87 research outputs found

    Wireless distance estimation with low-power standard components in wireless sensor nodes

    Full text link
    In the context of increasing use of moving wireless sensor nodes the interest in localizing these nodes in their application environment is strongly rising. For many applications, it is necessary to know the exact position of the nodes in two- or three-dimensional space. Commonly used nodes use state-of-the-art transceivers like the CC430 from Texas Instruments with integrated signal strength measurement for this purpose. This has the disadvantage, that the signal strength measurement is strongly dependent on the orientation of the node through the antennas inhomogeneous radiation pattern as well as it has a small accuracy on long ranges. Also, the nodes overall attenuation and output power has to be calibrated and interference and multipath effects appear in closed environments. Another possibility to trilaterate the position of a sensor node is the time of flight measurement. This has the advantage, that the position can also be estimated on long ranges, where signal strength methods give only poor accuracy. In this paper we present an investigation of the suitability of the state-of-the-art transceiver CC430 for a system based on time of flight methods and give an overview of the optimal settings under various circumstances for the in-field application. For this investigation, the systematic and statistical errors in the time of flight measurements with the CC430 have been investigated under a multitude of parameters. Our basic system does not use any additional components but only the given standard hardware, which can be found on the Texas Instruments evaluation board for a CC430. Thus, it can be implemented on already existent sensor node networks by a simple software upgrade.Comment: 8 pages, Proceedings of the 14th Mechatronics Forum International Conference, Mechatronics 201

    An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications

    Get PDF
    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches

    Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface

    Get PDF
    Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 μ m CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 μ W. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD)

    Sensors Best Paper Award 2015

    Get PDF
    Since 2011, an annual award system was instituted to recognize outstanding Sensors papers that are related to sensing technologies and applications and meet the aims, scope and high standards of this journal [1–4]. This year, the winners were chosen by the Section Editor-in-Chiefs of Sensors from among all the papers published in 2011 to track citations. Reviews and full research articles were considered separately. We gladly announce that the following eight papers were awarded the Sensors Best Paper Award in 2015

    Has time come to switch from duty-cycled MAC protocols to wake-up radio for wireless sensor networks?

    Get PDF
    Duty-cycled Medium Access Control (MAC) protocols certainly improve the energy efficiency of wireless networks. However, most of these protocols still suffer from severe degrees of overhearing and idle listening. These two issues prevent optimum energy usage, a crucial aspect in energy-constrained wireless networks such as wireless sensor networks (WSNs). Wake-up radio (WuR) systems drastically reduce these problems by completely switching off the nodes' microcontroller unit (MCU) and main radio transceiver until a secondary, extremely low-power receiver is triggered by a particular wireless transmission, the so called wake-up call. Unfortunately, most WuR studies focus on theoretical platforms and/or custom-built simulators. Both these factors reduce the associated usefulness of the obtained results. In this paper, we model and simulate a real, recent, and promising WuR hardware platform developed by the authors. The simulation model uses time and energy consumption values obtained in the laboratory and does not rely on custom-built simulation engines, but rather on the OMNET++ simulator. The performance of the WuR platform is compared to four of the most well-known and widely employed MAC protocols for WSN under three real-world network deployments. The paper demonstrates how the use of our WuR platform presents numerous benefits in several areas, from energy efficiency and latency to packet delivery ratio and applicability, and provides the essential information for serious consideration of switching duty-cycled MAC-based networks to WuR.Peer ReviewedPostprint (author's final draft

    A Wireless Micro Inertial Measurement Unit (IMU)

    Full text link

    Performance evaluation and comparative analysis of SubCarrier Modulation Wake-up radio systems for energy-efficient wireless sensor networks

    Get PDF
    Energy-efficient communication is one of the main concerns of wireless sensor networks nowadays. A commonly employed approach for achieving energy efficiency has been the use of duty-cycled operation of the radio, where the node’s transceiver is turned off and on regularly, listening to the radio channel for possible incoming communication during its on-state. Nonetheless, such a paradigm performs poorly for scenarios of low or bursty traffic because of unnecessary activations of the radio transceiver. As an alternative technology, Wake-up Radio (WuR) systems present a promising energy-efficient network operation, where target devices are only activated in an on-demand fashion by means of a special radio signal and a WuR receiver. In this paper, we analyze a novel wake-up radio approach that integrates both data communication and wake-up functionalities into one platform, providing a reconfigurable radio operation. Through physical experiments, we characterize the delay, current consumption and overall operational range performance of this approach under different transmit power levels. We also present an actual single-hop WuR application scenario, as well as demonstrate the first true multi-hop capabilities of a WuR platform and simulate its performance in a multi-hop scenario. Finally, by thorough qualitative comparisons to the most relevant WuR proposals in the literature, we state that the proposed WuR system stands out as a strong candidate for any application requiring energy-efficient wireless sensor node communications.Peer ReviewedPostprint (published version
    corecore