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ABSTRACT Reverse genetics uses loss-of-function alleles to interrogate gene function. The advent of
CRISPR/Cas9-based gene editing now allows the generation of knock-out alleles for any gene and entire
gene families. Even in the model plant Arabidopsis thaliana, gene editing is welcomed as T-DNA insertion
lines do not always generate null alleles. Here, we show efficient generation of heritable mutations in
Arabidopsis using CRISPR/Cas9 with a workload similar to generating overexpression lines. We obtain
for several different genes Cas9 null-segregants with bi-allelic mutations in the T2 generation. While somatic
mutations were predominantly generated by the canonical non-homologous end joining (cNHEJ) pathway,
we observed inherited mutations that were the result of synthesis-dependent microhomology-mediated
end joining (SD-MMEJ), a repair pathway linked to polymerase u (PolQ). We also demonstrate that our
workflow is compatible with a dual sgRNA approach in which a gene is targeted by two sgRNAs simulta-
neously. This paired nuclease method results in more reliable loss-of-function alleles that lack a large
essential part of the gene. The ease of the CRISPR/Cas9 workflow should help in the eventual generation
of true null alleles of every gene in the Arabidopsis genome, which will advance both basic and applied
plant research.
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Theprecise introductionof aDNAdouble-strandbreak (DSB) in a plant
genome can now be accomplished through a variety of techniques
(Baltes and Voytas 2015). However, the advent of Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated
protein 9 (CRISPR/Cas9)-based technology has brought reliable gene
editing (GE)within the reach of non-specializedmolecular biology labs.
The power of CRISPR/Cas9 compared to predecessor techniques lies in
both a consistent high efficiency and a simple two-component design.

A generic nuclease, Cas9, is guided to a target DNA sequence
(protospacer) by associating with an artificial single guide RNA
(sgRNA) (Jinek et al. 2012). Changing the typically 20 nucleotide
long target-specific spacer sequence in the sgRNA is sufficient for
redirecting the RNA-guided engineered nuclease to another geno-
mic locus. In addition, several sgRNAs with different targets can be
co-expressed allowing for multiplexing as exemplified in Arabidop-
sis thaliana by targeting of the PYRABACTIN RESISTANCE1-LIKE
(PYL) family of abscisic acid receptor genes (Zhang et al. 2016) or
the GOLVEN family (Peterson et al. 2016).

DSBs are readily recognized by the plant cell and repaired. The
non-homologous end-joining (NHEJ) pathway results in imprecise
repair, producing small insertions and/or deletions (indels) at the cut
site (Knoll et al. 2014). In Arabidopsis, one base pair (bp) insertions
(+1) are usually observed in somatic cells (Fauser et al. 2014, Feng et al.
2014). Alternative EJ (alt-EJ) uses a molecularly distinct mechanism
and microhomologies flanking the cut site to guide repair. Also known
asmicrohomology-mediated end joining (MMEJ), alt-EJ often detected
by relatively larger deletions that are generated (Knoll et al. 2014). A
model of synthesis-dependent MMEJ (SD-MMEJ) was proposed that
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can explain different MMEJ repair outcomes, including the presence
of templated insertions at the junction (Yu and McVey, 2010,
Khodaverdian et al. 2017). NHEJ-mediated indel-formation is used
to generate loss-of-function mutants. If the indel causes a frame-shift,
a non-functional truncated protein can be translated, and/or a pre-
mature stop codon will trigger nonsense-mediated decay (NMD)
causing organized mRNA degradation by the cell (Popp and Maquat
2016).

CRISPR/Cas9 technology has been established forArabidopsis and
is continuously being developed further (Feng et al. 2013, Mao et al.
2013, Fauser et al. 2014, Feng et al. 2014, Ma et al. 2015, Wang et al.
2015, Osakabe et al. 2016, Tsutsui and Higashiyama 2017, Zhang
et al., 2016, Denbow et al. 2017, Peterson et al. 2016). Reports using
CRISPR/Cas9 in Arabidopsis are emerging that are not technology-
focused, but rather limited in number taking into account the wide-
spread use of this model organism, the short generation time and its
ease of transformation (Gao et al. 2015, Ning et al. 2015, Xin et al.
2016, Zhang et al. 2016, Guseman et al. 2017, Li et al. 2017, Lu et al.
2018, Ritter et al. 2017, Durr et al. 2018). The difficulties of using
CRISPR/Cas9 to generate mutants in Arabidopsis have been attrib-
uted to the unique floral dip system of transformation in which in-
florescences of T0 plants are infected with Agrobacterium tumefaciens.
Primary transformants (T1) are derived via this process from a trans-
formed egg cell (Bechtold et al. 2000). Chimerism, i.e., the presence of
at least 3 different alleles, points to Cas9 activity at later stages during
somatic growth. This indicates that the mutation did not occur within
the egg cell or zygote, but rather after the first cell division. Further-
more, even when mutations are detected in T1 somatic cells, often

WT alleles are retrieved once the CRISPR/Cas9 T-DNA has been
segregated away (Wang et al. 2015, Durr et al. 2018). This can be
attributed to gene editing efficiency, i.e., the percentage of cells not
WT, as the limited number of cells that make up the germ line have
to be mutated for heritability. Recently, low activity of SpCas9 at 21�
has been suggested to be causal as there was an increase in CRISPR/
Cas9 mutagenesis in both somatic and germline mutations at 37�
(LeBlanc et al. 2018).

Here, we report and quantify high editing efficiencies in T1
somatic cells and inheritance of NHEJ-repaired alleles in Arabidop-
sis. In T1 somatic cells we observe mostly single base pair insertions,
which are likely the result of cNHEJ. In contrast, inheritedmutations
for three different sgRNAs showed alt-EJ repair outcomes of which
two consistent with criteria for SD-MMEJ. Ourworkflow allows us to
obtain Cas9 null-segregants with bi-allelic mutations in the T2
generation. Moreover, it is compatible with a dual sgRNA approach,
leading to deletion of gene fragments and greater confidence in
producing loss-of-function alleles.

MATERIALS AND METHODS

Design of sgRNAs
In general, sgRNAs were selected for specificity using CRISPR-P
(http://crispr.hzau.edu.cn/CRISPR/, Lei et al. 2014), taking into account
predicted on-target efficiencies using sgRNAscorer (https://crispr.med.
harvard.edu/sgRNAScorer/, Chari et al. 2015). An updated overview of
estimated sgRNA parameters by CRISP-OR (http://crispor.tefor.net/,
Haeussler et al. 2016) can be found in Table 1.

n Table 1 sgRNA parameters used in this study

Name Type1 Protospacer + PAM Specificity2 Chari3 Doench4
Mor.-

Mateos5
Observed
efficiency6

Efficiency
median7 Chimerism8

VQ33-42 trugRNA G-N18 GATGAGGAGATA
TTATCTG AGG

95 79 72 57 75,0 92,2 5,4

VQ33-38 starts
with G

G-N19 GCCTTAACGTATT
GATCATT AGG

96 2 36 28 84,4 94,6 5,9

VQ33-1 starts
with G

G-N19 GGGTCATCGTTGC
TTCTCAG TGG

100 58 66 56 75,4 94,2 4,5

VQ19-6 starts
with G

G-N19 GGGACTGTTAAGT
GCAAGCT TGG

99 28 48 45 34,4 19,6 3,5

VQ19-34 starts
with G

G-N19 GCGGAGAGTCTG
GAGATCTT GGG

99 60 44 50 66,1 82,3 7,6

GRXS17-4 starts
with G

G-N19 GACCTTCGAGCC
GAGCTCGG AGG

100 99 64 58 67,3 83,2 4,2

GLB3-3 starts
with G

G-N19 GATAAGGCATCGG
TGTTAAG CGG

100 88 62 56 77,7 96,1 6,6

JAM2-109 starts
with G

G-N19 GGAGATTTGGTT
CTCTGTTG GGG

97 31 48 53 88,6 97,7 3,4

JAM2-140 extra G G-N20 TATTGCAGAGAG
CCTAAAGA AGG

96 80 56 36 26,4 4,5 2,5

GRXS17-133 extra G G-N20 CTTGATAACTTGC
GCCAGAG CGG

84 86 62 57 NA NA NA

GRXS17-67 extra G G-N20 ATTATGGAGCTAA
GTGAGAG TGG

98 87 63 28 NA NA NA

WRKY20-201 extra G G-N20 ACTTCCCAAAATG
ACTCCAG AGG

100 97 69 64 NA NA NA

WRKY20-39 starts
with G

G-N19 GTATGGCTGCACA
AGAAGAA AGG

96 90 54 42 NA NA NA

1, type of sgRNA depending on the position of the starting guanine nucleotide. 2, CRISPOR specificity score (0-100). 3, predicted efficiency score (0-100) by Chari et al.
(2015). 4, predicted efficiency score (0-100) by Doench et al. (2014). 5, predicted efficiency score (0-100) by Moreno-Mateos et al. (2015). 6, observed efficiency
(percentage of cells not WT) as the average efficiency indicated by TIDE T1 seedlings. 7, median efficiency indicated by TIDE T1 seedlings. 8, chimerism indicated as
the average number of alleles present $ 1% in a T1 plant. NA, not applicable.
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Cloning of CRISPR/Cas9 constructs
CRISPR/Cas9constructswereclonedaspreviouslydescribed (FigureS1,
Fauser et al. 2014, Ritter et al. 2017). Briefly, for each guide sequence,
two complementary oligos with 4bp overhangs (Supplementary Table
S1) were annealed and inserted via a cut-ligation reaction with BbsI
(Thermo) and T4 DNA ligase (Thermo) in a Gateway ENTRY sgRNA
shuttle vector. This is either pEN-C1.1 (Fauser et al. 2014) for single
sgRNA constructs, or pMR217 (L1-R5) and pMR218 (L5-L2) (Ritter
et al. 2017) for the dual sgRNA approach. The 59 overhang already
contains the G initiation nucleotide of the AtU6-26 polIII promoter.
Next, using a Gateway LR reaction (ThermoFisher), one or two sgRNA
modules were then combined with pDE-Cas9 (Basta, Fauser et al 2014)
or pDE-Cas9Km (pMR169, Ritter et al. 2017) to yield the final expres-
sion clone.

Plant transformation
Expression clones were introduced in the Agrobacterium strain C58C1
(pMP90) using electroporation, which was used to transform Arabi-
dopsis using the floral dip method (Clough and Bent 1998).

Plant Material and Growth Conditions
Arabidopsis thaliana Col-0 were grown at 21� under long day (16-h
light/8-h dark) conditions. Rapid selection of seeds with kanamycin
and phosphinothricin (BASTA) selection was performed as described
(Harrison et al. 2006).

Selection of CRISPR/Cas9 mutants
Typically, 16 kanamycin- or BASTA-resistant T1 plants are selected
in vitro and transferred to a growth room. After 14 days, a single leaf is
harvested, and genomic DNA prepared using Edwards buffer (Edwards
et al. 1991). Next, 5 ml template gDNA was used as a template in a
standard 20 ml volume PCR reaction using GoTaq (Promega) with the
supplied Green GoTaq Reaction Buffer. For single sgRNA constructs,
the amplicon was treated with ExoSAP-IT (Thermo) and sequenced by
standard capillary sequencing at the VIB Genomics Core Facility
(https://corefacilities.vib.be/gsf). Quantitative sequence trace data were
decomposed using TIDE (https://tide.nki.nl/) using standard settings,
except for the indel size range, which was set on the maximum (50).
Primers for TIDE were designed using Primer3 (http://bioinfo.ut.ee/
primer3-0.4.0/) using standard parameters. Approximately 700 bp
asymmetrically surrounding the Cas9 cut site was amplified. The am-
plification primer at 200 bp from the site was used for sequencing.

For each independent T1 line, approximately 64 T2 seeds were
selected on either BASTAor kanamycin. Resistant vs. sensitive seedlings
were analyzed using a chi-squared test and lines presumably having a
single T-DNA locus continued. Typically, 15 seedlings of the most
promising line (highest T1 efficiency, expected segregation)were grown
on non-selective media and genotyped for the presence of the T-DNA
locus using Cas9-specific primers (Table S1). Cas9 null-segregants are
then analyzed for modifications at the locus of interest. The most
promising plants are then propagated to T3, in which absence of
Cas9 and presence of the mutation/deletion is confirmed by PCR
and sequencing.

Amplicon subcloning
For confirmation of TIDE spectra, the PCR amplicon was cut from
gel, purified using GeneJET PCR purification kit (Thermo Scientific)
and cloned into pJET1.2 using the CloneJET PCR cloning kit
(Thermo Scientific). Individual clones were sequenced using cap-
illary electrophoresis.

RT-qPCR
Seedlings were grown in the same conditions as in Iñigo et al. (2016).
Seedlings were frozen in liquid nitrogen and total RNA was extracted
using RNeasy plant mini kit (Qiagen) and DNAse I (Promega) treat-
ment. Next, 1mg of RNAwas used for cDNA synthesis using iScript kit
(Bio-Rad). qRT-PCR was performed on a LightCycler 480 system
(Roche) using the Fast Start SYBR Green I PCRmix (Roche) with three
biological repeats and three technical repeats. Data were analyzed using
the second derivative maximum method and relative expression levels
were determined using the comparative cycle threshold method.

Data and reagent availability
Vectors and plant lines are available upon request. Primer sequences are
provided in Supplemental Table S1. Accession numbers of the genes used
in this study: GRXS17, AT4G04950; VQ19/MVQ4, AT3G15300; VQ33/
MVQ3, AT5G53830; WRKY20, AT4G26640; WRKY2, AT5G56270;
JAM2/bHLH13, AT1G01260; GLB3, AT4G32690. T-DNA lines used:
grxs17-1, SALK_021301; wrky2-1, SALK_020399. All supplemental ma-
terial available at Figshare: https://doi.org/10.25387/g3.6455840.

RESULTS

High gene editing efficiency in T1 somatic tissue
The vector pDE-Cas9 has successfully been used for gene editing
(GE) in Arabidopsis (Fauser et al. 2014). It contains an Arabidopsis
codon-optimized SpCas9 sequence, driven by the Petroselinum
crispumUbiquitin4-2 promoter (pPcUBI). As kanamycin resistance
is used more often in our lab, both in Arabidopsis and in tomato, we
used pDE-Cas9Km (Ritter et al. 2017) in which the basta resistance
cassette in pDE-Cas9 is replaced with nptII (Figure S1). In order to
evaluate these vectors, we initially designed nine sgRNAs targeting five
genes of interest: JASMONATE ASSOCIATED MYC2 LIKE 2 (JAM2,
Sasaki-Sekimoto et al. 2013), VQ19 and VQ33 (Jing and Lin 2015),
HEMOGLOBIN 3 (GLB3) and GLUTAREDOXIN S17 (GRXS17)
(Nagels Durand et al. 2016). sgRNAs were designed tominimize possible
off-target activity (Lei et al. 2014), and when possible predicted sgRNA
efficiencies were taken into account (Chari et al. 2015). An updated
overview of estimated sgRNA parameters by CRISP-OR (http://crispor.
tefor.net/, Haeussler et al. 2016) can be found in Table 1. Although it is
currently unknown if the models for sgRNA efficiency, based on em-
pirical data from metazoan cells holds true in plants, we anticipate
that at least some sgRNA sequence parameters will be similar as
CRISPR/Cas9 is a fully heterologous system. To better ensure the
generation of loss-of-function alleles, sgRNAs were preferably chosen
in the 59 end of the first exon (Figure 1). In the case of JAM2, we
specifically designed two sgRNAs that targeted the sequence encoding
the JAZ interaction domain (JID) (Fernández-Calvo et al. 2011).

The sgRNA cloning procedure (Figure S1A) uses the type II restric-
tion enzymeBbsI andutilizes a 59ATTGoverhangofwhich theG serves
as the first nucleotide of the sgRNA when transcribed by the polymer-
ase III promoter AtU6-26. Most sgRNAs were of the GN19-type with
the 59G being the first transcribed base of a 20-bp long guide sequence.
One sgRNA, JAM2-140, was of the GN20-type. An extra 59 G or GG
attached to the sgRNA should not hinder efficiency (Cho et al. 2014).
Another sgRNA VQ33-42, was a GN18-type. Truncated sgRNAs
(tru-gRNAs) down to a 17bp guide sequence have been shown to be
as efficient as 20bp guides in human cells (Fu et al. 2014).

For each single sgRNA construct, approximately 15 T1 Arabidopsis
plants were selected on basta or kanamycin respectively. One of the first
true leaves was harvested for genomic DNA extraction. A region
spanning the predicted cut site was amplified by PCR and the amplicon
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sequenced by traditional Sanger sequencing.ArabidopsisCRISPR/Cas9T1
plants are typically chimeric, defined as having at least three different alleles
for a locus (Feng et al. 2014). Different cell files showed different indels in
both alleles after NHEJ-mediated repair, leading to a range of detectable
indels in a single leaf and a complex chromatogram. The quantita-
tive sequence trace data were therefore decomposed using the Tracking of
Indels byDEcomposition (TIDE) software (https://tide.nki.nl/) (Brinkman
et al. 2014). This results in an estimation of overall editing efficiency
(percentage of cells not WT) and the spectrum and frequency of the
dominant indel types (See Figure 1B for an example forGLB3). Subcloning
of amplicons followed by sequencing yielded similar profiles (Figure 1C).
Furthermore, examination of genomic DNA of different leaves yielded
comparable but not identical patterns (Figure S2).

All but one sgRNA had high editing efficiencies with the median
efficiency being higher than 80% (Figure 2A). Notably, VQ33-38, the
sgRNA predicted by all three algorithms to have the worst efficiency
(Table S2) had one of the highest efficiencies in planta. Next, we used
the data generated, to investigate chimerism in the T1 plants. The most
frequently observed mutation is a 1 bp insertion, followed by deletions
of increasing size (Figure 2B). Large insertions were very uncommon.
However, depending on the sgRNA larger deletions of a particular size
were often observed. Potentially this is related to MMEJ, whereby

regions of microhomology help initiate polymerase Q repair by anneal-
ing of single-stranded DNA overhangs (Black et al. 2016, Shen et al.
2017). In summary, we show high rates of CRISPR/Cas9 mutagenesis
in Arabidopsis T1 somatic tissue formost tested sgRNAs and that TIDE
is a robust method to evaluate sgRNA efficiency.

Inheritance of mutations
Focusing on GLB3, we investigated the heritability of mutations after
selfing and selected for T2 progeny that had lost the T-DNA (Cas9 null-
segregants). First, we identified three T1 lines with a single T-DNA locus
by segregation analysis of the kanamycin resistance marker in T2 seed-
lings. Of these three lines we germinated 14 to 17 seedlings on soil,
prepared genomic DNA and genotyped using Cas9 specific primers to
identify null-segregants (Figure 3A). The genomic DNA of these plants
was re-used to amplify the target site and sequencing data were analyzed
using TIDE to identify genotypes at the target locus. All 15 tested null-
segregants were found to be non-chimeric: 8 were WT, 5 heterozygous
and 2 were homozygous. Hence, inheritedmutations were present in the
T2 progeny of all three independent T1 lines. Although we only detected
the desired homo-allelic Cas9 null-segregants in the progeny of one T1
line, heterozygous alleles will lead to the desired genotypes in the next
generation. An outcome also overrepresented in T1 somatic mutations

Figure 1 CRISPR/Cas9-induced somatic mutations in T1 Arabidopsis plants. A, genomic structure of the targeted genes and location of the
sgRNAs. Dark green boxes designate exons; light green boxes, UTRs; solid lines, introns; white arrows gene orientation. sgRNA numbers are
arbitrary identifiers. B, example result of a TIDE analysis. A leaf of a T1 plant expressing a CRISPR/Cas9 construct targeting GLB3 was used to
prepare genomic DNA. The targeted region was amplified by PCR and sequenced using standard Sanger sequencing. TIDE software was used to
visualize the indel spectrum and estimate overall editing efficiency (top right corner). Bars indicate the number of sequences with a given indel
size. Pink bar (indel size of zero) represents WT or base substitution alleles. C, Verification of TIDE using sequencing of individual amplicon
subclones. The PAM is highlighted in green, the triangle points to the Cas9 cut site. i, insertion, d, deletion, m, mutation are followed with the
number of bases involved.
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for GLB3, and frequently observed in the inherited mutations from in-
dependent events was a 10 bp deletion, indicative of alt-EJ (Figure 3B).
Lastly, we identified a heritable T to A substitution which led to a single
nucleotide variation (SNV) and here results in a premature stop codon
(Figure 3B and 3C). This occurs when a single bp deletion is followed by
a single bp insertion, an event very rarely observed for CRISPR/Cas9
(Kim et al. 2017). In conclusion, the pDE-Cas9 vectors allow for efficient
and inheritable genome editing in Arabidopsis with the possibility of
producing transgene free homo-allelic mutants in the T2 generation.

Isolation of a new grxs17 CRISPR allele
Previously we characterized in detail two independent knock-out alleles
of GRXS17, a gene encoding a component of the FeS cluster assembly
pathway (Iñigo et al. 2016). The allele grxs17-1 (SALK_021301) con-
tains a T-DNA in the second exon (Figure 4A), whereas the grxs17-2
allele expresses an antisense construct (Cheng et al. 2011).

A T1 parental line described above that showed high editing
efficiency (97.3%) in somatic tissue and had a single T-DNA locus
was identified (Figure 4B). Two Cas9 null-segregants of the T2 progeny
were genotyped using TIDE (Figure 4C). This yielded the grxs17-3 allele
that was predicted to have a (-8,-8) genotype. Inspection of the se-
quence in T3 plants revealed an additional 4 base pair insertion, nev-
ertheless leading to loss of the reading frame (Figure 4D). Using
RT-qPCR, we could observe strong downregulation (�80%) of the
entire GRXS17 transcript (Figure 4E). This is probably the result of
nonsense-mediated decay (NMD), a process triggering mRNA degra-
dation in case a premature stop codon is present (Popp and Maquat
2016). However, as there is no exon-exon boundary 39 of the prema-
ture stop codon, this can be a case of exon-junction complex (EJC)-
independent NMD, wherein NMD is triggered by a long 39 UTR
(Fatscher et al. 2014). Remarkably, the elongated leaf developmental
phenotype present in both grxs17-1 and grxs17-2 was not visible in
grxs17-3 (Figure 4F). GRXS7 is a multidomain protein with an

N-terminal thioredoxin (TRX) domain followed by three glutaredoxin
(GRX) domains (Figure 4A). The human GRX3 ortholog has only
2 GRX domains, whereas the yeast Grx3/Grx4 orthologs have only
one GRX domain (Couturier et al. 2015). We hypothesize that
the grxs17-3 allele is not a null allele and possibly expresses a
C-terminally truncated GRXS17 protein with a functional TRX and
GRX domain.

A dual sgRNA approach for gene deletions
Choice of the sgRNA target site is pivotal in generating a reliable knock-
out. Genes can contain alternative start codons, have alternative first
exon usage, exon skipping and/or C-terminally truncated proteins and
therefore might still be partially functional as exemplified above.
In-depth knowledge on the gene structure, transcript and protein is
therefore advisable. However, in many cases this information is not
complete. Therefore, we examined in Arabidopsis a dual sgRNA ap-
proach in which two sgRNAs target the same gene to remove a large
segment (Chen et al. 2014, Zhang et al. 2016, Ordon et al. 2017, Durr
et al. 2018).

Using aMultiSite Gateway based sgRNAmultiplexing approach we
previously described (Ritter et al. 2017) we co-expressed two sgRNAs in
pDE-Cas9Km. We used this method to target the gene encoding the
transcription factorWRKY20, which is closely related toWRKY2, with
two sgRNAs. For the latter, a characterized T-DNA insertion mutant
wrky2-1 is available representing a strong loss-of-function or null allele
(Ueda et al. 2011). We transformed the wrky2-1 background with a
dual sgRNA construct for WRKY20, predicted to remove a 247 bp
fragment encoding the first WRKY protein domain in addition to
putting the remainder of the sequence out of frame (Figure 5A). With-
out any phenotypic selection, we applied the same workflow as before.
We selected four independent T1 lines showing high levels of the
expected deletion and containing a single T-DNA locus (Figure
5B). For each line, one or more null-segregants were identified in

Figure 2 High gene editing efficiency in Arabidop-
sis T1 generation. A, boxplots showing TIDE esti-
mated editing efficiencies for up to 15 T1 plants for
nine different sgRNAs. +, mean; horizontal line,
median; open circles, individual data points. B, heat
map showing the number of T1 plants with at least
1% estimated frequency of an indel of a given size.
Boxed are larger deletions (. 6 bp) observed in 5 or
more T1 plants.
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T2 (Figure 5C) and genotyped for theWRKY20 locus. Of seven Cas9
null-segregants successfully genotyped, two plants were homozy-
gous for the expected deletion, three heterozygous and two wild-
type (Figure 5D). Sequence analysis of two homozygous deletion
mutants showed that wrky2-1 wrky20-1 (plant A15-8) had the pre-
dicted 247 bp deletion, whereas the other allele wrky2-1 wrky20-2
(plant B2-5) only had a 246 bp segment deleted, possibly restoring
the reading frame (Figure 5E). This shows that a dual sgRNA ap-
proach for deleting gene fragments is feasible with relatively few
numbers of genotyped plants.

Next, we combined two sgRNAs targeting VQ33 (VQ33-42 and
VQ33-1) that displayed high efficiencywhen tested individually (Figure
2). Working together, they are predicted to remove a fragment of
459 bp, virtually removing the VQ33 coding sequence (Figure S3A).
We proceededwith the same workflow as forWRKY20 (Figure S3B-D).
Out of four Cas9 null-segregants, two were homozygous for the
expected gene fragment deletion, one heterozyogous and one WT.
The allele vq33-1 (plant 11-8), albeit it had an extra 1 bp insertion, still
led to a 458 bp out-of-frame deletion (Figure S3E).

In summary, we established a straightforward dual sgRNAapproach
to obtain plants homozygous for relatively large deletions of gene
fragments in the T2 generation in Arabidopsis thaliana.

grxs17-4 confirms the grxs17-1
developmental phenotype
Next, we tried the dual sgRNA approach for GRXS17. We targeted the
first sgRNA (GRXS17-133) at the 59 end and the second sgRNA
(GRXS17-67) at the 39 end of the gene to remove 1953 bp and GRXS17
almost entirely (Figure 6A). The GRXS17 locus was amplified for six-
teen independent T1 plants using primers spanning the expected de-
letion. In comparison withVQ33 andWRKY20, only two plants clearly
showed bands of the expected size for the predicted deletion (Figure
6B). Two identified Cas9-null segregants (Figure 6C) did not show the
expected large deletion, but instead an indel was found at the first
sgRNA site in the first exon leading to a frameshift (Figure 6D). The
indel remarkably was a 30bp deletion combined with a 2bp insertion.
We named this allele grxs17-4. Confirming our hypothesis that grxs17-3
is indeed not a null allele, grxs17-4 showed the leaf phenotype of grxs17-1
and grxs17-2 (Iñigo et al. 2016, Figure 6E). In conclusion, in the event the
dual sgRNA approach does not yield the designed gene fragment dele-
tion, each individual sgRNA may lead to useful alleles.

Inherited mutations generated by synthesis-
dependent MMEJ
It struckus that threeof thefinalmutantalleles (glb3-3,grxs17-3,grxs17-4)
we generated with a single sgRNA showed hallmarks of repair by alt-EJ.
However, atypical for MMEJ, additional insertions were observed for
grxs17-3 and grxs17-4. Therefore, we analyzed the repair outcomes with
criteria for SD-MMEJ, a model proposed for polymerase theta(PolQ)-
mediated repair which also explains templated insertions (Khodaverdian
et al. 2017). In this model, ends are resected at the DSB, after which
microhomology regions called “primer repeat” (P1+P2) anneal via loops
or hairpins to a region within 30 bp of the break. PolQ presumably then
elongates the strand until anothermicrohomology (MH1) is synthesized
that has a counterpart (MH2) at the other side of the DSB, which then
anneal to repair the break (Khodaverdian et al. 2017). In case for
grxs17-3 and grxs17-4 we discovered that insertions could have been
templated by neighboring sequences (Figure 7 and Figure S4). In both
cases, a primer repeat was present upstream of the cut site, which after
‘loop out’ formation was elongated with 5 and 3 bp respectively. In both
cases the microhomology repeat only consisted out of a single base,
which nevertheless fits criteria for SD-MMEJ (Khodaverdian et al.
2017). A direct repeat can be observed (mh+insert+p) of 9 and 7 bp
respectively. In summary, themodel for SD-MMEJ is capable of explain-
ing the observed inherited alt-EJ-associated mutations. This suggests a
role for PolQ in DSB-repair in the Arabidopsis germline.

DISCUSSION

Efficient CRISPR/Cas9 gene editing in Arabidopsis
The CRISPR/Cas9 technology shows promise to speed up reverse
genetics experiments in Arabidopsis. Here we demonstrate efficient
recovery of Cas9-free Arabidopsis mutants using single and double
sgRNA constructs in the T2 generation without phenotypic selection.
Previous negative experiences with CRISPR/Cas9 have been attributed
to the weak activity of the 35S promoter in germ-line cells (Wang et al.
2015) or low activity of SpCas9 at 21� (LeBlanc et al. 2018). The pro-
moter used here, PcUBI, is expressed widely, but detailed expression in
germ-line cells has not yet been studied (Kawalleck et al. 1993). Other
vector elements have been reported to play a role such as the vector
backbone (Mao et al. 2016), Cas9 coding sequence (Johnson et al. 2015)
and the terminator sequence (Wang et al. 2015). We did not observe
any obvious differences using either nptII or bar as selection markers.
Systematic analysis of all vector parameters is now achievable using

Figure 3 Inheritance of CRISPR/Cas9 mutations. A, PCR amplification of
the Cas9 transgene in T2 seedlings from 3 independent GLB3 lines: -1, -2
and -8. Genotypes for all Cas9 null-segregants were estimated using TIDE.
NA, not assayed; WT, wild-type; m1, 1bp substitution. Boxed plants were
continued. B-C, Sequence alignment of the targeted locus for Col-0 and
glb3-3 (B, Line 1, plant 3) or glb3-4 (C, Line 1, plant 7). PAM is highlighted,
the Cas9 cut site indicated with a triangle, and microhomology boxed.
Mutated bases are in red, deleted bases replaced by a dash. The reading
frame is marked. The stop codon generated by the mutation is underlined.
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modular cloning systems, which might allow identification of the best
combinations (Vazquez-Vilar et al. 2016).

We consider the workflow presented here as already an acceptable
workload comparable to the routine generation of overexpression lines
(Figure S5). Nonetheless, several improvements have recently been de-
veloped.Forexample, afluorescentmarker for identificationof transgenic
T1 seeds has been reported (Tsutsui and Higashiyama 2017) and also
cloned into pDE-Cas9 for CRISPR/Cas9 in Camelina sativa (Morineau
et al. 2017, Durr et al. 2018).WhenCas9 is driven with a promoter active
in the egg cell, non-chimeric homozygous or bi-allelic mutants can
already be retrieved in the T1 generation, although Cas9 null-segregants
also only appear in T2 (Wang et al. 2015, Yan et al. 2015,Mao et al. 2016,
Eid et al. 2016). Finally, applying 37� heat treatments in the vegetative
phase may improve SpCas9 activity and would be compatible with our
workflow (LeBlanc et al. 2018).

TIDE as a useful tool to study mutations
Efficiency of CRISPR/Cas9 also clearly depends on the choice of
sgRNA, although all sgRNAs tested in this study were active to some
degree. Several models have been constructed to predict on-target
editing efficiency based on the sgRNA primary sequence and
on-target efficiency data from metazoans (Doench et al. 2014,
Moreno-Mateos et al. 2015). Due to the lack of sufficient data, no
plant-specific design models are currently available. As previously
reported (Ordon et al. 2017), we did not observe any obvious cor-
relation between these predictions and our observed efficiencies in
Arabidopsis. It is unclear why this is the case for a heterologous
system such as CRISPR/Cas9. Therefore - for the time being - we
continue to take into account metazoan models when designing
plant sgRNAs. It has been suggested to pre-screen sgRNAs in pro-
toplasts (Li et al. 2014). Given the ease of Arabidopsis transforma-
tion via floral dip, we conclude from this study that designing

Figure 4 Generation and analysis of the grxs17-3 allele. A, Gene and protein structure of GRXS17. The location of the grxs17-1 T-DNA and the
sgRNA used in this study are indicated. Dark green boxes designate exons; light green boxes, UTRs; solid lines, introns. TRX, thioredoxin domain;
GRX, glutaredoxin domain. B, TIDE analysis of T1 line 9. Genomic DNA was PCR amplified and sequenced. The indel spectrum is visualized with
an estimated overall efficiency and the frequency of each indel. C, PCR amplification of the Cas9 transgene. Null-segregants are boxed and the
continued plant marked with a triangle. TIDE estimated genotypes for GRXS17 are given for the null segregants. D, Sequence alignment of the
targeted locus for Col-0 and grxs17-3 (Line 9, plant 15). PAM is highlighted, the Cas9 cut site indicated with a triangle. Mutated bases are in red,
deleted bases replaced by an en dash. The reading frame is marked. E, GRXS17 gene expression analyzed by RT-qPCR. Expression relative to
Col-0 is plotted using primers annealing both at the 59 and the 39 of the transcript and the mutation. F, rosette phenotypes of Col-0, the T-DNA
insertion line grxs17-1, the antisense line grxs17-2 and the grxs17-3 CRISPR allele.
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several sgRNAs for the same target and testing somatic mutations
in T1 might be an equally rapid method to identify efficient
sgRNAs, while simultaneously obtaining the desired mutants.

Several methods have been used to study CRISPR/Cas9-induced
mutations, most importantly cleaved amplified polymorphic se-
quence (CAPS), T7 endonuclease, next-generation sequencing and
high-resolution melting curve analysis (Denbow et al. 2017). The
method used here, TIDE (Brinkman et al. 2014), has several
advantages. First, it does not require a restriction enzyme site
overlapping the Cas9 cut site as in CAPS. Second, it allows the
starting genomic DNA to be relatively impure allowing for more
economic DNA extraction methods compared to T7-based assays.
Third, it uses standard capillary Sanger sequencing that can be readily
performed for even a single sample. Fourthly, it can provide an insight in
the indel spectrum of mosaics similar to next-generation sequencing as

well as providing an idea of overall efficiencies. These TIDE efficiencies
are likely an underestimation. For example, TIDE is unable to detect
rare SNVs as observed for glb3-4. The grxs17-3 allele also revealed
that mutations can be more complex than predicted by TIDE: a
predicted 8 bp deletion was actually a 12 bp deletion combined with
a 4 bp insertion.

Know your target gene
The absence of the typical grxs17 phenotype in the CRISPR allele
grxs17-3 is an example of how it is important to study independent
alleles made with either different sgRNAs or with other methods when
interpreting phenotypes of CRISPR/Cas9-generated alleles as knock-
out effects. A seemingly widespread, but only recently discovered phe-
nomenon is conditional alternative promoter selection, resulting in
alternative N-termini (Ushijima et al. 2017). This makes it difficult to

Figure 5 WRKY20 dual sgRNA approach. A, genomic structure of WRKY20 and location of the sgRNAs. Dark green boxes designate exons; light
green boxes, UTRs; solid lines, introns. B, PCR analysis of T1 lines. Leaf genomic DNA of 2 batches (A and B) of 20 chimeric T1 plants was PCR
amplified. The expected size of the WT WRKY20 amplicon is indicated as well as the expected size of the deletion of 247 bp between Cas9 cut
sites. Four continued T1 lines having one T-DNA locus are highlighted with green boxes. C, Cas9 PCR for the four continued lines in T2
generation. Putative Cas9 null-segregants are indicated with green boxes. D, Cas9 null-segregants were genotypes for WRKY20. The selected
lines A15-8 (wrky2-1 wrky20-1) and B2-5 (wrky2-1 wrky20-2) are boxed. E, Sequence alignment of the simultaneously targeted loci for Col-0 and
alleles wrky20-1 and wrky20-2. PAMs are highlighted, the Cas9 cut sites indicated with triangles. Deleted bases are indicated with dashed lines.
The reading frame is marked.
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predict if indels at the beginning of the first annotated exon will affect
all protein isoforms in all conditions. When sufficient information is
available, especially on alternative transcripts and protein domain
structures, sgRNA target sites can be chosen to maximize the chance
of a complete knock-out as a result of an indel mutation at that site.
Additionally, onemay disrupt the genemore dramatically by removing
a larger gene fragment using a dual sgRNA approach. The use of
CRISPR/Cas9 for gene deletion has been pioneered in mammalian
systems (Chen et al. 2014, Zhou et al. 2014, Ran et al. 2013, Canver
et al. 2014). In Arabidopsis, a dual sgRNA approach for gene deletion
was reported by Zhao et al. (2016) and Ordon et al. (2017). In Zhao
et al. homozygous deletion mutants were obtained for the AtMIR827a
andAtMIR169a loci in the T2 or T3 generation, respectively. The size of
the deletion and efficiency seem to correlate inversely in mammalian
cells (Canver et al. 2014) and plants (Ordon et al. 2017). Similarly, when
attempting to cut out a 1953 kb fragment in GRXS17, it failed to be
inherited, while clearly being present in T1 somatic cells. In contrast,
247 bp and 459 bp fragment deletions were easily obtainable for
WRKY20 andVQ33 respectively. Therefore, while deleting whole genes
might be tempting, it ismore practical targeting genes with two sgRNAs
in the 59 coding sequence. This has the additional advantage, that when
one sgRNA has a low efficiency, the construct will still yield potential
knock-out mutations at the other sgRNA site. It has been proposed
from work in tomato protoplasts that in most cases when a single
sgRNA is used, NHEJ results in perfect repair and therefore using

two sgRNAs could be more efficient to obtain mutants (�Cermák
et al. 2017). Finally, the double-sgRNA approach has an advantage of
easy visual genotyping of mutants based on amplicon lengths.

New alleles for GRXS17
GRXS17 encodes the Arabidopsis ortholog of human GRX3/PICOT
and yeastGrx3/Grx4. Although a role for GRXS17 in iron-sulfur cluster
assembly is conserved in all of these organisms, plant-specific functions
for GRXS17 are apparent (Iñigo et al. 2016, Knuesting et al. 2017).
Interestingly, AtGRXS17, HsGRX3 and ScGrx3/4 differ in the number
of GRX domains that are C-terminal of the TRX domain with three,
two and one domain present, respectively. The new grxs17-3 allele
presented here might have residual expression of a truncated GRXS17
with only one GRX domain—similar to ScGrx3/4—and could there-
fore be helpful in studying plant-specific GRXS17 roles. More detailed
molecular and phenotypical analysis of this allele and the other alleles
generated in this study are not within the scope of this publication.

A role for SD-MMEJ in the Arabidopsis germ line?
Weobserved that - independent of the sgRNA and of the genomic locus
–DSB repair in somatic cells predominantly results in one bp insertions
and is followed by deletions of increasing size. These are typical out-
comes of the cNHEJ repair pathway and confirm earlier reports (Fauser
et al. 2014, Feng et al. 2014). We also observed that for certain sgRNAs
a relatively larger deletion of a particular size (7-14 bp) was more

Figure 6 A dual sgRNA approach for GRXS17. A,
genomic structure of GRXS17 and location of the
sgRNAs. Dark green boxes designate exons; light
green boxes, UTRs; solid lines, introns. B, PCR anal-
ysis of T1 lines. Leaf genomic DNA of 16 chimeric T1
plants was PCR amplified. The expected size of the
WT GRXS17 amplicon is indicated as well as the
expected size of the deletion of 1953 bp between
Cas9 cut sites. One T1 line having one T-DNA locus
that was continued is highlighted with a green box.
C, Cas9 PCR for 8 T2 CRISPR plants. Putative Cas9
null-segregants are indicated with green boxes. D,
Sequence alignment of the sequence surrounding
the 59 sgRNA site for Col-0 and grxs17-4 (Line 2,
plant 8). PAM is highlighted, the Cas9 cut site in-
dicated with a triangle. Mutated bases are in red,
deleted bases replaced by an en dash. The reading
frame is marked. E, representative rosette pheno-
types of WT Col-0 (top) and grxs17-4 (bottom).
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frequently observed than for other sgRNAs in somatic cells. These dele-
tions are likely the result of alt-EJ-mediated repair that takes place in
somatic cells, albeit at lower low levels. Remarkably, inherited mutations
often showed hallmarks of alt-EJ.More precisely, we could show that two
alleles studied here fulfilled all criteria for the model of SD-MMEJ repair.
This model explains the presence of templated insertions in grxs17-3 and
grxs17-4. The combination of deletions with insertions (“filler DNA”) for
DSB repair in plants was first reported in tobacco (Gorbunova & Levy
1997; Salomon & Puchta 1998). More recently, a related observation
in Arabidopsis called microhomology-mediated synthesis-dependent
strand annealing (MM-SDSA) was reported when studying CRISPR/
Cas9-mediated DSB repair in regions with homology in somatic cells
(Vu et al. 2017a, Vu et al. 2017b). However, while in MM-SDSA longer
deletions and insertions were studied and reported (averaging 240 bp for
deletions, Vu et al. 2017a), 30 bp has been proposed for SD-MMEJ as a

limit of the P1 sequence from the cut site. This was rather arbitrarily
chosen as it corresponds to the binding capability of TRIMERIC
REPLICATION PROTEIN A (RPA) that binds and protects single
stranded DNA (Khodaverdian et al. 2017). Moreover, the TIDE
method used in our study limits detection up to 50 bp deletions.
Therefore, it is unclear at the moment if MM-SDSA and the
SD-MMEJ are the same or molecularly related. PolQ has been
suggested to mediate SD-MMEJ and was essential for templated
insertions in human cells (Yu and McVey, 2010, Saito et al. 2017).
The recent identification of Arabidopsis PolQ (van Kregten et al.,
2016) may allow studying the role for PolQ in SD-MMEJ in the
Arabidopsis germline. However, as polQ mutants are resistant to
T-DNA integration (van Kregten et al., 2016), they could not be
readily used in the workflow we present here to test the involvement
of polQ in SD-MMEJ in Arabidopsis.

Figure 7 grxS17-3 is explained by loop out SD-MMEJ. A, GRXS17 wild-type sequence surrounding the Cas9 cut site, which is indicated with a
triangle. Primer repeat (P) regions are indicated in red with P2 break-proximal. Microhomology repeats (MH) are indicated in green. B, End
resection by 59-39 nuclease activity and unwinding by helicase activity. C, loop formation by P1-P2 basepairing. D, templated elongation by
polymerase activity. E, unwinding. F, annealing of mh2 with mh1 templated complimentary overhang. G, observed repair product in grxs17-3.
Inserted nucleotides in blue, resulting direct repeat underlined.
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