44 research outputs found

    TEDDI: Tamper Event Detection on Distributed Cyber-Physical Systems

    Get PDF
    Edge devices, or embedded devices installed along the periphery of a power grid SCADA network, pose a significant threat to the grid, as they give attackers a convenient entry point to access and cause damage to other essential equipment in substations and control centers. Grid defenders would like to protect these edge devices from being accessed and tampered with, but they are hindered by the grid defender\u27s dilemma; more specifically, the range and nature of tamper events faced by the grid (particularly distributed events), the prioritization of grid availability, the high costs of improper responses, and the resource constraints of both grid networks and the defenders that run them makes prior work in the tamper and intrusion protection fields infeasible to apply. In this thesis, we give a detailed description of the grid defender\u27s dilemma, and introduce TEDDI (Tamper Event Detection on Distributed Infrastructure), a distributed, sensor-based tamper protection system built to solve this dilemma. TEDDI\u27s distributed architecture and use of a factor graph fusion algorithm gives grid defenders the power to detect and differentiate between tamper events, and also gives defenders the flexibility to tailor specific responses for each event. We also propose the TEDDI Generation Tool, which allows us to capture the defender\u27s intuition about tamper events, and assists defenders in constructing a custom TEDDI system for their network. To evaluate TEDDI, we collected and constructed twelve different tamper scenarios, and show how TEDDI can detect all of these events and solve the grid defender\u27s dilemma. In our experiments, TEDDI demonstrated an event detection accuracy level of over 99% at both the information and decision point levels, and could process a 99-node factor graph in under 233 microseconds. We also analyzed the time and resources needed to use TEDDI, and show how it requires less up-front configuration effort than current tamper protection solutions

    Autoscopy Jr.: Intrusion Detection for Embedded Control Systems

    Get PDF
    Securing embedded control systems within the power grid presents a unique challenge: on top of the resource restrictions inherent to these devices, SCADA systems must also accommodate strict timing requirements that are non-negotiable, and their massive scale greatly amplifies costs such as power consumption. These constraints make the conventional approach to host intrusion detection--namely, employing virtualization in some manner--too costly or impractical for embedded control systems within critical infrastructure. Instead, we take an in-kernel approach to system protection, building upon the Autoscopy system developed by Ashwin Ramaswamy that places probes on indirectly-called functions and uses them to monitor its host system for behavior characteristic of control-flow-altering malware, such as rootkits. In this thesis, we attempt to show that such a method would indeed be a viable method of protecting embedded control systems. We first identify several issues with the original prototype, and present a new version of the program (dubbed Autoscopy Jr.) that uses trusted location lists to verify that control is coming from a known, trusted location inside our kernel. Although we encountered additional performance overhead when testing our new design, we developed a kernel profiler that allowed us to identify the probes responsible for this overhead and discard them, leaving us with a final probe list that generated less than 5% overhead on every one of our benchmark tests. Finally, we attempted to run Autoscopy Jr. on two specialized kernels (one with an optimized probing framework, and another with a hardening patch installed), finding that the former did not produce enough performance benefits to preclude using our profiler, and that the latter required a different method of scanning for indirect functions for Autoscopy Jr. to operate. We argue that Autoscopy Jr. is indeed a feasible intrusion detection system for embedded control systems, as it can adapt easily to a variety of system architectures and allows us to intelligently balance security and performance on these critical devices

    Absence of evidence of Xenotropic Murine Leukemia Virus-related virus infection in persons with Chronic Fatigue Syndrome and healthy controls in the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>XMRV, a xenotropic murine leukemia virus (MuLV)-related virus, was recently identified by PCR testing in 67% of persons with chronic fatigue syndrome (CFS) and in 3.7% of healthy persons from the United States. To investigate the association of XMRV with CFS we tested blood specimens from 51 persons with CFS and 56 healthy persons from the US for evidence of XMRV infection by using serologic and molecular assays. Blinded PCR and serologic testing were performed at the US Centers for Disease Control and Prevention (CDC) and at two additional laboratories.</p> <p>Results</p> <p>Archived blood specimens were tested from persons with CFS defined by the 1994 international research case definition and matched healthy controls from Wichita, Kansas and metropolitan, urban, and rural Georgia populations. Serologic testing at CDC utilized a Western blot (WB) assay that showed excellent sensitivity to MuLV and XMRV polyclonal or monoclonal antibodies, and no reactivity on sera from 121 US blood donors or 26 HTLV-and HIV-infected sera. Plasma from 51 CFS cases and plasma from 53 controls were all WB negative. Additional blinded screening of the 51 cases and 53 controls at the Robert Koch Institute using an ELISA employing recombinant Gag and Env XMRV proteins identified weak seroreactivity in one CFS case and a healthy control, which was not confirmed by immunofluorescence. PCR testing at CDC employed a <it>gag </it>and a <it>pol </it>nested PCR assay with a detection threshold of 10 copies in 1 ug of human DNA. DNA specimens from 50 CFS patients and 56 controls and 41 US blood donors were all PCR-negative. Blinded testing by a second nested gag PCR assay at the Blood Systems Research Institute was also negative for DNA specimens from the 50 CFS cases and 56 controls.</p> <p>Conclusions</p> <p>We did not find any evidence of infection with XMRV in our U.S. study population of CFS patients or healthy controls by using multiple molecular and serologic assays. These data do not support an association of XMRV with CFS.</p

    Sleep characteristics of persons with chronic fatigue syndrome and non-fatigued controls: results from a population-based study

    Get PDF
    BACKGROUND: The etiology and pathophysiology of chronic fatigue syndrome (CFS) remain inchoate. Attempts to elucidate the pathophysiology must consider sleep physiology, as unrefreshing sleep is the most commonly reported of the 8 case-defining symptoms of CFS. Although published studies have consistently reported inefficient sleep and documented a variable occurrence of previously undiagnosed primary sleep disorders, they have not identified characteristic disturbances in sleep architecture or a distinctive pattern of polysomnographic abnormalities associated with CFS. METHODS: This study recruited CFS cases and non-fatigued controls from a population based study of CFS in Wichita, Kansas. Participants spent two nights in the research unit of a local hospital and underwent overnight polysomnographic and daytime multiple sleep latency testing in order to characterize sleep architecture. RESULTS: Approximately 18% of persons with CFS and 7% of asymptomatic controls were diagnosed with severe primary sleep disorders and were excluded from further analysis. These rates were not significantly different. Persons with CFS had a significantly higher mean frequency of obstructive apnea per hour (p = .003); however, the difference was not clinically meaningful. Other characteristics of sleep architecture did not differ between persons with CFS and controls. CONCLUSION: Although disordered breathing during sleep may be associated with CFS, this study generally did not provide evidence that altered sleep architecture is a critical factor in CFS. Future studies should further scrutinize the relationship between subjective sleep quality relative to objective polysomnographic measures

    MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis

    Get PDF
    Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization

    Sleep assessment in a population-based study of chronic fatigue syndrome

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) is a disabling condition that affects approximately 800,000 adult Americans. The pathophysiology remains unknown and there are no diagnostic markers or characteristic physical signs or laboratory abnormalities. Most CFS patients complain of unrefreshing sleep and many of the postulated etiologies of CFS affect sleep. Conversely, many sleep disorders present similarly to CFS. Few studies characterizing sleep in unselected CFS subjects have been published and none have been performed in cases identified from population-based studies. METHODS: The study included 339 subjects (mean age 45.8 years, 77% female, 94.1% white) identified through telephone screen in a previously described population-based study of CFS in Wichita, Kansas. They completed questionnaires to assess fatigue and wellness and 2 self-administered sleep questionnaires. Scores for five of the six sleep factors (insomnia/hypersomnia, non-restorative sleep, excessive daytime somnolence, sleep apnea, and restlessness) in the Centre for Sleep and Chronobiology's Sleep Assessment Questionnaire(© )(SAQ(©)) were dichotomized based on threshold. The Epworth Sleepiness Scale score was used as a continuous variable. RESULTS: 81.4% of subjects had an abnormality in at least one SAQ(© )sleep factor. Subjects with sleep factor abnormalities had significantly lower wellness scores but statistically unchanged fatigue severity scores compared to those without SAQ(© )abnormality. CFS subjects had significantly increased risk of abnormal scores in the non-restorative (adjusted odds ratio [OR] = 28.1; 95% confidence interval [CI]= 7.4–107.0) and restlessness (OR = 16.0; 95% CI = 4.2–61.6) SAQ(© )factors compared to non-fatigued, but not for factors of sleep apnea or excessive daytime somnolence. This is consistent with studies finding that, while fatigued, CFS subjects are not sleepy. A strong correlation (0.78) of Epworth score was found only for the excessive daytime somnolence factor. CONCLUSIONS: SAQ(© )factors describe sleep abnormalities associated with CFS and provide more information than the Epworth score. Validation of these promising results will require formal polysomnographic sleep studies

    First presentation with neuropsychiatric symptoms in autosomal dominant Alzheimer\u27s disease: The Dominantly Inherited Alzheimer\u27s Network Study

    Get PDF
    Behavioural changes and neuropsychiatric symptoms (NPS) commonly occur in Alzheimer’s disease (AD) but may not be recognised as AD-related when they are the presenting feature. NPS are important as they are associated with greater functional impairment, poorer quality of life, accelerated cognitive decline and worsened caregiver burden.1 Autosomal dominant AD (ADAD), although \u3c 1% of total AD cases, provides a valuable opportunity to study the clinical heterogeneity of AD. The young age at onset reduces the prevalence of age-related comorbid pathologies and the near 100% penetrance of pathogenic mutations reduces the likelihood of misdiagnosis.2 Anxiety and depression commonly occur in ADAD family members, with increased levels of depression having been found among predementia female mutation carriers.3 Subsequent studies, however, have shown that anxiety and/or depression are common regardless of mutation status, occurring in almost one in three at-risk individuals, with one study reporting a higher rate of depression in non-carriers (17%) than asymptomatic carriers (5%).4 5 Despite the high frequency of NPS in ADAD families, relatively little is known about the proportion of ADAD cases who present with predominantly behavioural symptoms. Our aims were to assess the first reported clinical change in symptomatic ADAD, to compare presentations across genotypes, and to compare cognitive performance between behavioural and cognitive-led presentations

    A Regulatory Network for Coordinated Flower Maturation

    Get PDF
    For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore