ON THE TESSERAL-HARMONICS RESONANCE IN ARTIFICIAL-SATELLITE THEORY
 PART II B. A. ROMANOWICZ

Smithsonian Astrophysical Observatory SPECIAL REPORT 373

Research in Space Science SAO Special Report No. 373

ON THE TESSERAL-HARMONICS RESONANCE

 PROBLEM IN ATITIFICLAI-SATELLITE THEORYPart II

Barbara A. Romanowicz

March 10, 1976

Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 02138

TABLE OF CONTENTS

Page
ABS TRACT v
1 INTRODUCTION 1
2 NEW EXPKESSIONS OF THE PERTURBATIONS 3
2.1 Perturbing Function and Equations of Motion 3
2.2 First-Order Perturbations 9
2.3 Second-Order Perturbations 13
3 COMPARISON OF THE THEORY WITH A NUMERICAL INTEGRATION 17
4 ACKNOWLEDGMENT 21
5 REFERENCES 23
Appendix
A EXPRESSIONS OF $S_{1 / 2}$ AND ITS DERIVATIVES WITH RESPECT TO THE MODIFIED DELAUNAY VARIABLES. A-1
B DERIVATIVES OF $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$, AND $\psi\left(\mathrm{g}^{\prime}\right)$, AND SECOND DERIVATIVES OF ? ${ }^{\prime}\left(g^{\prime}\right)$ B-1

ILLUS'SRATION

Page
1 Variations of the errors over one oscillation. 19
TABLE
1 Errors in the action variables as computed over a period of 8 days. 18

Abstract

In Paper I, we derived equations for the perturbations on an artificial satellite when the motion of the satellite is commensurable with that of the earth. This was done by first selecting the tesseral harmonics that contribute the most to the perturbations and then by applying Hori's method by use of Lie series. Here, we introduce some modifications to the perturbations, which now result in better agreement with numerical integration.

ON THE TESSERAL-HIARMONICS RESONANCE

 PROBLEM IN AIRTIFICIAL-SATELLITE THEORY*
Part II

Barbara A. Romanowicz ${ }^{\dagger}$

1. INTIRODUCTION

If the gravitational potential of the earth is expanded in terms of Legendre polynomials and functions, then in order to obtain a good approximation in the determination of the orbit of an artificial satellite, it is usually sufficient to consider the zonal, longitude-free terms of the expansion. However, the influence of the tesseral terms becomes important when the mean motion of the satellite and the rate of rotation of the earth around its axis are in a simple ratio; this is called tosseral-harmonics resonance.

In Paper I (Romanovicz, 1975), a theory was derived to compute analytically the perturbations on the motion of an artificial satellite in the case of tesseral-harmonics resonance. In a comparis on with a numerical integration, however, some discrepancies appeared in the analytical method. After some modifications were made to the perturbation expressions, which we derive herein, the theory has proved to agree much better with numerical integration.

[^0]
Page intentionally left blank

2. NEW EXpressions of tie perturibations

2. 1 Perturbing Function and Equations of Motion

The gravitational potential of the earth at exterior points can be expressed as follows [cf. equations (1) and (2) of Paper I]:
$U(r, 0, \lambda)=\frac{\mu}{r}\left[1-\sum_{n=2}^{n} J_{n}\left(\frac{r}{r}\right)^{n} P_{n}(\cos 0)+\sum_{n=2}^{\infty} \sum_{m=1}^{n} J_{n, m}\left(\frac{r}{r}\right)^{n} P_{n, m}(\cos 0) \cos m\left(\lambda-\lambda_{n, m}\right)\right]$,
where ($r, 0, \lambda$) are spherical polar coordinates relative to the center of mass of the earth, the axis of rotation being the pole of coorclinates; μ ts the gravitational constant G times the mass of the earth; R is the mean equatorial radius of the earth; $P_{n}(z)$ is the $n^{\text {th }}$ Legendre polynomial; $P_{n, m}{ }^{(z)}$ are associated Legendre functions:

$$
P_{n, m}(z)=\left(1-z^{2}\right)^{m / 2} \frac{d^{n} P_{n}(z)}{d z^{n}} ;
$$

and J_{n} and $J_{n, m}$ are dimensionless coefficients related to the normalized coefficients $\bar{C}_{n, m}, \bar{S}_{n, m}$ by

$$
\begin{align*}
& J_{n, m}=\overline{J_{n, m}} \sqrt{2(2 n+1)(n-m)!/(n+m)!}, \quad m \neq 0, \\
& -J_{n}=C_{n, 0}=\sqrt{2 n+1} \overline{C_{n, 0}}, \tag{2}\\
& \overline{J_{n, m}} \cos m\left(\lambda-\lambda_{n, m}\right)=\overline{C_{n, m}} \cos m \lambda+\overline{S_{n, m}} \sin m \lambda
\end{align*}
$$

In choosing the perturbing function, we take the leading zonal harmonic (i.e., the one containing J_{2}) and we select those tesseral harmonics that, in the particular resonance bein; studied, give rise to long-period effects with the largest amplitude.

The general tesseral hirmonic can be developed in terms of the osculating elliptic elements ($n, e, I, s 2, \omega, M$), referred to the equator of the earth, in the form (Kaula, 1966):

$$
\begin{align*}
v_{n, m}=\left(\frac{\mu}{R}\right)\left(\frac{R}{n}\right)^{n+1} J_{n, m} & \mid \sum_{p=0}^{p-n} F_{n, m, p^{(I)}} \sum_{q} G_{n, p, q^{(c)} \cos [(n-2 p) \omega+(n-2 ; j+q) M} \\
& \left.\cdot m\left(s 2-v t-\lambda_{n, m)}\right)\right|_{j} ^{l} \tag{3}
\end{align*}
$$

where v is the angular velocity of the rotation of the enrth, t is the time, and $F n, m, p^{(L)}$ and $G_{n, p, q}(e)$ are, respectively, the inclination and eccentricity functions as defined by Kaula (1966). The functions $G_{n, p, q} q^{(e)}$ are of order $|q|$ in eccentricity.

Resonance occurs when a pair (α, β) of mutually prime integers exists such that the satellite performs β nodal periods while the earth rotates a times relative to the precessing satellite's orbit plane. This can be expressed by

$$
\begin{equation*}
a(\dot{\omega}+\dot{M})=\beta(v-\dot{\Omega}), \tag{4}
\end{equation*}
$$

where $\dot{\omega}, \dot{\mathrm{M}}$, and $\dot{\Omega}$ are the rates of change with time of ω, M, and s, respectively. The corresponding slowly varying arguments are of the form

$$
\mathrm{k}_{1} \Phi_{a, \beta}+\mathrm{const}
$$

where

$$
\Phi_{a, \beta}=a(\omega+M)+\beta(\Omega-v t)
$$

is called the resonant variable and $k_{1}=1,2,3, \ldots$.

Considering that $\dot{\omega}$ is a small quantity and that the general argument in a tesseral harmonic is

$$
\left.\phi^{-(n-2 p}\right)_{\mu}+(n-2 p \cdot 4) M+m\left(s 2-M-\lambda_{n, m}\right),
$$

we shall keep those tesseral harmonics that contain arguments such that

$$
\begin{array}{ll}
n-2 p+q-k_{1} a, \\
m-k_{1} \beta, & k_{1}=1,2,3, \ldots
\end{array}
$$

Since $n=m$ and since lower order tesseral hammonics are bound to have larger effects because of the factor $(R / r)^{n}$, where $R / r<1$, it can be assumed that it is sufficient to consider only the cases $\mathrm{k}_{1}=1,2$, and 3 . In a gonoral manner, the teeseral harmonics to be kept are

$$
\mathrm{V}_{\mathrm{k}_{1} \beta+\mathrm{k}_{0}, \mathrm{k}_{1} \beta}
$$

where $k_{1}=1_{5} 2_{;} 3_{1}=\ldots$ and for each k_{1}, the index k_{0} takes values $0,1,2, \ldots$ We then write each $V_{n, m}$ in the form

$$
V_{n, m}=V_{n, m}^{\prime}+I_{n, m}
$$

where $R_{n, m}$, the "resonant" part of the tesseral harmonic, consists of all the terms that contain the resonant arguments, obtained by solving equations (5) for p and q [cf. equations (6), Paper I]. Thus, the resonant part of the tesseral harmonic $V_{n, m}$ is

$$
\begin{equation*}
R_{n, m}=\mu \frac{R^{n}}{a^{n+1}} J_{n, m} \sum_{x=0}^{\beta k_{1}+k_{0}} F_{n, m, p_{x}}^{(I)} G_{n, p_{x}, q_{x}}(e) \cos \left(k_{1} \Phi_{\alpha, \beta}-q_{x} \omega-m \lambda_{n, m}\right) \tag{6}
\end{equation*}
$$

where

$$
q_{x}=k_{1}(a-\beta)-k_{0}+2 x
$$

and

$$
\mathrm{p}_{\mathrm{X}} \approx \mathrm{x}
$$

The residual part of $V_{n, m}$ is $V_{n, m}^{\prime}$, whose effects are much smaller than those from $\mathrm{R}_{\mathrm{n}, \mathrm{m}}$.

In Paper I, we then defined $D\left(k_{1}\right)$ and $0_{1}\left(k_{1}\right)$ by

$$
R_{n, m}=\sum_{k_{1}} D\left(k_{1}\right) \cos 20_{1}\left(k_{1}\right)
$$

where

$$
D\left(k_{1}\right) \cos 20{ }_{1}\left(k_{1}\right): \sum_{k_{0}\left(k_{1}\right)} I k_{k_{1} \beta+k_{0}, k_{1} \beta},
$$

the sum over $\mathrm{k}_{0}\left(\mathrm{k}_{1}\right)$ meaning that we have taken into account all the values of k_{0} when k_{1} has a given value. In order to obtain $D\left(k_{1}\right)$ and $0_{1}\left(k_{1}\right)$, we can write

$$
\begin{align*}
& S\left(k_{1}, k_{0}\right)=\frac{\mu R^{n} \mathrm{~J}_{n, m}}{a^{n+1}}, \quad n=k_{1} \beta+k_{0}, \quad m=k_{1} \beta, \\
& A\left(k_{1}, k_{0}, x\right)=F_{n, m, x}^{(I)} G_{n, x, q_{x}}(c), \tag{7}\\
& D\left(k_{1}\right) \exp 2 i 0_{1}\left(k_{1}\right)=\sum_{k_{0}\left(k_{1}\right)} S\left(k_{1}, k_{0}\right) \sum_{x=0}^{x=n} A\left(k_{1}, k_{0}, x\right) \exp i\left(k_{1} \Phi_{a, \beta}-q \omega-k_{1} \beta \lambda_{n, m}\right)
\end{align*}
$$

If we write

$$
\Lambda_{\mathrm{k}_{1}, \mathrm{k}_{0}}=\mathrm{k}_{1} \beta \lambda_{\mathrm{k}_{1} \beta+\mathrm{k}_{0}, \mathrm{k}_{1} \beta}
$$

and

$$
2 \alpha_{1}\left(k_{1}\right)=k_{1}^{d} \alpha_{\alpha, \beta}-k_{1}^{(a-\beta) \omega+4\left(k_{1}\right)}
$$

then (see Appendix A)

$$
\begin{equation*}
D\left(k_{1}\right) \exp i 4\left(k_{1}\right)-\sum_{k_{0}\left(k_{1}\right)} s\left(k_{1}, k_{0}\right) \sum_{x=0}^{x-n} A\left(k_{1}, k_{0}, x\right) \exp i\left[\left(k_{0}-2 x\right) \omega-\Lambda_{k_{1}}, k_{0}\right] \tag{8}
\end{equation*}
$$

Finally, the po.ential in which the satellite moves is

$$
\begin{equation*}
V=\frac{\mu}{r}-\mu_{2}^{x} \frac{R^{2}}{r^{3}} P_{2}(\cos 0)+\sum r_{n, m}+\sum V_{n, m}^{\prime} \tag{3}
\end{equation*}
$$

the sums being taken over all ine tessoral harmonics selected.

If we consider the cannnical set of Delaunay variables,

$$
\begin{array}{lll}
I_{D}=\sqrt{\mu R}, & G_{D}=\sqrt{\mu a\left(1-e^{2}\right)}, & H_{D}=G_{D} \cos i \\
\ell_{D}=M, & G_{D}=\omega, & h_{D}=\Omega, \tag{10}
\end{array}
$$

then the Hamiltonian of the problem is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{D}}=\frac{\mu^{2}}{2 \mathrm{I}_{\mathrm{D}}^{2}}+\mathrm{F}_{1}+\mathrm{F}_{2} \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{F}_{1}=-\mathrm{J}_{2} \mu \frac{\mathrm{R}^{2}}{\mathrm{r}^{3}} \mathrm{P}_{2}(\cos 0) \\
& \mathrm{F}_{2}=\sum \mathrm{V}_{\mathrm{n}_{7} \mathrm{~m}}
\end{aligned}
$$

To avold the dependence on time of the Hamiltonian, we perform a canonical transformation, so that the now variables [cf, equations (12) of Paper I] are

$$
\begin{array}{ll}
\mathrm{L}=\mathrm{L}_{\mathrm{D}}, & t=\ell_{\mathrm{D}}, \\
\mathrm{G}=\mathrm{G}_{\mathrm{D}}, & \mathrm{~g}=\mathrm{h}_{\mathrm{D}}, \\
\mathrm{H}=\mathrm{H}_{\mathrm{D}}, & \mathrm{~h}=\mathrm{h}_{\mathrm{D}}-\mathrm{L}
\end{array}
$$

and the new Hamiltonian is

$$
F=J_{D}: v H
$$

The equations of motion are then

$$
\begin{array}{ll}
\frac{d L}{d t}=\frac{\partial F}{\partial \ell}, & \frac{d G}{d t}=\frac{\partial F}{\partial G}, \tag{12}\\
\frac{d I I}{d t}=\frac{\partial F}{\partial H}, \\
\frac{d L}{d t}=-\frac{\partial F}{\partial L}, & \frac{d G}{d t}-\frac{\partial W}{\partial G}, \\
\frac{d h}{d t}=-\frac{\partial H}{\partial H},
\end{array}
$$

with $\mathrm{F}=\mathrm{F}_{0}+\mathrm{F}_{1}+\mathrm{F}_{2}:$

$$
\begin{align*}
& \mathrm{F}_{0}=\frac{\mu^{2}}{2 \mathrm{~L}^{2}}+\mathfrak{H I} \\
& \mathrm{F}_{1}=-\mathrm{J}_{2} \mu \frac{\mathrm{R}^{2}}{\mathrm{r}^{3}}\left[\frac{1}{4} \frac{\mathrm{H}^{2}}{\mathrm{G}^{2}}-\frac{3}{4}\left(1-\frac{\mathrm{H}^{2}}{\mathrm{G}^{2}}\right) \cos 2 \mathrm{u}\right] \tag{13}\\
& \mathrm{F}_{2}=\sum \mathrm{V}_{\mathrm{n}, \mathrm{~m}}
\end{align*}
$$

in the above, $u=g+f$, and f is the true anomaly.

The Ilamiltonian is now expanded in terms of powers of the small parameter J_{2};

$$
\begin{aligned}
& F_{1}=O\left(J_{2}\right), \\
& F_{2}=O\left(J_{2}^{2}\right)
\end{aligned}
$$

2. 2 First-Order Perturbations

To simplify the writing, we shall now consider only one value of k_{1}, as defined in Section 2. 1 , and drop the index k_{1} in oxpressaons such as $\left.I\right)\left(k_{1}\right)$ and $0_{1}\left(k_{1}\right)$. The Ifamiltonian is then such that

$$
\mathrm{F}_{2}=\mathrm{D} \cos 20_{1}
$$

We define 0 by

$$
0 \frac{\pi}{2}-0_{1}
$$

To derive the complete perturbations, we shall sum the individual expressions obtained for ench value of k_{1}.

In the process of removing short-period texms from the Hamiltonian in Paper I, we applied IIori's mothod by Lie series (IIori, 1066) and considered a canonical transformation

$$
\begin{aligned}
(\mathrm{I}, \mathrm{G}, \mathrm{H}, \mathrm{l}, \mathrm{~g}, \mathrm{~h}) & \longrightarrow\left(\mathrm{I}^{\prime}, \mathrm{G}^{\prime}, \mathrm{I}^{\prime}, \ell^{\prime}, \mathrm{F}^{\prime}, \mathrm{H}^{\prime}\right) \\
\mathrm{F} & \longrightarrow \mathrm{~F}^{\prime}
\end{aligned}
$$

such that

$$
\begin{aligned}
& I=I^{\prime}+\frac{\partial S}{\partial \ell^{\prime}}+\frac{1}{2}\left\{\frac{\partial S}{\partial \ell^{\prime}}, S\right\}+\frac{1}{3!}\left\{\left\{\frac{\partial S}{\partial \ell^{\prime}}, S\right\}, S\right\} ; \ldots, \\
& G=G^{\prime}+\frac{\partial S}{\partial G^{\prime}}+\frac{1}{2}\left\{\frac{\partial S}{\partial G^{\prime}}, S\right\}+\cdots,
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{I}=\mathrm{H}^{\prime}+\frac{\partial \mathrm{S}}{\partial \mathrm{~h}^{\prime}}+\frac{1}{2}\left\{\frac{\partial \mathrm{~S}}{\partial \mathrm{~h}^{\prime}}, \mathrm{S}\right\}+\ldots, \tag{14}\\
& \ell=\ell^{\prime}-\frac{\partial S}{\partial \mathrm{~L}^{\prime}}-\frac{1}{2}\left\{\frac{\partial \mathrm{~S}}{\partial \mathrm{I}^{\prime}}, \mathrm{S}\right\} \cdots \ldots, \\
& \mathrm{g}=\mathrm{g}^{\prime}-\frac{\partial \mathrm{S}}{\partial \mathrm{G}^{\prime}}-\frac{1}{2}\left\{\frac{\partial S}{\partial G^{\prime}}, \mathrm{S}^{\prime}-\ldots,\right. \\
& \mathrm{h}=\mathrm{h}^{\prime}-\frac{\partial S}{\partial \mathrm{H}^{\prime}}-\frac{1}{2}\left\{\frac{\partial \mathrm{~S}}{\partial \mathrm{H}^{\prime}}, \mathrm{S}\right\}-\ldots,
\end{align*}
$$

as descrined by equations (38) in Paper I.

The transformation involves a generating function

$$
S=S_{1 / 2}+S J+S R,
$$

where

$$
S I=Z_{1}+Z_{2},
$$

$S_{1 / 2}$ and Z_{1} are the perturbations due only to resonant harmonics, $S J$ the perturbations due only in J_{2} (or to the zonals, if other zonals aro also considered), and Z_{2} the perturbations due to the interaction of J_{2} with the resonant tesserals.

In order to avoid small divisors, S is developed in terms of powers of the square root of the small parameter J_{2}, as is the custom in resonance probloms (Paper I). We reintroduce the characteristic small parameter of the problem:

$$
\gamma=v\left(\frac{\beta}{a}\right)-\frac{\mu^{2}}{\mu^{\prime 3}} .
$$

To find $S_{1 / 2}, Z_{1}$, and Z_{2}, we gather terms of the same order relative to J_{2} from (Hori, 1966)

$$
\begin{equation*}
F^{\prime}=F+\{F, S\}+\frac{1}{2}\{\{F, S\}, S\}+\ldots, \tag{15}
\end{equation*}
$$

where F^{\prime} is the now Hamiltonian, and γ is assumed to be of order $1 / 2$.

In comparing this theory with numerical integration, we found good agreement for the perturbations of highest order due only to the resonant tesserals. The relevant part of the determining function is $S_{1 / 2}$. In Appendix A, we repeat the cerivation of $S_{1 / t}$, expressions of the derivatives of this function with respect to the modified Delaunay variables, and definitions of the quantities A, I_{2}, I_{0}, k, and Δ.

Some problems developed, however, when the J_{2} tesseral-interaction terms were considered. It turns out (cf. Paper I) that the detemnining function 7_{2} cannot be defined by

$$
\gamma \Delta \frac{\partial Z_{2}}{\partial \ell^{\prime}}=-\left(b_{1} \frac{\partial S_{1 / 2}}{\partial \ell^{\prime}}+b_{2} \frac{\mathcal{S}_{1 / 2}}{\partial g^{\prime}}+b_{3} \frac{\partial S_{1 / 2}}{\partial h^{\prime}}\right)
$$

where

$$
\mathrm{b}_{1}=\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{~L}^{\prime}}, \quad \mathrm{b}_{2}=\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{G}^{\prime}}, \quad \mathrm{b}_{3}=\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{H}^{\prime}},
$$

since here we have neglected the contribution of the secular rate to the variable g.

To the highest order, then, let us consider instead the following equation as a definition of Z_{2} :

$$
\begin{equation*}
\left\{F_{0}+F_{1}, Z_{2}\right\}+\left\{F_{1}, S_{1 / 2}\right\}=0 \tag{16}
\end{equation*}
$$

We assume that Z_{2} is a function only of $\mathrm{L}^{\prime}, \mathrm{G}^{\prime}, \mathrm{H}^{\prime}$, and θ, where we recall

$$
2 \theta=\alpha \ell^{\prime}+\beta\left(g^{\prime}+h^{\prime}\right)+\psi\left(g^{\prime}\right)-\pi .
$$

Then we obtain

$$
\begin{align*}
& \frac{\partial \mathrm{Z}_{2}}{\partial \ell^{\prime}}=\frac{\mathrm{a}}{2} \frac{\partial \mathrm{Z}_{2}}{\partial \theta}, \\
& \frac{\partial Z_{2}}{\partial g^{\prime}}=\frac{\mathrm{d}}{2} \frac{\partial \mathrm{Z}_{2}}{\partial \theta} \tag{17}\\
& \frac{\partial \mathrm{Z}_{2}}{\partial \mathrm{~h}^{\prime}}=\frac{\beta}{2} \frac{\partial \mathrm{Z}_{2}}{\partial \theta},
\end{align*}
$$

with

$$
\mathrm{d}=\beta+\frac{\partial \psi}{\partial \mathrm{g}^{\prime}}
$$

which yiolds

$$
\begin{equation*}
\frac{a \gamma+\sigma}{2} \frac{\partial Z_{2}}{\partial \theta}=-\left\{F_{1}, S_{1 / 2}\right\}=-\sigma c_{2} \gamma(\Delta-1)-b_{2} a_{4} c_{2} \gamma\left(I_{2}-I_{0}\right), \tag{18}
\end{equation*}
$$

where

$$
\sigma=b_{1} a+b_{2} d+b_{3} \beta
$$

and

$$
a_{4}=\frac{1}{D} \frac{\partial D}{\partial g}
$$

[cf. equation (44) of Paper I]. Hence,

$$
\begin{equation*}
\mathrm{Z}_{2}=\mathrm{B}\left(\mathrm{I}_{2}-\theta\right) \tag{19}
\end{equation*}
$$

where

$$
B=-\frac{2 \sigma c_{2} \gamma}{a \gamma+\sigma}
$$

The derivatives of Z_{2} with respect to the modified Delaunay variables are as follows, If X is a modified Dellunay variable, then

$$
\begin{equation*}
\frac{\partial Z_{2}}{\partial \mathrm{X}}=\frac{\partial \mathrm{B}}{\partial \mathrm{X}}\left(\mathrm{I}_{2}-\theta\right)+\mathrm{B}\left(\frac{\partial \mathrm{I}_{2}}{\partial \mathrm{X}}-\frac{\partial \theta}{\partial \mathrm{X}}\right) \tag{20}
\end{equation*}
$$

where $\partial \mathrm{I}_{2} / \partial \mathrm{X}$ and $\partial \theta / \partial \mathrm{X}$ are given in Appendix A, and

$$
\frac{\partial 3}{\partial X}=-\frac{2 c_{2} \gamma}{a \gamma+\sigma} \frac{\partial \sigma}{\partial X}\left(1-\frac{\sigma}{a \gamma+\sigma}\right)+\varepsilon\left(-\frac{2 \sigma}{a \gamma+\sigma}\right)\left(4 c_{1} \gamma+\frac{1}{a}-\frac{\gamma}{a \gamma+\sigma}\right)
$$

in which

$$
\begin{array}{ll}
\varepsilon=1 & \text { if } \quad X=L^{\prime}, \\
\varepsilon=0 & \text { if } \quad X \neq L^{\prime},
\end{array}
$$

and

$$
\frac{\partial \sigma}{\partial \mathrm{X}}=a \frac{\partial \mathrm{~b}_{1}}{\partial \mathrm{X}}+\mathrm{d} \frac{\partial \mathrm{~b}_{2}}{\partial \mathrm{X}}+\beta \frac{\partial \mathrm{b}_{3}}{\partial \mathrm{X}}+\mathrm{b}_{2} \frac{\partial^{2} \psi}{\partial \mathrm{~g}} \partial \mathbf{X}
$$

The relevant expressions are as in equations (4.4) and (65b) and Appendix A of Paper I; they are repeated in Appendix B herein.

2.3 Second-Order Perturbations

Instead of considering the second-order perturbations due to the resonant tesserals separately from those due to the interaction terms, let us define a determining function Z_{3} by

$$
\begin{equation*}
\left.\left\{\mathrm{F}_{0}+\mathrm{F}_{1}, \mathrm{Z}_{3}\right\}+\frac{1}{2}\left\{\mathrm{~F}_{0}+\mathrm{F}_{1}, \mathrm{~S}_{1 / 2}+\mathrm{Z}_{2}\right\}, \mathrm{S}_{1 / 2}+\mathrm{Z}_{2}\right\}=0 \tag{21}
\end{equation*}
$$

This yields, assuming $\mathrm{Z}_{3}=\mathrm{Z}_{3}\left(\mathrm{~L}^{\prime}, \mathrm{G}^{\prime}, \mathrm{H}^{\prime}, \theta\right)$,

$$
\begin{equation*}
\frac{a y+\sigma}{2} \frac{\partial Z_{3}}{\partial \theta}=-\frac{1}{2}\left\{\left\{F_{0}+F_{1}, S_{1 / 2}+Z_{2}\right\}, S_{1 / 2}+Z_{2}\right\} \tag{22}
\end{equation*}
$$

which, after some algebra, gives

$$
\begin{align*}
\frac{\partial Z_{3}}{\partial \theta}= & R_{1}\left(\Delta-\frac{1}{\Delta}\right)(\Delta-1)+R_{2}\left(I_{2}-I_{0}\right) \frac{\mathrm{l}^{2} \sin \theta \cos \theta}{\Delta}+R_{3}\left(I_{2}-\theta\right) \frac{\mathrm{k}^{2} \sin \theta \cos \theta}{\Delta} \\
& +R_{4}(\Delta-1)^{2} \tag{23}
\end{align*}
$$

where

$$
\begin{align*}
& R_{1}=R_{2}=-\left(a c_{2} \gamma^{2}\right)^{2} x, \\
& R_{3}=-a c_{2} \gamma^{2}\left(\frac{B_{p}}{2}+4 a c_{1} \gamma+1\right), \tag{24}\\
& R_{4}=-\frac{a^{2} c_{2} \gamma^{3}}{a \gamma+\sigma}(3 a \gamma+2 \sigma)
\end{align*}
$$

In equations (24), terms of higher order were neglected and the following were used:

$$
\begin{aligned}
& x=\frac{a a_{1}+d a_{2}+\beta a_{3}-p_{2} a_{4}}{2}, \\
& c_{1}=\frac{L^{3}}{3 \mu^{2} a}, \quad c_{2}=\frac{L^{4}}{3 \mu^{2} a}, \\
& a_{1}=\frac{1}{D} \frac{\partial D}{\partial L^{\prime}}, \quad a_{2}=\frac{1}{D} \frac{\partial D}{\partial G^{\prime}}, \quad a_{3}=\frac{1}{D} \frac{\partial D}{\partial \tilde{H}^{\prime}}, \\
& B_{p}=a \frac{\partial B}{\partial I^{\prime}}+d \frac{\partial B}{\partial G^{\prime}}+\beta \frac{\partial B}{\partial H^{\prime}} .
\end{aligned}
$$

After some algebra, then, we obtain

$$
\begin{equation*}
Z_{3}=P_{1}\left[\left.\left(1-\frac{k^{2}}{2}\right) \theta+\frac{k^{2}}{4} \sin 2 \theta \right\rvert\,-P_{2} I_{2}+P_{3} \theta+P_{4} I_{0}\right. \tag{25}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{1}=2 R_{1}+R_{4}+R_{3} \\
& P_{2}=R_{1}+2 R_{4}+R_{3}+\Delta\left(R_{1}+R_{3}\right) \\
& P_{3}=R_{4}-2 R_{1}+\Delta R_{3} \\
& P_{4}=R_{1}(1+\Delta)
\end{aligned}
$$

The derivatives of Z_{3} with respect to the modified Delaunay variables are as follows:

$$
\begin{align*}
\frac{\partial Z_{3}}{\partial X}= & \frac{\partial P_{1}}{\partial X}\left[\left(1-\frac{k^{2}}{2}\right) \theta+\frac{k^{2}}{4} \sin 2 \theta\right]-\frac{\partial P_{2}}{\partial X} I_{2}+\frac{\partial P_{3}}{\partial X} \theta+\frac{\partial P_{4}}{\partial X} I_{0} \\
& -P_{2} \frac{\partial I_{2}}{\partial X}+P_{3} \frac{\partial \theta}{\partial X}+P_{4} \frac{\partial I_{0}}{\partial X}+P_{1} Q, \tag{26}
\end{align*}
$$

where

$$
Q=\frac{\partial \theta}{\partial X}\left(1-\frac{k^{2}}{2}+\frac{\mathrm{k}^{2}}{2} \cos 20\right)-\frac{\mathrm{k}^{2}}{2} a_{X}\left(\theta-\frac{\sin 2 \theta}{2}\right) .
$$

In equation (26), the derivatives $\partial I_{2} / \partial X, \partial \theta / \partial X$, and $\partial I_{0} / \partial X$ are given in Appendix A. Now we get

$$
\begin{aligned}
& \frac{\partial R_{1}}{\partial X}=-\left(a c_{2} \gamma^{2}\right)^{2} \frac{\partial x}{\partial X}-\varepsilon x\left(4 a c_{2} \gamma^{3}\right)\left(1+4 a c_{1} \gamma\right), \\
& \frac{\partial R_{3}}{\partial X}=\varepsilon\left[-2 \gamma\left(2 a c_{1} \gamma+1\right)\left(\frac{B_{p}}{2}+4 a c_{1} \gamma+1\right)-4 a c_{2} \gamma^{2}\left(\frac{1}{I^{\prime}}+\frac{\gamma L^{\prime}}{\mu^{2}}\right)\right],
\end{aligned}
$$

$$
\frac{\partial R_{4}}{\partial X}=\frac{a^{3} c_{2} \gamma^{4}}{(a \gamma+\sigma)^{2}} \frac{\partial \sigma}{\partial X}+\varepsilon\left|\left(-\frac{a^{2} \gamma^{2}}{a \gamma+\sigma}\right)\left(12 a c_{1} \gamma^{2}+9 \gamma+8 c_{2} \gamma \sigma+\frac{6 \sigma}{a}+\frac{\sigma \gamma}{a \gamma+\sigma}\right)\right|
$$

where

$$
\begin{array}{lll}
\varepsilon=1 & \text { if } & X=L^{\prime}, \\
\varepsilon=0 & \text { if } & X \neq L^{\prime} .
\end{array}
$$

In conclusion, the determining function for the canonical transformation used to remove short-period terms from the Ilamiltonian is

$$
S=s_{1 / 2}+Z_{2}+Z_{3}
$$

and the new Hamiltonian is

$$
\begin{equation*}
F^{\prime}=F_{0}^{\prime}+F_{1}^{\prime}+F_{2}^{\prime}, \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{0}^{\prime}\left(\mathrm{L}^{\prime}, \mathrm{H}^{\prime}\right)=F_{0}\left(L^{\prime}, \mathrm{H}^{\prime}\right), \\
& F_{1}^{\prime}\left(\mathrm{L}^{\prime}, \mathrm{G}^{\prime}, \mathrm{H}^{\prime}\right)=\mathrm{F}_{1}\left(\mathrm{~L}^{\prime}, \mathrm{G}^{\prime}, \mathrm{H}^{\prime}\right), \\
& F_{2}^{\prime}\left(\mathrm{L}^{\prime}, \mathrm{G}^{\prime}, \mathrm{H}^{\prime}, \mathrm{G}^{\prime}\right)=-\sum_{\mathrm{k}_{1}} D\left(\mathrm{k}_{1}\right)\left(\mathrm{L}^{\prime}, \mathrm{G}^{\prime}, \mathrm{H}^{\prime}, \mathrm{g}^{\prime}\right) .
\end{aligned}
$$

The new equations of motion are then

$$
\begin{array}{ll}
\frac{\mathrm{d} \mathrm{~L}^{\prime}}{\mathrm{dt}^{\prime}}=\frac{\partial \mathrm{F}^{\prime}}{\partial \mathrm{l}^{\prime}}=0, & \frac{\mathrm{~d} \ell^{\prime}}{\mathrm{dt}^{\prime}}=-\frac{\partial \mathrm{F}^{\prime}}{\partial \mathrm{L}^{\prime}}, \\
\frac{\mathrm{dG}^{\prime}}{\mathrm{dt} \mathrm{t}^{\prime}}=\frac{\partial \mathrm{F}^{\prime}}{\partial \mathrm{g}^{\prime}}, & \frac{\mathrm{dg}^{\prime}}{\mathrm{dt}^{\prime}}=-\frac{\partial \mathrm{F}^{\prime}}{\partial \mathrm{G}^{\prime}}, \tag{28}\\
\frac{\mathrm{d} \mathrm{H}^{\prime}}{\mathrm{dt}^{\prime}}=\frac{\partial \mathrm{F}^{\prime}}{\partial \mathrm{h}^{\prime}}=0, & \frac{\mathrm{dh}^{\prime}}{\mathrm{dt}^{\prime}}=-\frac{\partial \mathrm{F}^{\prime}}{\partial \mathrm{H}^{\prime}},
\end{array}
$$

and the long-period variable g^{\prime} remains to be removed, following the procedure given in Section 5 of Paper I.

3. COMPARISON OF THE THEORY WITH A NUMERICAL INTEGRATION

The theoretical computations have been compared with a numerical integration provided by the routine DVDQ. The satollite considered was Geos 1, which passes through the $\alpha=1, \beta=12$ resonance with the following orbital elements:

$$
\begin{array}{ll}
\text { semimajor axis } & a_{0}=8.074 \times 10^{6} \mathrm{~m} \\
\text { eccentricity } & e_{0}=0.073, \\
\text { inclination } & I_{0}=59^{\circ} .
\end{array}
$$

We take the constants of the problem to be

$$
\begin{align*}
& \mathrm{I}_{0}^{\prime \prime}=\sqrt{\mu \mathrm{a}_{0}}, \\
& \mathrm{G}_{0}^{\prime \prime}=\mathrm{L}_{0}^{\prime \prime}\left(1-\mathrm{e}_{0}^{2}\right), \\
& \mathrm{I}_{0}^{\prime \prime}=\mathrm{G}_{0}^{\prime \prime} \cos \mathrm{I}_{0}, \tag{29}\\
& \ell_{0}^{\prime \prime}=0, \\
& \mathrm{~g}_{0}^{\prime \prime}=0, \\
& \mathrm{~h}_{0}^{\prime \prime}=0,
\end{align*}
$$

In this case, k^{2} is of the order of 10^{-4}, so the motion of the satellite is of the circulation type. The period of the short-term perturbations is approximately 7 days.

After removing the short- and long-period perturbations, we obtain errors in the Delaunay variables I, G, and 1 for a period of 8 days, with computations performed every 0.5 day. The results are shown in Table 1.

Table 1. Errors in the action variables as computed over a period of 8 daw.

Variable	Amplitude of perturbation $\times 2^{*}$	Error *	Relative error (\%)
L	48×10^{-5}	9.75×10^{-7}	0.2
G	67×10^{-5}	8.86×10^{-5}	13
H	57×10^{-3}	$\mathrm{J} .14 \times 10^{-5}$	0.2

*The semimajor axis is expressed in units of $10^{6} \mathrm{~m}$.

We obtain the following errors in the Delaunay angular variables:
$\ell=7.79 \times 10^{-7} \mathrm{rad}$ in 8 days, corresponding to $\sim 0.8 \mathrm{~m}$ per day in the ascending node of the orbit ($a=8.074 \times 10^{6} \mathrm{~m}$),
$g=7.05 \times 10^{-7} \mathrm{rad}$ in 8 days, corresponding to 0.75 m per day in the argument of perigee ($a=8.074 \times 10^{6} \mathrm{~m}$);
$h=8.7 \times 10^{-9}$ rad in 8 days, corresponding to 0.002 m per day in the satellite's position in the orbit $\left(a=8.074 \times 10^{6} \mathrm{~m}\right)$.

Moreover, the errors in ℓ and g have opposite signs, so that the error in $\ell+g$ is of the order of $8 \times 10^{-8} \mathrm{rad}$ in 8 days, or $10^{-8} \mathrm{rad}$ per day (see Figure 1).

We conclude that there is satisfactory agreement in all variables excopt G. Adding or removing the contributions of second-order perturbations (the generating function Z_{3}) does not affect the results. We suggest a tentative explanation for the large error in G. In the process of removing the variables ℓ and h from the Hamiltonian, we have written

$$
\mathrm{G}=\mathrm{G}^{\prime}+\frac{\partial \mathrm{S}}{\partial \mathrm{~g}^{\prime}}
$$

where

$$
\mathrm{S}=\mathrm{S}_{1 / 2}+\mathrm{Z}_{2}+\mathrm{Z}_{3}
$$

Figure 1. Variations of the errors over one oscillation.

We took Z_{2} from equation (4), where we assumed that Z_{2} depends on g^{\prime} only through the resonant variable 0 . However, after obtaining Z_{2} and its derivatives, we get [see equation (20)]

$$
\begin{equation*}
\left.\left.\frac{\partial Z_{2}}{\partial g^{\prime}}=\frac{\partial B}{\partial g^{\prime}}\left(I_{2}-0\right)+B \right\rvert\, \frac{d}{2}(\Delta-1)+\frac{a_{4}}{2}\left(I_{2}-I_{0}\right)\right\} \tag{30}
\end{equation*}
$$

where $d=\beta+\psi\left(g^{\prime}\right)$ and $a_{4}=\left(1 / k^{2}\right)\left(\partial k^{2} / \partial g^{\prime}\right)$ are functions of $L^{\prime}, G^{\prime}, H^{\prime}$, and g^{\prime}, and both have significant dexivatives with respect to g^{\prime}. Honce, there is an inaccuracy in the dependence of Z_{2} on g^{\prime}. The correct equation for Z_{2} is

$$
\begin{equation*}
\left(\frac{\alpha y+\sigma}{2}\right) \frac{\partial Z_{2}}{\partial 0}+\frac{\partial F_{1}}{\partial G^{\prime}} \frac{\partial Z_{2}}{\partial G^{\prime}}=-\left\{\mathrm{F}_{1}, \mathrm{~s}_{1 / 2}\right\} \tag{31}
\end{equation*}
$$

where

$$
\mathrm{Z}_{2}=\mathrm{Z}_{2}(\mathrm{I}, \mathrm{G}, \mathrm{II}, 0, \mathrm{~g})
$$

and

$$
\frac{d Z_{2}}{d g^{\prime}}=\frac{\partial Z_{2}}{\partial \partial} \frac{\partial 0}{\partial g^{\prime}}+\frac{\partial Z_{2}}{\partial g^{\prime}}
$$

Another factor in support of this explanation is that, when J_{2} is set equal to zero (and, hence, $\partial F_{1} / \partial G^{\prime}=0$), the error in the variable G is of the order of 0.2%, as it is for the variables L and II .

It seems that, to obtain better agreement in the variable G, we must take into account the intricate dependence of Z_{2} on g^{\prime} and solve equation (31) more accurately.

4. ACKNOWLEDGMEN'I

I would like to thank Drs. K. Aksnes and E. M. Gaposchkin for the encouragement they gave me for this work,

Page intentionally left blank

5. REFERFNCES

HORI, G.
1906. Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Japan, vol. 18, pp. 287-294.
KAULA, W.
1966. Theory of Satellite Geodesy. Blaisdell Publ. Co., Waltham, Mass., 124 pp .
ROMANOWICZ, B. A.
1975. On the fessoral-harmonics resonance problem in artificial-satellite theory. Smithsonian Aatrophys. Obs. Spoc. Rup. No. 365, 51 pp.

APPENLIX A

EXPRFSSIONS OF $S_{1 / 2}$ AND IIS DFRLVATIVISS WITH MESIECT TO THF MODIFIED DELAUNAY VAIIAIBLES

The function $S_{1 / 2}$ is obtained by solving the resonance equation

$$
\begin{equation*}
\left\{\mathrm{F}_{0}, \mathrm{~S}_{1 / 2}\right\}+\frac{1}{2} \frac{\partial y}{\partial L^{\prime}}\left(\frac{\mathrm{SS}_{1 / 2}}{\partial \ell^{\prime}}\right)^{2}+2 \mathrm{D} \sin ^{2} 0=0, \tag{A-1}
\end{equation*}
$$

where

$$
\gamma=\frac{B}{a} v-\frac{\mu^{2}}{L^{3}}
$$

and

$$
\left\{\mathrm{F}_{0}, \mathrm{~S}_{1 / 2}\right\}=\gamma \frac{\partial \mathrm{S}_{1 / 2}}{\partial \ell^{\prime}} .
$$

If

$$
\begin{aligned}
& A=\frac{2 \gamma \mu^{4}}{3 \mu^{2} \mathrm{~K}_{1}}, \\
& \mathrm{k}^{2}=\frac{121 \mu^{2}}{\mathrm{I}^{4} \gamma^{2}},
\end{aligned}
$$

and

$$
\Delta=\sqrt{1-k^{2} \sin ^{2} 0},
$$

then, solving equation (A-1) and applying some cintinuity arguments yield

$$
\frac{a S_{1 / 2}}{\partial \theta}=A(\Delta-1)
$$

RHPMM : anellty OF THE:

and

$$
s_{1 / 2}=A\left(I_{2}-\theta\right)
$$

where we define

$$
I_{2}=E(0, k)
$$

Let us also define

$$
I_{0}=F(\theta, k)
$$

Here $F(\theta, k)$ and $\mathrm{E}(\theta, k)$ are the elliptic interrais of the first and second kind, respectively. The derivatives of $S_{1 / 2}$ are then

$$
\begin{aligned}
& \frac{\partial S_{1 / 2}}{\partial l^{i}}=a c_{2} \gamma(\Delta-i), \\
& \frac{\partial S_{1 / 2}}{\partial g^{\prime}}=d c_{2} \gamma(\Delta-1)+c_{2} \gamma a_{4}\left(I_{2}-I_{0}\right), \\
& \frac{\partial S_{1 / 2}}{\partial h^{\prime}}=\beta c_{2} \gamma(\Delta-1), \\
& \frac{\partial S_{1 / 2}}{\partial L^{\prime}}=\frac{2}{a}\left(I_{0}-\theta\right)+8 c_{1} \gamma\left(I_{2}-\theta\right)+c_{2} p_{1} \gamma(\Delta-1)+\left(c_{2} \gamma a_{1}-4 c_{1} \gamma\right)\left(I_{2}-I_{0}\right), \\
& \frac{\partial S_{1 / 2}}{\partial G^{\prime}}=c_{2} \gamma p_{2}(\Delta-1)+c_{2} \gamma a_{2}\left(I_{2}-I_{0}\right), \\
& \partial S_{1 / 2} \\
& \frac{\partial H^{\prime}}{}=\gamma c_{2} p_{3}(\Delta-1)+c_{2} \gamma a_{3}\left(I_{2}-I_{0}\right),
\end{aligned}
$$

where $c_{1}, c_{2}, a_{1}, a_{2}, a_{3}$ are as given in equations (24),

$$
\begin{aligned}
& a_{4}=\frac{1}{D} \frac{\partial D}{\partial g^{\prime}}, \\
& p_{1}=\frac{\partial \psi^{\prime}}{\partial I^{\prime}}, \quad p_{2}=\frac{\partial \psi}{\partial G^{\prime}}, \quad p_{3}=\frac{\partial \psi}{\partial I^{\prime}}, \quad r_{4}=\frac{\partial \psi}{\partial g^{\prime}}
\end{aligned}
$$

We also have

$$
\begin{array}{ll}
\frac{\partial 0}{\partial \mathrm{I}^{\prime}}=\frac{\mathrm{p}_{1}}{2}, & \frac{\partial 0}{\partial \ell^{\prime}}=\frac{\mathfrak{a}}{2}, \\
\frac{\partial 0}{\partial \mathrm{G}^{\prime}}=\frac{\mathrm{p}_{2}}{2}, & \frac{\partial 0}{\partial{\mathrm{~h}^{\prime}}^{\prime}}=\frac{\mathrm{p}_{4}}{2}, \tag{A-3}\\
\frac{\partial 0}{\partial \mathrm{I}^{\prime}}=\frac{\mathrm{p}_{3}}{2}, & \frac{\partial 0}{\partial \mathrm{~h}^{\prime}}=\frac{\beta}{2} ;
\end{array}
$$

and, if X is a modified Delaunay variable,

$$
\begin{align*}
& \frac{\partial \Delta}{\partial X}=\frac{a_{x}}{2}\left(\Delta-\frac{1}{\Delta}\right)-\frac{k^{2} \sin \theta \cos 0}{\Delta} \frac{\partial 0}{\partial X} \\
& \frac{\partial I_{2}}{\partial X}=\frac{\partial \theta}{\partial X} \Delta+\frac{a}{2}\left(I_{2}-I_{0}\right) \tag{A-4}\\
& \frac{\partial I_{0}}{\partial X}=\frac{1}{\Delta} \frac{\partial \theta}{\partial X}+\frac{a_{x}}{2}\left(I_{-2}-I_{0}\right),
\end{align*}
$$

where

$$
I_{-2}(\theta)=\int_{0}^{0} \frac{d x}{\Delta^{3}}=\frac{1}{1-k^{2}}\left(I_{2}-\frac{k^{2} \sin \theta \cos \theta}{\Delta}\right)
$$

In the above,

$$
a_{x}=\left\{\begin{array}{lll}
0 & \text { if } & X=\ell^{\prime} \text { or } h^{\prime} \\
a_{1}-\frac{4}{L^{\prime}}-\frac{2}{a c_{2} \gamma} & \text { if } & X=I^{\prime} \\
a_{2} & \text { if } & X=G^{\prime} \\
a_{3} & \text { if } & X=I^{\prime} \\
a_{4} & \text { if } & X=g^{\prime}
\end{array}\right.
$$

APPENDIX B

DERIVATIVES OF $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$, AND $\psi^{\prime}\left(\mathrm{g}^{\prime}\right)$, AND SECOND DERIVATIVES OF $\psi\left(g^{\prime}\right)$

We recall the definitions of D and ψ, introducing the quantities B and C :

$$
\begin{aligned}
& D^{2}=B^{2}+C^{2} \\
& D \cos \psi=B \\
& D \sin \psi=C
\end{aligned}
$$

Then, if X is any of the variables $\mathrm{I}^{\prime}, \mathrm{G}^{\prime}, \mathrm{H}^{\prime}$, or g^{\prime}, we get

$$
\begin{equation*}
D \frac{\partial D}{\partial X}=B \frac{\partial B}{\partial X}+C \frac{\partial C}{\partial X} \tag{B-1}
\end{equation*}
$$

If $X \neq \mathrm{g}^{\prime}$, we have

$$
\begin{align*}
& \frac{\partial B}{\partial X}:=\sum_{k_{0}} \sum_{x=0}^{k_{1} \beta+k_{0}} \frac{\partial}{\partial X}\left[S\left(k_{1}, k_{0}\right) A\left(k_{1}, k_{0}, x\right)\right] \cos \left[\left(k_{0}-2 x\right) g-\Lambda_{k_{1}, k_{0}}\right], \\
& \frac{\partial C}{\partial X}=\sum_{k_{0}} \sum_{x=0}^{k_{1} \beta+k_{0}} \frac{\partial}{\partial \mathrm{X}}\left[\mathrm{~S}\left(\mathrm{k}_{1}, \mathrm{k}_{0}\right) A\left(\mathrm{k}_{1}, \mathrm{k}_{0}, \mathrm{x}\right)\right] \sin \left[\left(\mathrm{k}_{0}-2 \mathrm{x}\right) \mathrm{g}-\Lambda_{\mathrm{k}_{1}, k_{0}}\right], \tag{B-2}\\
& \frac{\partial A\left(k_{1}, k_{0}, x\right)}{\partial X}=\frac{\partial F_{n, m, p^{(I)}}^{\partial I}}{\partial I} \frac{\partial(e)}{\partial X}+F_{n, m, p^{(I)}} \frac{\partial G_{n, p, q^{(e)}}^{\partial e}}{} \frac{\partial e}{\partial X}, \\
& \frac{\partial S\left(k_{1} k_{0}\right)}{\partial X}= \begin{cases}0 & \text { if } \quad X \neq L \\
-\frac{2\left(\beta k_{1}+k_{0}+1\right)}{L} S\left(k_{1}, k_{0}\right) & \text { if } \quad X=L ;\end{cases}
\end{align*}
$$

and if $\mathrm{X}=\mathrm{g}^{\prime}$, we get

$$
\begin{align*}
& \frac{\partial B}{\partial g^{\prime}}=-\sum_{k_{0}} \sum_{x=0}^{\beta k_{1}+k_{0}} S\left(k_{1}, k_{0}\right) A\left(k_{1}, k_{0}, x\right)\left(k_{0}-2 x\right) \sin \left[\left(k_{0}-2 x\right) g^{\prime}-\Lambda_{k_{1}}, k_{0}\right] \tag{3-3}\\
& \frac{\partial C}{\partial g^{\prime}}=\sum_{k_{0}} \sum_{x=0}^{\beta k_{1}+k_{0}} S\left(k_{1}, k_{0}\right) A\left(k_{1}, k_{0}, x\right)\left(k_{0}-2 x\right) \cos \left[\left(k_{0}-2 x\right) g^{\prime}-\Lambda_{k_{1}, k_{0}}\right]
\end{align*}
$$

For the derivatives of ψ, we have

$$
\mathrm{C}=\mathrm{D} \sin \psi,
$$

so that

$$
\begin{equation*}
\frac{\partial C}{\partial X}=D \frac{\partial \psi}{\partial X} \cos \psi+\frac{\partial D}{\partial X} \sin \psi \tag{B-4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \psi}{\partial X}=\frac{1}{B}\left(\frac{\partial C}{\partial X}-\frac{1}{D} \frac{\partial D}{\partial X} C\right) \tag{B-4b}
\end{equation*}
$$

We also have

$$
\begin{align*}
& \frac{\partial \mathrm{b}_{1}}{\partial \mathrm{X}}=\frac{\partial \mathrm{b}_{2}}{\partial \mathrm{X}}=\frac{\partial \mathrm{b}_{3}}{\partial \mathrm{X}}=0 \quad \text { if } \quad \mathrm{X}=\ell^{\prime} \text { or } \mathrm{h}^{\prime} \text { or } \mathrm{g}^{\prime}, \\
& \frac{\partial \mathrm{b}_{1}}{\partial \mathrm{~L}^{\prime}}=-\frac{4 \mathrm{~b}_{1}}{\mathrm{~L}^{\prime}}, \\
& \frac{\partial \mathrm{b}_{2}}{\partial \mathrm{~L}^{\prime}}=-\frac{3 \mathrm{~b}_{2}}{\mathrm{~L}^{\prime}}, \\
& \frac{\partial \mathrm{b}_{3}}{\partial \mathrm{~L}^{\prime}}=-\frac{3 \mathrm{~b}_{3}}{\mathrm{~L}^{\prime}}, \\
& \frac{\partial \mathrm{b}_{1}}{\partial G^{\prime}}=-\frac{3 \mathrm{~b}_{1}}{G^{\prime}}+\frac{9}{2} \frac{\mathrm{~J}_{2} \mu^{4} \mathrm{R}^{2} \mathrm{H}^{\prime}}{\mathrm{L}^{\prime 4} G^{\prime}{ }^{6}} \tag{B-5}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial b_{2}}{\partial G^{7}}=-\frac{4 b_{1}}{G^{\prime}} \cdot \frac{15}{2} \frac{\left.J_{2}\right|^{4} R^{2} I^{\prime 2}}{I^{\prime 3} G^{\prime \prime}}, \\
& \frac{\partial b_{3}}{\partial G^{\prime}}=-\frac{5 b_{3}}{G^{\prime}}, \\
& \frac{\mathrm{b}_{1}}{\partial \mathrm{II}}=-\frac{9}{2} \frac{\mathrm{~J}_{2} \mu^{4} \mathrm{R}^{2} \mathrm{H}^{\prime}}{\mathrm{L}^{4} \mathrm{G}^{\prime 5}}, \\
& \frac{\partial b_{2}}{\partial \mathrm{H}^{\prime}}=-\frac{15}{2} \frac{\mathrm{~J}_{2} \mu^{4} \mathrm{R}^{2} \mathrm{H}^{\prime}}{\mathrm{I}^{\prime 3} \mathrm{G}^{\prime{ }^{\prime}}}, \\
& \frac{\partial b_{3}}{\partial H^{\prime}}=\frac{3}{2} \frac{J_{2} \mu^{4} R^{2}}{L^{\prime 3} G^{\prime}{ }^{5}} .
\end{aligned}
$$

[^0]: *This work was supported in part by Grant NGR 09-015-002 from the National Aeronautics and Space Administration.
 $\dagger_{\text {Research assistant, Smithsonian Astrophysical Observatory, September } 1973 \text { to June }}$ 1975. Currently at Institut de Physique du Globe, Université Paris 6, Paris, France.

