9,056 research outputs found
Integrating Case-Based Reasoning with Adaptive Process Management
The need for more flexiblity of process-aware information systems (PAIS) has been discussed for several years and different approaches for adaptive process management have emerged. Only few of them provide support for both changes of individual process instances and the propagation of process type changes to a collection of related process instances. The knowledge about changes has not yet been exploited by any of these systems. To overcome this practical limitation, PAIS must capture the whole process life cycle and all kinds of changes in an integrated way. They must allow users to deviate from the predefined process in exceptional situations, and assist them in retrieving and reusing knowledge about previously performed changes. In this report we present a proof-of concept implementation of a learning adaptive PAIS. The prototype combines the ADEPT2 framework for dynamic process changes with concepts and methods provided by case-based reasoning(CBR) technology
Emergence of the mitochondrial reticulum from fission and fusion dynamics
Mitochondria form a dynamic tubular reticulum within eukaryotic cells. Currently, quantitative understanding of its morphological characteristics is largely absent, despite major progress in deciphering the molecular fission and fusion machineries shaping its structure. Here we address the principles of formation and the large-scale organization of the cell-wide network of mitochondria. On the basis of experimentally determined structural features we establish the tip-to-tip and tip-to-side fission and fusion events as dominant reactions in the motility of this organelle. Subsequently, we introduce a graph-based model of the chondriome able to encompass its inherent variability in a single framework. Using both mean-field deterministic and explicit stochastic mathematical methods we establish a relationship between the chondriome structural network characteristics and underlying kinetic rate parameters. The computational analysis indicates that mitochondrial networks exhibit a percolation threshold. Intrinsic morphological instability of the mitochondrial reticulum resulting from its vicinity to the percolation transition is proposed as a novel mechanism that can be utilized by cells for optimizing their functional competence via dynamic remodeling of the chondriome. The detailed size distribution of the network components predicted by the dynamic graph representation introduces a relationship between chondriome characteristics and cell function. It forms a basis for understanding the architecture of mitochondria as a cell-wide but inhomogeneous organelle. Analysis of the reticulum adaptive configuration offers a direct clarification for its impact on numerous physiological processes strongly dependent on mitochondrial dynamics and organization, such as efficiency of cellular metabolism, tissue differentiation and aging
An examination of professional development practices for secondary teachers through the lens of adult learning theory
Dissertation advisor: Dr. Barbara N. Martin.Includes vita.This qualitative case study investigated the professional development for teachers in one Missouri school district from the perspective of principals and teachers to determine whether Knowles (1990) adult learning theory assumptions are applied in the planning and implementation of professional development. The definition of professional development utilized in the study was "building capacity of teachers to help students learn" (DiPaola & Hoy, 2014, p. 101). Professional development has been the mode to improve instruction through teacher training ultimately to produce higher student achievement (Miller, Garciduenas, Green, Shatola, & Enumba, 2008). Creating change with teachers required study into how teachers learn (Gregson & Sturko, 2007). Caruth (2014) defined adult learning theory as the study of how adults learn. The study focused on the perceptions of principals and teachers in regards to professional development and its planning and implementation through the lens of the six adult learning theory assumptions: self-directed, need to know, life experiences, readiness to learn, internal motivation, and orientation to learning. A qualitative case study approach allowed the researcher to examine the six assumptions of adult learning theory within one school district. A qualitative case student approach provided opportunities for in-depth answers and richer feedback (Mertens, 2005). For this research, the case study consisted of one school district and two high schools. Semi-structured questions, encouraging open ended answers, were asked to the two building principals and a focus group (containing 5-6 participants) from each building. Through data analysis, the six assumptions of adult learning theory were examined. These themes provided insight as to the perceptions of principals and teachers about the professional development offered within their buildings.Includes bibliographical references (pages 104-117)
"Gestresste" Mitochondrien werden isoliert : ein Protein schlägt die Brücke zwischen Qualitätskontrolle und Dynamik
Mitochondrien sind die Kraftwerke unserer Zellen. In ihnen findet die Zellatmung statt, die unseren Körper mit lebenswichtiger Energie versorgt. Zusätzlich teilen sich die Zellorganellen und verschmelzen wieder miteinander im Minutentakt. Was aber passiert, wenn Teile dieses dynamischen Geflechts Defekte aufweisen? Die Antwort dazu könnte ein Protein sein, das auf zwei verschiedene Weisen in die Mitochondrien-Membranen eingebaut wird. Liegt keine kurze Form des Proteins vor, ist das ein Hinweis dafür, dass die Organellen defekt sind. Die Mitochondrien verbrennen die mit der Nahrung zugeführten Kohlenhydrate und Fette unter Verbrauch von Sauerstoff zu Kohlendioxid und Wasser. Bei diesem Vorgang, der Zellatmung, wird über eine Reihe von Proteinkomplexen ein elektrochemisches Potenzial aufgebaut, das zur Produktion des Energieträgers ATP (Adenosintriphosphat) genutzt wird. ATP kann aus den Mitochondrien abtransportiert werden und steht somit als eine Art Treibstoff für alle Stoffwechselprozesse zur Verfügung. Die Arbeit der Mitochondrien ist der Hauptgrund für unseren täglichen Sauerstoffbedarf. Außerdem tragen die Nano-Kraftwerke der Zelle dazu bei, unsere Körpertemperatur auf 37 °C aufrechtzuerhalten. Aufgrund dieser zentralen Funktionen ist es nicht verwunderlich, dass eine Reihe von Krankheiten beim Menschen durch den Funktionsverlust von Mitochondrien verursacht oder beeinflusst wird. Das sind in erster Linie neurologische oder muskuläre Erkrankungen, aber auch Diabetes, Fettleibigkeit, verschiedene Formen von Krebs und Alterungsprozesse. Folglich ist es von immenser Bedeutung zu verstehen, wie Mitochondrien funktionieren, wie sie ihre Funktionalität aufrechterhalten und gegebenenfalls repariert oder entsorgt werden können. Dem können wir am Wissenschaftsstandort Frankfurt hervorragend nachgehen, da sich einige international ausgewiesene Forschungsgruppen in den Fachbereichen Medizin, Biologie, Chemie und am Max-Planck-Institut für Biophysik mit verschiedenen Aspekten der mitochondrialen Biologie befassen. In zahlreichen interdisziplinären Kooperationen wird so versucht, dieses komplexe System besser zu verstehen
Navier-Stokes analysis and experimental data comparison of compressible flow within ducts
Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models. The present study compares results for both the Baldwin-Lomas and k-epsilon turbulence models and is conducted with a refined grid. For the transition duct, two inlet conditions were considered, the first with straight flow and the second with swirling flow. The first case permits examination of the effects of the geometric transition on the flow field, while the second case includes the rotational flow effect characteristic of a gas turbine engine
Cognition in contests: mechanisms, ecology, and evolution
Animal contests govern access to key resources and are a fundamental determinant of fitness within populations. Little is known about the mechanisms generating individual variation in strategic contest behavior or what this variation means for population level processes. Cognition governs the expression of behaviors during contests, most notably by linking experience gained with decision making, but its role in driving the evolutionary ecological dynamics of contests is only beginning to emerge. We review the kinds of cognitive mechanisms that underlie contest behavior, emphasize the importance of feedback loops and socio-ecological context, and suggest that contest behavior provides an ideal focus for integrative studies of phenotypic variation
Change Mining in Adaptive Process Management Systems
The wide-spread adoption of process-aware information systems has resulted in a bulk of computerized information about real-world processes. This data can be utilized for process performance analysis as well as for process improvement. In this context process mining offers promising perspectives. So far, existing mining techniques have been applied to operational processes, i.e., knowledge is extracted from execution logs (process discovery), or execution logs are compared with some a-priori process model (conformance checking). However, execution logs only constitute one kind of data gathered during process enactment. In particular, adaptive processes provide additional information about process changes (e.g., ad-hoc changes of single process instances) which can be used to enable organizational learning. In this paper we present an approach for mining change logs in adaptive process management systems. The change process discovered through process mining provides an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for all kinds of process improvement actions, e.g., it may trigger process redesign or better control mechanisms
- …