential interference 938 
contrast image showing two protoxylem pole cell files (black asterisk) in the wild-type Col-0 939 
(L) and ectopic protoxylem (black asterisk) and metaxylem (blue asterisk) in the fie042 940 
mutant background (L). (M) There are significantly more procambium and phloem and 941 
epidermal cells in the clf-28 swn-7 mutant compared to wild-type Col-0. The reduction in 942 
MSI1 expression shows increased number of cortical and endodermal cells but lower 943 
levels of cells in the stele. (N) The roots of swn-7, clf-28 swn-7 and WOLpro:amiRNA_MSI 944 
are significantly shorter than wild type Col-0 and clf-29. (O) There are more cells in the 945 
meristem of clf-29 and fewer in clf-28 swn-7 and WOLpro:amiRNA_MSI relative to wild type 946 
(Col-0). In all cases, significance was tested using a t-test.  * = p<.05; ** = p<.01; *** = 947 
p<.001. Error bars indicate the standard error value. 948 
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Figure 4. PRC2 regulates the balance between cell proliferation and differentiation in a 949 
tissue-specific manner in the Arabidopsis thaliana root.  (A) Expression levels of genes 950 
marked by H3K27me3 in vascular cells relative to expression levels of genes marked by 951 
H3K4me3. Whole root and vascular-specific (pWOL:GFP positive) root protoplast were 952 
isolated by FACS and H3K27me3/H3K4me3 enriched regions were resolved by ChIPseq. 953 
Expression of the vascular specific H3K27me3 and H3K4me3 marked genes was 954 
determined using Brady et al. 2007 transcriptional data. (B) Number of genes marked by 955 
H3K27me3 in non-vascular cells. (C-F) Expression of a gene marked specifically by 956 
H3K27me3 and not expressed in vascular cells (C,D) ARF17pro:GFP and of a gene 957 
marked specifically by H3K27me3 and not expressed in non-vascular cells VND7pro:nYFP 958 
(E,F). (G-J) Estradiol induction of the ARF17 transcription factor results in small regions of 959 
additional cell proliferation in the vascular cylinder (I,J) compared to the mock-treated root 960 
(G,H).  Asterisks indicate ectopic cell proliferation.  (K-L) Estradiol induction of the VND7 961 
transcription factor (L) results in ectopic xylem cell differentiation compared to a mock-962 
treated root (K).   963 
Figure 5.  Transcription factors regulating PRC2 gene expression in planta.  Squares 964 
represent PRC2 gene promoters, circles represent transcription factors.  A line between a 965 
transcription factor and promoter indicates that an interaction was observed by yeast one 966 
hybrid. A green line or a red line indicates that the transcription factor has been validated 967 
in planta as activating or repressing, respectively, the target gene in planta in either a 968 
trans-activation assay or upon B-estradiol induction of the transcription factor.  969 
Transcription factors are additionally colored according to their respective family. 970 
Transcription factors that interact with the most PRC2 gene promoters are indicated at the 971 
top of the network, while transcription factors that interact with just a single promoter are 972 
located just beside their respective PRC2 gene promoter. Network information is available 973 
in Supplemental Data Set 1. 974 
Figure 6. Functional validation of a multi-tier PRC2 gene regulatory network (TF PRC2 975 
gene  H3K27me3 regulated gene).  (A) β-estradiol induction (3 days) of the DOF6 976 
transcription factor results in a significantly shorter root. Root inhibition caused by the 977 
induction of DOF6 is abolished in the clf29 background. (B) ARF17 expression is activated 978 
in the clf-29 mutant. (C) Induction of DOF6 results in a significant increase in the amount 979 
of CLF expression and a corresponding repression of ARF17 expression, as revealed by 980 
RT-qPCR. (D) Induction of DOF6 results in a significant increase in H3K27me3 deposition 981 
in the ARF17 loci in the root tissue. (E) DOF6 induction does not affect ARF17 expression 982 
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in the clf-29 background. (F) Whole mount in-situ hybridization of ARF17 mRNA. ARF17 983 
expression domain is expanded towards the vascular cylinder in the clf-29 mutant.  In all 984 
cases significance was tested using a t-test.  * = p<.05; ** = p<.01; *** = p<.001. Error bars 985 
represent the standard error value of the log2 transformed expression.  The mean is from 3 986 
independent experiments (biological replicates), calculated from the average of 3 technical 987 
replicates per biological replicate.  Each biological replicate captures expression from 988 
approximately 200 roots of each respective genotype.  In each case, the ΔΔCt was 989 
calculated relative to an ubiquitin10 control. 990 
 991 
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