193 research outputs found

    Chronological incongruences between mitochondrial and nuclear phylogenies of Aedes mosquitoes

    Get PDF
    3openInternationalOne-third of all mosquitoes belong to the Aedini, a tribe comprising common vectors of viral zoonoses such as Aedes aegypti and Aedes albopictus. To improve our understanding of their evolution, we present an updated multigene estimate of Aedini phylogeny and divergence, focusing on the disentanglement between nuclear and mitochondrial phylogenetic signals. We first show that there are some phylogenetic discrepancies between nuclear and mitochondrial markers which may be caused by wrong taxa assignment in samples collections or by some stochastic effect due to small gene samples. We indeed show that the concatenated dataset is model and framework dependent, indicating a general paucity of signal. Our Bayesian calibrated divergence estimates point toward a mosquito radiation in the mid-Jurassic and an Aedes radiation from the mid-Cretaceous on. We observe, however a strong chronological incongruence between mitochondrial and nuclear data, the latter providing divergence times within the Aedini significantly younger than the former. We show that this incongruence is consistent over different datasets and taxon sampling and that may be explained by either peculiar evolutionary event such as different levels of saturation in certain lineages or a past history of hybridization throughout the genus. Overall, our updated picture of Aedini phylogeny, reveal a strong nuclear-mitochondrial incongruence which may be of help in setting the research agenda for future phylogenomic studies of Aedini mosquitoesopenZadra, Nicola; Rizzoli, Annapaola; Rota-Stabelli, OmarZadra, N.; Rizzoli, A.; Rota-Stabelli, O

    Estimating rodent population abundance using early climatic predictors

    Get PDF
    Climate might directly or indirectly affect the population dynamics of several rodent species including Apodemus flavicollis, a very common forest small mammal and an important reservoir for several emerging zoonotic pathogens. We thus investigated how climatic data alone might be useful to predict rodent population dynamics. We used rodent data gathered through a long-term monitoring effort carried out for 17 years (2000–2017) using a capture-mark-recapture method in northern Italy. Temperature and precipitation data were obtained from a weather station close to the study area. Linear models were implemented to assess how mice density was associated with weather conditions considering various time lags. We found that warmer summers 2 years before sampling were positively related to A. flavicollis annual average population densities. Conversely, precipitation occurring the autumn 1 year before sampling negatively influenced mice abundance. To the best of our knowledge, this is one of the first attempts at investigating how rodent abundance is associated with climatic conditions in the central European region of the Alps. Our results highlight important correlations, which eventually might be used for estimating risk of transmission of rodent-borne zoonotic pathogen

    Diapause characterization in the invasive alien mosquito species Aedes koreicus: a laboratory experiment

    Get PDF
    Aedes koreicus is an invasive alien mosquito species native to Asia now introduced in several European countries, including northern Italy. In this temperate region, mosquito populations survive cold winter temperatures thanks to diapausing eggs or adults, depending on the species. In its native area, Ae. koreicus was reported to overwinter in the egg stage, but to the best of our knowledge, it is not confirmed whether overwintering eggs are actually diapausing or only in a quiescence stage, i.e., they might hatch as soon as external conditions are favorable. Based on previous laboratory studies, we established a diapausing Ae. koreicus colony, maintained at 21 °C with a photoperiod of 12L:12D. Females were allowed to lay eggs, which were consequently placed in water at different time intervals after oviposition, from 30 days to 5 months. We found that diapausing eggs younger than 3 months have a poor hatching rate, while after about 100 days we observed that almost all eggs hatched. Our findings highlight that water immersion alone did not lead to the hatching of eggs, as age was found to be a significantly important factor. We thus confirm effective diapause, occurring at the egg stage, for Ae. koreicus in a recently invaded area. Moreover, our quantification of diapause duration and hatching success might help in better designing future experiments and improving modeling effort

    Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The continuing spread of the Asian tiger mosquito <it>Aedes albopictus </it>in Europe is of increasing public health concern due to the potential risk of new outbreaks of exotic vector-borne diseases that this species can transmit as competent vector. We predicted the most favorable areas for a short term invasion of <it>Ae. albopictus </it>in north-eastern Italy using reconstructed daily satellite data time series (MODIS Land Surface Temperature maps, LST). We reconstructed more than 11,000 daily MODIS LST maps for the period 2001-09 (i.e. performed spatial and temporal gap-filling) in an Open Source GIS framework. We aggregated these LST maps over time and identified the potential distribution areas of <it>Ae. albopictus </it>by adapting published temperature threshold values using three variables as predictors (0°C for mean January temperatures, 11°C for annual mean temperatures and 1350 growing degree days filtered for areas with autumnal mean temperatures > 11°C). The resulting maps were integrated into the final potential distribution map and this was compared with the known current distribution of <it>Ae. albopictus </it>in north-eastern Italy.</p> <p>Results</p> <p>LST maps show the microclimatic characteristics peculiar to complex terrains, which would not be visible in maps commonly derived from interpolated meteorological station data. The patterns of the three indicator variables partially differ from each other, while winter temperature is the determining limiting factor for the distribution of <it>Ae. albopictus</it>. All three variables show a similar spatial pattern with some local differences, in particular in the northern part of the study area (upper Adige valley).</p> <p>Conclusions</p> <p>Reconstructed daily land surface temperature data from satellites can be used to predict areas of short term invasion of the tiger mosquito with sufficient accuracy (200 m pixel resolution size). Furthermore, they may be applied to other species of arthropod of medical interest for which temperature is a relevant limiting factor. The results indicate that, during the next few years, the tiger mosquito will probably spread toward northern latitudes and higher altitudes in north-eastern Italy, which will considerably expand the range of the current distribution of this species.</p

    Influence of temperature on the life-cycle dynamics of Aedes albopictus population established at temperate latitudes: a laboratory experiment

    Get PDF
    6openInternationalThe mosquito species Aedes albopictus has successfully colonized many areas at temperate latitudes, representing a major public health concern. As mosquito bionomics is critically affected by temperature, we experimentally investigated the influence of different constant rearing temperatures (10, 15, 25, and 30 °C) on the survival rates, fecundity, and developmental times of different life stages of Ae. albopictus using a laboratory colony established from specimens collected in northern Italy. We compared our results with previously published data obtained with subtropical populations. We found that temperate Ae. albopictus immature stages are better adapted to colder temperatures: temperate larvae were able to develop even at 10 °C and at 15 °C, larval survivorship was comparable to the one observed at warmer conditions. Nonetheless, at these lower temperatures, we did not observe any blood-feeding activity. Adult longevity and fecundity were substantially greater at 25 °C with respect to the other tested temperatures. Our findings highlight the ability of Ae. albopictus to quickly adapt to colder environments and provide new important insights on the bionomics of this species at temperate latitudesopenMarini, G.; Manica, M.; Arnoldi, D.; Inama, E.; Rosa', R.; Rizzoli, A.Marini, G.; Manica, M.; Arnoldi, D.; Inama, E.; Rosa', R.; Rizzoli, A

    Detection of novel insect flavivirus sequences integrated in Aedes albopictus (Diptera: Culicidae) in Northern Italy

    Get PDF
    The presence of DNA sequences integrated from a new flavivirus related to Cell Fusing Agent and Kamiti River Virus was identified in wild Aedes albopictus mosquito populations from the provinces of Trentino and Padova, Northern Italy. Field work was developed during August–October 2007 with BG-traps, and mosquitoes were screened for flavivirus and alphavirus. No alphavirus was detected, indicating that Chikungunya virus is not present in these mosquitoes in Trentino and Padova area. However, 21% of the pools were positive for flavivirus, further recognised with BLAST as similar to Kamiti River Virus. Phylogenetical analysis with 708 nucleotides from the NS5 gene identified this virus as a new member of the insect flavivirus clade, together with others like Kamiti River Virus, Cell Fusing Agent or Culex flavivirus, and in the group of those transmitted by Aedes. Furthermore, the treatment with RNAse, indicated that this flavivirus should be integrated in the genome of Ae. albopictus. These results propose that these sequences are transmitted by both sexes, and with different prevalence in the studied populations, and support the idea of a widespread distribution of integrated genomes in several mosquitoes from different areas, as first demonstrated with Cell Silent Agent. Evolutionary implications of this discovery and application in flavivirus phylogeny are discussed

    Mapping of Aedes albopictus abundance at a local scale in Italy

    Get PDF
    Given the growing risk of arbovirus outbreaks in Europe, there is a clear need to better describe the distribution of invasive mosquito species such as Aedes albopictus. Current challenges consist in simulating Ae. albopictus abundance, rather than its presence, and mapping its simulated abundance at a local scale to better assess the transmission risk of mosquito-borne pathogens and optimize mosquito control strategy. During 2014–2015, we sampled adult mosquitoes using 72 BG-Sentinel traps per year in the provinces of Belluno and Trento, Italy. We found that the sum of Ae. albopictus females collected during eight trap nights from June to September was positively related to the mean temperature of the warmest quarter and the percentage of artificial areas in a 250 m buffer around the sampling locations. Maps of Ae. albopictus abundance simulated from the most parsimonious model in the study area showed the largest populations in highly artificial areas with the highest summer temperatures, but with a high uncertainty due to the variability of the trapping collections. Vector abundance maps at a local scale should be promoted to support stakeholders and policy-makers in optimizing vector surveillance and control

    Current and future distribution of a parasite with complex life cycle under global change scenarios: Echinococcus multilocularis in Europe

    Get PDF
    Global change is expected to have complex effects on the distribution and transmission patterns of zoonotic parasites. Modelling habitat suitability for parasites with complex life cycles is essential to further our understanding of how disease systems respond to environmental changes, and to make spatial predictions of their future distributions. However, the limited availability of high&nbsp;quality occurrence data with high spatial resolution often constrains these investigations. Using 449 reliable occurrence records for Echinococcus multilocularis from across Europe published over the last 35 years, we modelled habitat suitability for this parasite, the aetiological agent of alveolar echinococcosis, in order to describe its environmental niche, predict its current and future distribution under three global change scenarios, and quantify the probability of occurrence for each European country. Using a machine learning approach, we developed large-scale (25 × 25 km) species distribution models based on seven sets of predictors, each set representing a distinct biological hypothesis supported by current knowledge of the autecology of the parasite. The best-supported hypothesis included climatic, orographic and land-use/land-cover variables such as the temperature of the coldest quarter, forest cover, urban cover and the precipitation seasonality. Future projections suggested the appearance of highly suitable areas for E. multilocularis towards northern latitudes and in the whole Alpine region under all scenarios, while decreases in habitat suitability were predicted for central Europe. Our spatially explicit predictions of habitat suitability shed light on the complex responses of parasites to ongoing global change

    Lyme borreliosis in Europe.

    Get PDF
    Despite improvements in prevention, diagnosis and treatment, Lyme borreliosis (LB) is still the most common arthropod-borne disease in temperate regions of the northern hemisphere, with risk of infection associated with occupation (e.g. forestry work) and certain outdoor recreational activities (e.g. mushroom collecting). In Europe, LB is caused by infection with one or more pathogenic European genospecies of the spirochaete Borrelia burgdorferi sensu lato, mainly transmitted by the tick Ixodes ricinus. Recent surveys show that the overall prevalence of LB may be stabilising, but its geographical distribution is increasing. In addition, much remains to be discovered about the factors affecting genospecific prevalence, transmission and virulence, although avoidance of tick bite still appears to be the most efficient preventive measure. Uniform, European-wide surveillance programmes (particularly on a local scale) and standardisation of diagnostic tests and treatments are still urgently needed, especially in the light of climate change scenarios and land-use and socio-economic changes. Improved epidemiological knowledge will also aid development of more accurate risk prediction models for LB. Studies on the effects of biodiversity loss and ecosystem changes on LB emergence may identify new paradigms for the prevention and control of LB and other tick-borne diseases
    corecore