368 research outputs found

    On the tesseral-harmonics resonance problem in artificial-satellite theory

    Get PDF
    The longitude-dependent part of the geopotential usually gives rise only to short-period effects in the motion of an artificial satellite. However, when the motion of the satellite is commensurable with that of the earth, the path of the satellite repeats itself relative to the earth and perturbations build up at each passage of the satellite in the same spot, so that there can be important long-period effects. In order to take these effects into account in deriving a theoretical solution to the equations of motion of an artificial satellite, it is necessary to select terms in the longitude-dependent part of the geopotential that will contribute significantly to the perturbations. Attempts made to obtain a selection that is valid in a general case, regardless of the initial eccentricity of the orbit and of the order of the resonance, are reported. The solution to the equations of motion of an artificial satellite, in a geopotential thus determined, is then derived by using Hori's method by Lie series, which, by its properties regarding canonical invariance, has proved advantageous in the classical theory

    On the Tesseral-Harmonics Resonance Problem in Artificial-Satellite Theory, Part 2

    Get PDF
    Equations were derived for the perturbations on an artificial satellite when the motion of the satellite is commensurable with that of the earth. This was done by first selecting the tesseral harmonics that contribute the most to the perturbations and then by applying Hori's method by use of Lie series. Here, are introduced some modifications to the perturbations, which now result in better agreement with numerical integration

    Towards an integrated management of water resource issues in the Dyle catchment (Scheldt basin, Belgium): the European MULINO project (MULti-sectoral, INtegrated and Operational decision support system for sustainable use of water resources at the catchment scale)

    Get PDF
    The pressure on water resources is continuously increasing in Europe. If a great deal of scientific knowledge is available in many fields, this knowledge is often treated in isolation. To support the scientific basis for integrated water management, the MULINO project, an acronym for MULti-sectoral, Integrated and Operational decision support system (DSS) for the sustainable use of water resources at the catchment scale, funded by the European Union, is currently executed. The purpose of the MULINO project is to provide a tool to improve the integrated management of water resources at the catchment scale, following the requirements of the EU Water Framework Directive (WFD, J.O.CE, 2000). The DSS developed is a computer system based on hydrological modelling, multi-disciplinary indicators and multi-criteria evaluation procedures. The underlying design of the DSS is based on the Driving Forces-Pressures-State-Impact-Responses framework for reporting on environmental issues (EEA, 1999; OECD, 1993). One case study is the 700 km² Dyle catchment situated in the centre of Belgium (50°38N 4°45E) and part of the Scheldt basin. A coupling of an integrated hydrological model (SWAT: Soil and Water Assessment Tool, Arnold et al., 1993) with land use change modelling (SFARMMOD, Audsley et al., 1979) is developed in close collaboration with local end users and stakeholders. This work will provide a useful tool to analyse water resources management alternatives and to assist local managers in complex problems such as flooding, nitrate and pesticides contamination of waters, as to identify solutions for the implementation of the WFD at the catchment scale

    Short wavelength topography on the inner-core boundary

    Full text link
    Constraining the topography of the inner-core boundary is important for studies of core–mantle coupling and the generation of the geodynamo. We present evidence for significant temporal variability in the amplitude of the inner core reflected phase PKiKP for an exceptionally high-quality earthquake doublet, observed postcritically at the short-period Yellowknife seismic array (YK), which occurred in the South Sandwich Islands within a 10-year interval (1993/2003). This observation, complemented by data from several other doublets, indicates the presence of topography at the inner-core boundary, with a horizontal wavelength on the order of 10 km. Such topography could be sustained by small-scale convection at the top of the inner core and is compatible with a rate of super rotation of the inner core of ≈0.1–0.15° per year. In the absence of inner-core rotation, decadal scale temporal changes in the inner-core boundary topography would provide an upper bound on the viscosity at the top of the inner core

    LARGE SCALE THREE DIMENSIONAL P VELOCITY STRUCTURE BENEATH THE WESTERN U,S. AND THE LOST FARALLON PLATE

    Get PDF
    Abstract. The results of a recent large scale three-dimensional study of P velocity beneath North America are analyzed from the point of view of the search for the fossil Farallon plate in the mantle beneath the western edge of the North American continent

    Uncertainty, sensitivity analysis and the role of data based mechanistic modeling in hydrology

    Get PDF
    International audienceIn this paper, we discuss the problem of calibration and uncertainty estimation for hydrologic systems from two points of view: a bottom-up, reductionist approach; and a top-down, data-based mechanistic (DBM) approach. The two approaches are applied to the modelling of the River Hodder catchment in North-West England. The bottom-up approach is developed using the TOPMODEL, whose structure is evaluated by global sensitivity analysis (GSA) in order to specify the most sensitive and important parameters; and the subsequent exercises in calibration and validation are carried out in the light of this sensitivity analysis. GSA helps to improve the calibration of hydrological models, making their properties more transparent and highlighting mis-specification problems. The DBM model provides a quick and efficient analysis of the rainfall-flow data, revealing important characteristics of the catchment-scale response, such as the nature of the effective rainfall nonlinearity and the partitioning of the effective rainfall into different flow pathways. TOPMODEL calibration takes more time and it explains the flow data a little less well than the DBM model. The main differences in the modelling results are in the nature of the models and the flow decomposition they suggest. The "quick'' (63%) and "slow'' (37%) components of the decomposed flow identified in the DBM model show a clear partitioning of the flow, with the quick component apparently accounting for the effects of surface and near surface processes; and the slow component arising from the displacement of groundwater into the river channel (base flow). On the other hand, the two output flow components in TOPMODEL have a different physical interpretation, with a single flow component (95%) accounting for both slow (subsurface) and fast (surface) dynamics, while the other, very small component (5%) is interpreted as an instantaneous surface runoff generated by rainfall falling on areas of saturated soil. The results of the exercise show that the two modelling methodologies have good synergy; combining well to produce a complete modelling approach that has the kinds of checks-and-balances required in practical data-based modelling of rainfall-flow systems. Such a combined approach also produces models that are suitable for different kinds of application. As such, the DBM model can provides an immediate vehicle for flow and flood forecasting; while TOPMODEL, suitably calibrated (and perhaps modified) in the light of the DBM and GSA results, immediately provides a simulation model with a variety of potential applications, in areas such as catchment management and planning

    Rehydration of CTMA modified DNA powders observed by NMR

    Get PDF
    The rehydration of salmon sperm deoxyribonucleic acid (DNA) and cetyltrimethylammonium chloride (C19H42ClN)(C_{19}H_{42}ClN) complexes was observed using hydration kinetics, sorption isotherm, and high power proton relaxometry (at 30 MHz). The hydration kinetics shows (i) a very tightly bound water not removed by incubation over silica gel (A0hA_0^{h} = 0.061 ± 0.004), (ii) a tightly bound water saturating at A1hA_1^{h} = 0.039 ± 0.011, with the hydration time t1ht_1^{h} = (1.04 ± 0.21) h, a loosely bound water fraction (iii) with the hydration time t2ht_2^{h} = (19.1 ± 3.2) h and the contribution progressively increasing with the air humidity. For the hydration at p//p0p//p_0 = 100%, after t0t_0 = (152.6 ± 2.5) h of incubation the swelling process begins. The swelling time was t3ht_3^{h} = (12.5 ± 5.4) h, and the swelling amplitude A3hA_3^{h} = 0.140 ± 0.016. The sorption isotherm is sigmoidal in form and is fitted by the Dent model with the mass of water saturating primary binding sites Δ M/m0m_0 = 0.102 ± 0.021. Proton free induction decay is a superposition of the immobilized proton signal (Gaussian, with T2ST_{2S}* ≈ 30 μs) and two liquid signal components coming from tightly bound (T2L1T_{2 L_1}* ≈ 100 μs) and loosely bound water fraction with the amplitude proportional to the mass of water added (T2L2T_{2 L_2}* ≈ 1000 μs)

    Reverse Detection of Short-Term Earthquake Precursors

    Full text link
    We introduce a new approach to short-term earthquake prediction based on the concept of selforganization of seismically active fault networks. That approach is named "Reverse Detection of Precursors" (RDP), since it considers precursors in reverse order of their appearance. This makes it possible to detect precursors undetectable by direct analysis. Possible mechanisms underlying RDP are outlined. RDP is described with a concrete example: we consider as short-term precursors the newly introduced chains of earthquakes reflecting the rise of an earthquake correlation range; and detect (retrospectively) such chains a few months before two prominent Californian earthquakes - Landers, 1992, M = 7.6, and Hector Mine, 1999, M = 7.3, with one false alarm. Similar results (described elsewhere) are obtained by RDP for 21 more strong earthquakes in California (M >= 6.4), Japan (M >= 7.0) and the Eastern Mediterranean (M >= 6.5). Validation of the RDP approach requires, as always, prediction in advance for which this study sets up a base. We have the first case of advance prediction; it was reported before Tokachi-oki earthquake (near Hokkaido island, Japan), Sept. 25, 2003, M = 8.1. RDP has potentially important applications to other precursors and to prediction of other critical phenomena besides earthquakes. In particular, it might vindicate some short-term precursors, previously rejected as giving too many false alarms.Comment: 17 pages, 5 figure

    Geo-neutrinos: A systematic approach to uncertainties and correlations

    Get PDF
    Geo-neutrinos emitted by heat-producing elements (U, Th and K) represent a unique probe of the Earth interior. The characterization of their fluxes is subject, however, to rather large and highly correlated uncertainties. The geochemical covariance of the U, Th and K abundances in various Earth reservoirs induces positive correlations among the associated geo-neutrino fluxes, and between these and the radiogenic heat. Mass-balance constraints in the Bulk Silicate Earth (BSE) tend instead to anti-correlate the radiogenic element abundances in complementary reservoirs. Experimental geo-neutrino observables may be further (anti)correlated by instrumental effects. In this context, we propose a systematic approach to covariance matrices, based on the fact that all the relevant geo-neutrino observables and constraints can be expressed as linear functions of the U, Th and K abundances in the Earth's reservoirs (with relatively well-known coefficients). We briefly discuss here the construction of a tentative "geo-neutrino source model" (GNSM) for the U, Th, and K abundances in the main Earth reservoirs, based on selected geophysical and geochemical data and models (when available), on plausible hypotheses (when possible), and admittedly on arbitrary assumptions (when unavoidable). We use then the GNSM to make predictions about several experiments ("forward approach"), and to show how future data can constrain - a posteriori - the error matrix of the model itself ("backward approach"). The method may provide a useful statistical framework for evaluating the impact and the global consistency of prospective geo-neutrino measurements and Earth models.Comment: 17 pages, including 4 figures. To appear on "Earth, Moon, and Planets," Special Issue on "Neutrino Geophysics," Proceedings of Neutrino Science 2005 (Honolulu, Hawaii, Dec. 2005
    • …
    corecore