
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

5-1-2016

TEDDI: Tamper Event Detection on Distributed Cyber-Physical TEDDI: Tamper Event Detection on Distributed Cyber-Physical

Systems Systems

Jason O. Reeves
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Reeves, Jason O., "TEDDI: Tamper Event Detection on Distributed Cyber-Physical Systems" (2016).
Dartmouth College Ph.D Dissertations. 52.
https://digitalcommons.dartmouth.edu/dissertations/52

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/52?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

TEDDI: Tamper Event Detection on Distributed Cyber-Physical Systems

Dartmouth Computer Science Technical Report TR2016-804

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by

Jason Reeves

DARTMOUTH COLLEGE

Hanover, New Hampshire

May 2016

Examining Committee:

(chair) Sean W. Smith, Ph.D.

Sergey Bratus, Ph.D.

David F. Kotz, Ph.D.

Zbigniew T. Kalbarczyk, Ph.D.

Ryan Bradetich, Ph.D.

F. Jon Kull, Ph.D.
Dean of Graduate Studies

Dedicated to “Mammie”

Sylvia Lillian Rathburn

1937 – 2016

Abstract

Edge devices, or embedded devices installed along the periphery of a power grid SCADA

network, pose a significant threat to the grid, as they give attackers a convenient entry point

to access and cause damage to other essential equipment in substations and control centers.

Grid defenders would like to protect these edge devices frombeing accessed and tampered

with, but they are hindered bythe grid defender’s dilemma; more specifically, the range and

nature of tamper events faced by the grid (particularly distributed events), the prioritization

of grid availability, the high costs of improper responses,and the resource constraints of

both grid networks and the defenders that run them makes prior work in the tamper and

intrusion protection fields infeasible to apply.

In this thesis, we give a detailed description of the grid defender’s dilemma, and intro-

duce TEDDI (Tamper Event Detection on Distributed Infrastructure), a distributed, sensor-

based tamper protection system built to solve this dilemma.TEDDI’s distributed architec-

ture and use of a factor graph fusion algorithm gives grid defenders the power to detect

and differentiate between tamper events, and also gives defenders the flexibility to tailor

specific responses for each event. We also propose the TEDDI Generation Tool, which

allows us to capture the defender’s intuition about tamper events, and assists defenders in

constructing a custom TEDDI system for their network.

To evaluate TEDDI, we collected and constructed twelve different tamper scenarios,

and show how TEDDI can detect all of these events and solve thegrid defender’s dilemma.

In our experiments, TEDDI demonstrated an event detection accuracy level of over 99% at

both the information and decision point levels, and could process a 99-node factor graph in

under 233µs. We also analyzed the time and resources needed to use TEDDI, and show

how it requires less up-front configuration effort than current tamper protection solutions.

ii

Acknowledgements

After eleven years at Dartmouth, the list of people that deserve recognition for helping me

reach this point is longer than my actual dissertation! I will never be able to thank them all

for their support and guidance over the years, but I will do mybest to try.

First, I would like to thank my graduate advisors, Sean Smithand Sergey Bratus. Sergey

introduced me to the hacking community, and championed the Autoscopy Jr. project all the

way to its inclusion in the SEL product line, while Sean helped me navigate navigate the

field of tamper detection, and served as a pillar a support andsource of encouragement

throughout the design and development of TEDDI. The wisdom you both have shared with

me, both about academia and life in general, has been invaluable, and I someday hope to

be half the leader and mentor that you both are.

I would also like to thank the other members of my thesis committee, Zbigniew Kalbar-

czyk, Ryan Bradetich, and Dave Kotz: Your insight and encouragement played a major

role in the success of TEDDI. Zbigniew introduced me to factor graphs as a powerful al-

ternative to Bayesian networks, Ryan introduced us to this problem space and gave us the

idea that would eventually grow into TEDDI, and Dave’s advice and feedback pushed me

to become a better researcher and make TEDDI a better project. This thesis would not have

been possible without you all, and I am grateful for your support.

I would like to thank Bill Nisen, Tom Candon, Karen Page, and allthe rest of my

colleagues at the Institute for Security, Technology, and Society for always being there

when I needed someone to bounce ideas off of, talk me back off the ledge when things

seemed bleak, or listen to my rants about the deficiencies of the Orioles’ pitching staff. I

am a better student and person—and TEDDI is a better thesis—because of all of you. The

ISTS is a valuable resource, and I only wish that more people realized it.

To Bx, Shrirang, Aarathi, Ray, Vijay, Tim, Travis, Stefan, Michael, Prashant, Vineetha,

Pete, Gabe, Scout, Max, Joe, John, Rouslan, Ivan, Tucker, David x 2, Alex, Ryan, Ricky,

iii

and at least twenty other people I’ve forgotten who have passed through the Trust and Kotz

Labs during my tenure: Your presence and spirit went a long way towards making the pain

of graduate school a lot more bearable. Working, talking, and just getting to hang out with

you all has been an honor and a privilege. I owe a special thankyou to Chris Frangieh

for helping me design and build the TEDDI Generation Tool (and tolerating my bumbling

attempts at being a project manager), and to Shrirang Mare for proofreading this document

and making it readable—trust me, if you’re reading this, youowe Shrirang a thank-you too.

To my homeboys Alex and Chris Tausanovitch: Twenty years ago we were nerdy out-

casts playing Super Smash Brothers in your basement. Now we’ve got two PhDs and a law

degree between us. How did this happen!?

Finally, the biggest thank you of all goes to my family: Bill, Debra, Joel, Erika, Otis,

Sylvia, and Maggie. Thank you for supporting, encouraging,and putting up with me for

over thirty years. I could not have done it without you.

This material is based upon work supported by the Departmentof Energy under Award

Numbers DE-OE0000097 and DE-OE0000780.

TEDDI
(P.S. For the record, Kyle was no help at all.)

iv

Disclaimer

This report was prepared as an account of work sponsored by anagency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, express or implied, orassumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product,process, or service by trade

name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed hereindo not necessarily state or

reflect those of the United States Government or any agency thereof.

v

Contents

1 Introduction 1

1.1 Edge Devices and the Power Grid .2

1.2 The Grid Defender’s Dilemma .5

1.3 Our Proposal: TEDDI . 7

1.4 Contributions . 12

1.5 Thesis Outline . 14

2 Background 15

2.1 The Power Grid: A High-Level Overview 15

2.2 The Smart Grid: Intelligence at the Endpoints 17

2.3 Data Fusion Algorithms .19

2.3.1 Bayesian Networks (BNs) . 19

2.3.2 Markov Random Fields (MRFs) 20

2.3.3 Binary Decision Diagrams/Branching Programs (BDDs) 21

2.3.4 Custom Algorithms . 22

2.3.5 Factor Graphs . 22

2.4 XACML and the Power of Distributed Systems 24

vi

2.5 Network Intrusion Protection Systems (NIPS) 25

2.6 Autoscopy Jr. 27

3 A Taxonomy of Tampering 29

3.1 Device Data Access . 29

3.2 Device Additions . 31

3.3 Device Modifications . 32

3.4 Device Replacements . 34

3.5 Non-Malicious Tampering .36

3.6 Tamper Protections . 37

4 The Grid Defender’s Dilemma 41

4.1 What Is The Dilemma? . 41

4.2 Why Haven’t We Solved The Dilemma? 43

5 Related Work 47

5.1 Tampering vs. Intruding .. 47

5.2 Software Tamper Protections .. . 49

5.3 Hardware Tamper Protections .. 50

5.4 Signature-Based Intrusion Protections 52

5.5 Anomaly-Based Intrusion Protections 56

5.6 Hybrid Intrusion Protections 60

5.7 Other Protection Work . 61

5.8 Prior Work vs. The Grid Defender’s Dilemma 62

vii

5.9 Factor Graphs and Security .. 63

6 The TEDDI System 65

6.1 Problem Assumptions and Attacker Model 65

6.2 TEDDI Architecture Overview .. 67

6.3 TEDDI Factor Graphs . 69

6.3.1 How TEDDI Looks For Sequences 73

6.4 Tamper Information Points (TIPs) 76

6.5 Tamper Decision Points (TDPs) .. 79

6.6 Tamper Enforcement Points (TEPs) 83

6.7 Limitations of TEDDI . 84

7 The TEDDI Generation Tool 89

7.1 Factor Graph Domain-Specific Language (FGDSL) 92

7.2 Response Suggestion Engine .93

7.3 Network Topology Uploader .96

7.4 TDP Placement Tool . 99

7.5 Generation Tool Limitations .. . 102

8 TEDDI in Action 103

8.1 Scenario 1: Device Credential Heist 103

8.2 Scenario 2: The Schweitzer Scenario 106

8.3 Summary: Scenarios 1-2 . 108

8.4 Scenario 3: Maintenance Mode Attack 109

viii

8.5 Scenario 4: Malicious USB Attack .. . 112

8.6 Summary: Scenarios 3-4 . 115

8.7 Scenario 5: Taum Sauk Dam Overflow .116

8.8 Other Tamper Scenarios .119

8.8.1 Simple User Data Heist . 119

8.8.2 Complex User Data Heist . 120

8.8.3 Pin-In-The-Meter Attack . 121

8.8.4 Return-To-Debug Attack . 122

8.8.5 The Sensor Subversion Scenario123

8.8.6 Earthquake . 124

8.9 Overall Summary . 125

9 Evaluation 126

9.1 A Word on System Comparison . 126

9.2 Detection Accuracy . 129

9.2.1 TIP Event Detection . 129

9.2.2 TDP Regional State Calculation 134

9.3 System Performance . 136

9.4 Usability Analysis .143

9.5 Summary . 150

10 Conclusions 152

ix

List of Acronyms

ART Attack Response Tree

BDD Binary Decision Diagram

BN Bayesian Network

CFI Control-Flow Integrity

CIP Critical Infrastructure Protection

CPTL Cyber-Physical Topology Language

DRAM Dynamic Random Access Memory

DSL Domain-Specific Language

EM Energy Management

FGDSL Factor-Graph Domain-Specific Language

FIPS Federal Information Processing Standards

IDS Intrusion Detection System

IEC International Electrotechnical Commission

JSON JavaScript Object Notation

kV Kilovolt

MAC Message Authentication Code

MRF Markov Random Field

NIPS Network Intrusion Protection System

x

NIST National Institute of Standards and Technology

PAC Probabilistic Alert Correlation

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PQS Process Query Systems

RRE Response and Recovery Engine

TDP Tamper Decision Point

TEDDI Tamper Event Detection on Distributed Infrastructure

TEP Tamper Enforcement Point

TIP Tamper Information Point

SCADA Supervisory Control and Data Acquisition

SCPSE Security-Oriented Cyber-Physical State Estimation

SECaaS Security-as-a-Service

SPLP Simple Plant Location Problem

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

xi

List of Figures

1.1 Diagram of how TEDDI components interact 9

2.1 An example Bayesian Network . 19

2.2 An example Markov Random Field . 21

2.3 An example factor graph . 23

5.1 Taxonomy of prior tamper/intrusion work 49

6.1 Example of how TEDDI works in practice 68

6.2 Example of a TEDDI factor graph .71

6.3 Example of a limited TEDDI factor graph 73

6.4 Diagram of how user and TEDDI event sequences differ 74

6.5 Flowchart of TDP’s alert response 82

7.1 Basic FGDSL definitions . 93

7.2 Diagram of conversion from mental model to TEDDI code 93

7.3 Example file for the Network Topology Uploader 98

8.1 Device Credential Heist sequence diagram 105

8.2 Schweitzer Scenario sequence diagram 107

xii

8.3 Maintenance Mode Attack sequence diagram 111

8.4 Malicious/Benign USB Attack sequence diagram 114

8.5 Tam Sauk Dam Overflow sequence diagram 118

9.1 Graph of factor graph processing times 138

9.2 Graph of TDP Placement Tool times .. 141

9.3 Full factor graph for usability analysis 146

xiii

List of Tables

5.1 Prior work vs. the grid defender’s dilemma 64

9.1 Sample of prior work evaluations 127

9.2 Factor graph processing times .. . 137

9.3 TDP Placement Tool processing times 142

xiv

Chapter 1

Introduction

In this thesis, we introduce TEDDI (Tamper Event Detection on Distributed Infrastructure),

a novel, distributed, sensor-based tamper protection architecture to address security issues

arising from the installation ofedge devices, or networked smart devices on the periphery

of utilities’ networks. We show how these edge devices lead to a problem we define asthe

grid defender’s dilemma; that is, these edge devices provide an easy way for an attacker to

cause massive damage to the grid, and while power grid defenders1 would like to use state-

of-the-art protection solutions to prevent this damage, the unique goals and constraints of

the power grid prevent defenders from doing so. We outline the various components of

TEDDI and how they interact with one another, and describe how the system uses factor

graphs [42] to make decisions about tamper events that are currently occurring based on

the available data. Finally, we evaluate the speed, accuracy, and resource requirements of

TEDDI, and show that TEDDI can solve the above dilemma with comparable or better

performance than prior work.

1We use the termsuser, operator, anddefenderinterchangeably in this thesis to describe the utility per-
sonnel who are responsible for the security and proper operation of the power grid (and thus are the users we
target with TEDDI).

1

1.1 Edge Devices and the Power Grid

A power grid is a large, interconnected web of power lines andsubstations designed to

transport electricity from the power plants that generate it to the homes and businesses that

consume it [139]. While the U.S. grid began as a collection of isolated utilities distributing

power within their local area, as the demand for power grew, these utilities began to connect

to each other to share the costs of building larger generation plants while also increasing

the reliability of their local grids (since a utility could now draw on reserves from other

utilities to meet demand when necessary). The result is our current grid setup, as described

by the U.S. Energy Information Administration:

“The interconnected [power grid] systems now include about 2,000 electric

distribution utilities, more than 300,000 miles of transmission and distribution

lines, millions of customers, and more than 7,200 power plants and generating

facilities that each has at least 1 megawatt of generating capacity” [139].

Because electricity cannot be stored effectively in large quantities, the power grid is

constructed as areal-timesystem; that is, power must be generated on-demand the moment

it is needed [139]. As a real-time system, the grid requires constant monitoring and timely

interventions to operate properly. Given the speed and destructive power of electricity, these

interventions must happen quickly, often within a small time window in which a human

cannot react. The need for such timely interventions has ledthe industry to automate many

routine tasks based on the state of the grid, using devices such as generator governors and

protective relays [143].

Recently, utilities have introduced a number of “smart” gridtechnologies into the grid,

with the aim of improving the grid’s reliability and efficiency by cutting down on power

losses, reducing maintenance times, and encouraging consumers to save energy [139]. As

part of this push towards a smarter grid, utilities have installed a number ofedge devices

2

on their SCADA2 networks. networks. Edge devices are resource-constrained embedded

devices that live on the periphery of a network, e.g. at a consumer’s home or on a telephone

pole. An example of an edge device is a recloser control [113], which is used to configure

how a utility’s reclosers3 behave when a fault is detected in the power lines, and is often

mounted inside boxes on utility poles in the field.

Edge devices present a major security challenge for the power grid for three reasons:

1. Distributed: These devices are distributed all across a utility’s service area and may

appear in almost any environment, from remote rural areas (where these boxes are

under very little supervision) to highly-populated urban areas (where they are easily

accessible to a large number of people).

2. Minimal Physical Security: These devices often have little in the way of physical

security. Generally, they are either directly exposed to the environment, or are locked

within an easily-accessible cabinet.

3. Network Access:These devices have a direct connection to a utility’s SCADA net-

work. While this is intended to allow the device to communicate with specific parties,

such as a data aggregator or a server at a utility’s control center, it may also grant the

device access to everything else on the network, such as other edge devices, other

control centers, or perhaps other pieces of the control infrastructure.

In short, edge devices are enticing targets for malicious actors, who can use them to

harm the grid on a number of levels:

At the Device Level: An attacker can access potentially sensitive data on the device (for

example, cryptographic keys) or modify the outputs to mislead network operators
2SCADA stands for “Supervisory Control and Data Acquisition,” and is generally used to describe the

command-and-control networks used by critical industrieslike the power grid.
3A recloseris a grid protection device that is used to quickly restore service in the event of a transient

fault, such as a short circuit [1]. When a transient fault is detected on a power line, a recloser can disconnect
the line, wait for the fault to clear, and then reconnect the line automatically, which leads to shorter outages
and fewer technician visits to field equipment.

3

(for example, report incorrect usage data to commit fraud).

At the Local-Area Network Level: Once a device is compromised, an attacker can com-

promise other similar devices that are nearby, and build a botnet of edge devices that

can be used to execute a coordinated attack against the grid.For example, an attacker

controlling a large number of smart meters can order them to all disconnect and then

reconnect at the same time, creating a large load shift that can be disastrous for grid

equipment [143].

At the Wide-Area Network Level: This scenario is the most concerning for utility oper-

ators, since an attacker could use a compromised edge deviceas a gateway toanyof

the devices on a utility’s SCADA network, leaving substations, control centers, and

potentially even generators open to attack. (Our conversations with industry insid-

ers indicate that flat, unsegmented networks are frequentlyencountered in the power

industry—for example, a recent attack on Ukraine’s power grid involved “issuing

commands directly from a remote station” [70]. Even if networks had some sort of

segmentation in place, there would still need to be holes forlegitimate communica-

tion, which can be leveraged by an attacker as well.) The consequences of such an

attack could be disastrous: A 2014Wall Street Journalarticle declared that malicious

attackers could cause a nationwide blackout by taking down fewer than ten critical

substations during a period of high demand on the grid, and that such a blackout

“could plunge the country into darkness for weeks, if not months” [116]. Thus, a

compromised edge device could give an attacker access to oneor more of these criti-

cal substations, and thereby allow them to cause damage thatextends far beyond the

loss of a single device.

Given these potential consequences, protecting edge devices is a high priority for utili-

ties.

4

1.2 The Grid Defender’s Dilemma

As a first step towards protecting these edge devices, we developed Autoscopy Jr. [99],4 a

host-based intrusion detection system that used control-flow integrity to sense the presence

of rootkits installed on the device. Autoscopy Jr. worked first by learning a profile of

“normal” behavior that occurred on the system, and then by monitoring the system and

identifying when the system deviated from this profile. It also minimized its burden on the

host by living directly within the OS itself, as opposed to using a resource-intensive virtual

machine to isolate our code from the kernel. Our prototype was so successful that we were

able to successfully transfer the technology to SchweitzerEngineering Laboratories, who

incorporated Autoscopy Jr. into their product line.

From Autoscopy Jr., we expanded our scope to look at the larger problem of devicetam-

peringwhen Schweitzer proposed the idea a few years later. (Details on “The Schweitzer

Scenario” can be found in Section 3.4.) While protecting devices from tampering is a long-

standing, well-researched problem (Kent [65] provides oneof the earliest examples, and

Weingart [151] provides a comprehensive summary of attacksand defenses), SCADA net-

works present a unique challenge for security professionals, which we define as thegrid

defender’s dilemma. A summary of the dilemma is given below (see Chapter 4 for details):

• SCADA networks are vulnerable to malicious attacks with devastating consequences

(for example, widespread outages [116]), but are also exposed to a large number of

“non-malicious” tamper events, ranging from technician visits to large-scale natural

disasters.

• Unlike traditional IT networks,SCADA networks prioritize availability over every-

thing else, including over system integrity.This means that correctly identifying and

reacting to an event is critical:

4We would be remiss if we did not mention Ashwin Ramaswamy, whose original Autoscopy work [100]
provided the foundation for our Autoscopy Jr. system.

5

– Under-responding to a malicious event gives attackers an opening to execute a

major attack and bring the grid down for a prolonged period.

– Over-responding to a benign event, however, can lead to unnecessary technician

visits, device replacements, and service outages.

• The cost of improper responses can be staggering: A single “truck roll” to a remote

site costs an average of over $400 [126], meaning that the cost of false-positive re-

sponses could add up quickly. On the other hand, however, a large business served

by Pacific Gas and Electric could lose over half a million dollars from just a 4-hour

power outage [109].

• As a real-time system, grid SCADA networks operate under tight timing require-

ments [56], and the number of legacy devices in the grid placeit under strict resource

constraints as well (see Section 2.2 for more details). Thismeans that regardless of

what responses are taken, they have to happen quickly.

• Finally, while grid defenders have a clear idea of their security goals and the attacks

they want to guard against, their resources are limited: They may not have the time

nor the training data to configure a complex protection system for their network.

In total, a SCADA protection system has to operate on embeddeddevices and should

be able to properly identify the events currently affectingthe network, determine the cor-

rect responses to these events, and execute these responsesquickly. Current intrusion and

tamper protection systems do not meet these requirements:

Current protection systems lack the power and/or context todifferentiate between

important tamper events. Many tamper protection systems are host-centered, and

simply cannot collect the data needed to detect distributedor context-sensitive events.

6

Current protection systems treat any sort of tampering as malicious. Even if a system

could tell the difference between different events, it often still lacks the capability to

change their response accordingly.

Current protection systems have either no response or a single response.Either the

systems are detection-only, or they have a single “catch-all” response.

Current protection systems are reactionary. By the time these systems detect an at-

tacker on the network, the attacker is already inside the security perimeter and exe-

cuting their attack plan.

Current protection systems require a lot of manual configuration. Trying to build

and configure some of these systems takes far more time and resources than a grid

defender has to spend.

Current protection systems cannot adhere to the grid’s inherent performance con-

straints. These systems are designed for different networks with different goals, and

are not able to operate under the restrictions of a grid SCADA network.

To solve this dilemma, we require a protection solution thatis flexible and accurate

enough to handle different types of tamper events, powerfulenough to enact the proper

responses to these events, fast enough to operate even underthe demands of grid networks,

and simple enough to capture a defender’s intuition about the problem without placing an

undue burden on them.

1.3 Our Proposal: TEDDI

To address the grid defender’s dilemma, we propose taking adistributedapproach to tam-

per detection, separating the different components (tamper sensing, decision-making, and

enforcement) into different entities that can live in different places in the SCADA network.

7

We drew inspiration for our system from the XACML policy language, which was designed

to offer “a method for handling a distributed set of policy components, while abstracting

the method for locating, retrieving and authenticating thepolicy components” [89].

Our tamper protection proposal, which we have named TEDDI (Tamper Event Detec-

tion on Distributed Infrastructure), consists of three main components:

Tamper Information Points (TIPs) (Section 6.4): Sensor-equipped5 programs that live

near edge devices and scrutinize their surroundings for potential tamper events.

Tamper Decision Points (TDPs)(Section 6.5): Regional decision-making engines that

live in higher-security areas of the network (for example, inside substations), listen

for tamper reports from the TIPs it serves, and use the current state of the network to

make a fully-informed tamper decision.

Tamper Enforcement Points (TEPs)(Section 6.6): The programs responsible for en-

forcing the decisions made by TEDDI by enacting defender-defined response se-

quences corresponding to the decisions.

These components work together to make and enforce tamper decisions as follows (see

Figure 1.1):

• Monitors placed near an edge device look for the presence ofindicators in the local

environment that may comprise a tamper event. As these indicators appear and dis-

appear, the monitors report the indicators’ presence or absence to the edge device’s

TIP.

• The edge device’s TIP will do as much event detection as it can with the information

it collects, and if it is able to definitively detect an event,it sends that event decision

5Note that we use the termssensorandmonitor interchangeably in this thesis to describe the mechanisms
that actually look for indicators in the environment. We started by exclusively using “sensor,” but switched
to monitor to synchronize our terminology with Bohara, Thakore, and Sanders [18].

8

TIP TDP

TEP

(E)

TEP

(C)

TEDDI

Monitors

1 2

3

Environmental

Indicators
4

Figure 1.1: A diagram of how the components in our TEDDI system interact.When
an indicator appears in the environment around an edge device (for example, a box is
shaken), it is captured by monitors near the device (1) and sent to the device’s TIP (2),
which then attempts to make a tamper decision on its own. If the monitor data is not
enough to make a definitive event decision, the TIP requests assistance from its TDP (3),
which takes data from a number of TIPs and can make an authoritative decision based on
the regional indicators it sees. Once a decision is made by either a TIP or TDP, it is sent to
appropriateedgeandcentralTEPs (4), which can then coordinate the proper response. For
more details on this process, see Section 6.

to theedgeandcentralTEPs assigned to that device.6 The TEPs can then coordinate

the execute the proper responses.

• If the TIP requires data from other devices to make an event decision, it sends an alert

to its assigned TDP, which collects this data from all of its managed TIPs and can

make an informed, authoritative event decision. The TDP canthen send this decision

out to the appropriate TEPs.

We selectedfactor graphs[42] as our decision-making algorithm due to its combination

of computational power and conceptual simplicity. Factor graphs are bipartite graphs made

up of variable nodesand function nodes, where function nodes define the relationships

between different variable nodes (see Section 2.3.5 for more details). In comparison to

more common techniques such as Bayesian networks (BNs) and Markov random fields

(MRFs), factor graphs are powerful enough to represent any relationship that either a BN

or MRF can, and can depict complex BNs and MRFs in a simpler mannerby combining

6See Section 6.6 for more details on why two TEPs are assigned to each TIP.

9

multiple variable relationships into a single factor function [23]. As we demonstrate in

Section 9.3, we are also able to process factor graphs quickly enough to satisfy the grid’s

tight constraints.

We began by building an initial TEDDI prototype, which consisted of a single TDP

managing five TIPs and ten TEPs, to confirm the feasibility of our idea. Once this step

was completed, we constructed theTEDDI Generation Tool, which eases the burden of

configuring TEDDI on grid defenders by creating the custom TIP, TDP, and TEP programs

needed for any arbitrary SCADA network. The tool takes in two key sets of inputs:

• The events, indicators, and monitors that make up TEDDI’s factor graph, as well as

the responses available for each event.

• The topology of the SCADA network in question, including thetypes of devices

involved (i.e. which devices should be protected with a TIP,and which devices are

candidates for hosting a TDP) and the relevant networking information (IP addresses,

ports, etc.).

With this information, the generation tool can create the code for the required TIPs,

TDPs, and TEPs. To further ease the burden on grid defenders,we included the following

features in our tool:

Factor-Graph Domain-Specific Language (FGDSL):We give grid defenders a simple

way to define the data and relationships involved in our factor graph by providing

a domain-specific language (DSL) [124] called FGDSL, orfactor-graph domain-

specific language. The grid defender defines the relevant events, indicators,monitors,

and responses in FGDSL, and the generation tool does the rest, i.e., compiling the

data down into a full factor graph, creating a series of logical predicates to represent

the graph sequence, and eventually generating the actual code.

10

Response Suggestion Engine:To assist grid defenders in choosing the right response for

an event, we provide a response suggestion engine that offers advice on how to mod-

ify the provided factor graph and response sequences. If an event has an especially-

long indicator sequence, the tool will suggest addingpre-eventsthat detect when an

event is about to occur, allowing the system to take a pre-emptive response. Addi-

tionally, if two events have similar event sequences but different response sequences,

the system will recommend taking responses from one event and applying them to

the other.

Network Topology Uploader: We constructed a network topology uploader based on

Weaver et al.’s Cyber-Physical Topology Language (CPTL) [149]. The uploader

takes a JSON file representing a SCADA network from the grid defender and parses

the relevant information, including which devices are connected, which devices need

protection via TIPs, and which devices are eligible to host aTDP.

TDP Placement Tool: Once the TIPs are placed, the generation tool uses the TDP

Placement Tool to determine i) the best places to put TDPs within the network, and

ii) which TIPs to link to those TDPs. The placement algorithmstarts by using a

greedy Set-Cover algorithm [30] to place TDPs near large clusters of TIPs, and then

performs a breadth-first search to link any stray TIPs that were not linked by greedy

Set-Cover.

To evaluate TEDDI, we measured its event detection accuracy, factor graph process-

ing performance, and the amount of time and effort needed to configure TEDDI using its

generation tool. In each case, we found that TEDDI was eithercomparable or better than

current state-of-the-art SCADA protection solutions:

• Our TIP detected the correct event in 99.2% of our test cases, while our TDP achieved

perfect accuracy over 200 rounds of testing.

11

• Our TIPs processed a 99-node factor graph in just under 233µs, while our TDP did

so in just over 143µs.

• Our generation tool allows a grid defender to build an eventsequence directly from a

simple description of the problem, and does not require the extra time or information

that other similar systems do.

Through our evaluations, we definitively demonstrate that TEDDI solves the grid de-

fender’s dilemma:

• TEDDI’s distributed information-gathering and decision-making capabilities allow it

to differentiate between important and non-important tamper events.

• TEDDI’s granular response strategy gives a grid defender the flexibility to craft the

proper response for every event they care about.

• TEDDI’s detection strategy can intercept an attacker earlier in the kill chain [54], and

potentially keep them off the network entirely.

• The TEDDI Generation Tool makes building and configuring TEDDI easy for any

arbitrary SCADA network.

• Our performance measurements indicate that TEDDI can operate efficiently enough

to handle even the strict constraints of the power grid.

1.4 Contributions

We make five contributions in this thesis:

• We introduce and define the grid defender’s dilemma, and show how the grid’s expo-

sure to a wide variety of tamper events, its strict time and resource constraints, and its

12

focus on availability make this a much more challenging problem than dealing with

tamper protection in a traditional IT network.

• We collect and present a set of edge device tamper events based on attacks from both

current literature and real-world examples, and build a taxonomy of tamper event

types from these examples.

• We propose TEDDI, a novel tamper protection system that addresses the above is-

sues and solves the grid defender’s dilemma. TEDDI’s distributed setup allows us

to capture wide-area events and differentiate them from local ones, its response con-

trols ensure defenders can execute the proper response for every event, and its novel

application of factor graphs allow it to operate under the grid’s strict constraints.

• We implemented TEDDI, and through our evaluations we demonstrate that TEDDI

is faster, more accurate, and required fewer resources to run than current state-of-the-

art protection systems. TEDDI’s factor graphs can be processed quickly enough to

stay out of the way of an edge device’s primary task, our eventdecision mechanisms

provide an improved layer of protection against attackers while minimizing false

positives and negatives, and our generation tool allows grid defenders to quickly

and easily configure TEDDI for their networks and capture their intuitions about the

events they are concerned about.

• We demonstrate how TEDDI detects every event in our collection of edge device

tamper scenarios, and show how TEDDI solves the grid defender’s dilemma.

• Finally, we show how existing computer science solutions can be adapted via TEDDI

to solve important problems in power grid systems. Our use oftechniques such as

factor graphs [42], CPTL [149], and the greedy Set-Cover algorithm [30] are critical

to TEDDI’s use and operation, and make TEDDI uniquely suitedto solve the grid

defender’s dilemma.

13

1.5 Thesis Outline

We structure the rest of this thesis as follows: Chapter 2 provides important background

information on edge devices, tamper protection systems, and data fusion algorithms; Chap-

ter 3 offers a taxonomy of tampering attacks, along with someexample tamper scenarios

and a list of common defense techniques; Chapter 4 provides a detailed description of the

grid defender’s dilemma; Chapter 5 discusses the related work in both tamper and intru-

sion protection and why it falls short of solving the dilemma; Chapter 6 describes TEDDI’s

components and how they work together to make decisions; Chapter 7 discusses the TEDDI

Generation Tool and how it simplifies the process of buildinga TEDDI system for grid

defenders; Chapter 8 demonstrates how TEDDI addresses some of the tamper scenarios

from Chapter 3 and solves the grid defender’s dilemma; Chapter9 evaluates TEDDI for its

speed, accuracy, and required resources; and Chapter 10 offers our conclusions and maps

out a direction for future TEDDI research.

All chapters are based partially on my prior publications from SECRYPT [102] and

ICMC [101]. Parts of Chapters 1, 2, and 5 are based on the Autoscopy Jr. work from my

masters thesis [99].

14

Chapter 2

Background

In this chapter, we summarize the overall layout of the powergrid, discuss the types of

devices being introduced to the smart grid, describe some basic concepts about tamper

protection, present a primer on factor graphs and discuss why we chose them over other

fusion algorithms, and briefly mention the XACML origins of our proposed framework.

2.1 The Power Grid: A High-Level Overview

First, we introduce the basic infrastructure of the power grid, and trace how power flows

through it. (We stress that this is a high-level summary withfew details, and point the

reader to other resources, such as Grigsby’s book [46], for more details.)

Generation: This group encompasses the power plants that first generate the electricity.

For the most past, this process involves spinning a large generator using steam from

a turbine, with the power behind the turbine coming from a conventional source such

as coal, natural gas, or a nuclear reactor [20]. Other fuels,ranging from sunlight [86]

to water [20], are also commonly used.

15

Transmission: Once electricity is generated, it is distributed to local electrical networks

via the transmission system. We define transmission systemsby two important crite-

ria:

• Thevoltage levelof electricity passing through the wires. Normally, the voltage

of electricity leaving a power plant is between 15 to 25 kilovolts (kV) [63], but

before entering the transmission system, the power is routed through a trans-

former that steps up the voltage into the hundreds of kilovolts (generally be-

tween 138 and 765 kV) [139]. The reason for this increase is toimprove the

efficiency of the system, as higher voltages reduce the amount of power lost

during delivery [20].1

• Thedistancethat the electricity will travel. The exact distance power can travel

on a single line depends on the voltage involved: “High voltage” lines (100 to

230 kV) have a maximum range of roughly two hundred miles, while “extra-

high voltage” lines (235 to 800 kV) can transport electricity four to five hundred

miles [63].

While high-voltages are more efficient for electricity transmission, they pose a sig-

nificant safety hazard, and are much more expensive to insulate from conductive

materials [143]. Therefore, once electricity gets close toits destination, its voltage is

stepped back down (typically to 10kV or less) as it passes to the distribution side of

the grid [20].

Distribution: The distribution portion of the grid covers the “last mile” between individ-

ual homes/businesses and the transmission system. Electricity enters this portion of

the grid through a distribution substation, which reduces the voltage back down to

safer levels and uses electrical buses to route the power in multiple directions [20].

1Interested readers are encouraged to consult HowStuffWorks [53] for more details on why high voltages
are more efficient.

16

As opposed to the transmission portion of the grid, distribution systems generally

send power between twenty and thirty miles [63].

Once electricity reaches an individual house, it passes though a final transformer that

reduces the voltage down to the 120/240-volt service we expect,2 gets recorded by a

power meter, and eventually reaches the requesting appliance.

What makes the distribution section of the grid so important from TEDDI’s per-

spective is that this section is where we see the vast majority of edge devices being

installed. We take a closer look at these devices and their attributes in the next sec-

tion.

2.2 The Smart Grid: Intelligence at the Endpoints

A number of intelligent electronic devices are being installed as part of the smart grid

movement [99]. Some examples of these devices include:

• Smart electric meters, which allow utilities to collect usage data without having to

send out a technician to read the meter [14].

• Demand response technologies (for example, in-home pricedisplays) that allow con-

sumers to adjust their electricity consumption based on real-time power costs [44].

• Synchrophasors, which give grid operators an up-to-date view of the grid by deliver-

ing precise, timestamped power system data to them [144].

• Digital relays, which use signal processing algorithms todetect electrical faults and

protect important grid equipment [156].

Intelligent electronic devices in the grid are subject to three important constraints:

2Note that this final value can vary from country to country, depending on their standard. Worldstan-
dards.eu provides a complete standard list [155].

17

Resource Constraints. The specification and capabilities of these devices can vary

widely depending on their intended purpose, but in general they have fewer resources

than general-purpose computing systems by any measure. Motorola’s ACE3600 Re-

mote Terminal Unit, for example, only boasts a 200 mHz microprocessor, 16 MB of

Flash memory, and 32 MB of DRAM [82].

Time Constraints. While these devices may be resource-constrained, they are still

expected to do their jobs very quickly to accommodate the real-time demands of the

grid. Delivery windows for certain types of data are very tight—for example, system

protection data related to phasor measurement units must bedelivered to its target in

at most 30 ms, and breaker tripping commands used to protect power lines must be

delivered in at most 8 ms [56].

The installation of smarter edge devices (i.e. smart meters, recloser controls) introduces

a third restriction:

Network Constraints. Simply put, “power utilities monitor and control the power grid

through a partially unsecured slow legacy network” [122]. This constraint means

that the devices and programs using this network must be judicious about the data

they send, since they may not have the time or resources to send a lot of information,

and any information they do send inhibits other programs from sending their own

messages.

Despite these constraints, utilities are installing more and more edge devices in their

SCADA networks, with the goal of making their operations moreefficient. While smart

meters [35] and demand response interfaces [44] are the mostwell-known examples, this

set also includes lesser-known devices such as recloser controls [113].

18

a b

c

d e

P(a) P(b)

P(c|a, b)

P(d|c) P(e|c)

Figure 2.1: A Bayesian Network built from the example in Section 2.3.1.

2.3 Data Fusion Algorithms

In order to make event decisions, we need a way to fuse together the data we collect from

our monitors. We selectedfactor graphs[42] as our fusion algorithm, but there are a

number of other algorithms available; we outline a few here,and then discuss the reasons

behind our factor graph choice.

2.3.1 Bayesian Networks (BNs)

A Bayesian network is a probabilistic model that represents dependencies between vari-

ables using a directed acyclic graph [23]. Given a set of variablesS = {s1, s2, . . . , sn}, we

construct a BN graphG = (V,E) as follows:

• For every variablesi, we add a nodevi to V .

• If the chance ofvi occurring is affected byvj, then an edgevj → vi is added toE.

For example, consider the set of Boolean variables{a, b, c, d, e}, where theP (c) is de-

pendent onP (a) andP (b), and bothP (d) andP (e) are dependent onP (c). Our Bayesian

network for this set would look like Figure 2.1, with directed edges froma to c andb to c

indicating thata andb influencec’s value, and similar edges added fromc to d andc to e.

19

BNs are a popular method of modeling variable dependencies, and are seen in a number

of protection systems (for example, [105], [141], [146]). However, they suffer from two

major flaws: they are unable to capture complex dependenciesbetween events due to their

inherent independence assumptions, and adapting them to cover these dependencies can

make these models infeasibly complex [23]. This issue wouldbe a big problem for our

factor graphs, as our indicators have presence, order, and time components that would

all need to be modeled using separate variables. Therefore,BNs lack the flexibility and

simplicity we want for TEDDI.

2.3.2 Markov Random Fields (MRFs)

A Markov Random Field is a probability measure over a graph in which a local attribute of

any vertex is completely determined by the same local attribute of its neighbors [66]. More

formally, if the vertices in a graphG = (V,E) have an attributea, and we defineav as the

attribute value for a vertexv andN(v) as the set ofv’s neighbors inG, then the functionP

is an MRF ifP (av|aV−v) = P (av|aN(v)).

If we reconsider our variable set{a, b, c, d, e} from before, we can build an MRF equiv-

alent to the BN in Figure 2.1. To do so, we define the functionφ(w, x1, x2, . . . , xi) to

represent the conditional probability functionP (w|x1, x2, . . . , xk).3 Figure 2.2 depicts our

final MRF, which has a 3-variable clique to depict the relationship betweena, b, andc, and

2-variable cliques to showc relates to bothd ande.

MRFs offer a useful advantage over BNs by allowing groups of vertices in which each

pair within the group has an edge between them4 to have their behavior defined by a sin-

gle function, avoiding the need to make causal assumptions about variables such as in a

BN [23]. However, because MRFs deal with the maximum-sized cliques, it may not be

3We adopted theφ notation from Frey [42] and Cao et al. [23].
4Note that this would be astrongly connected componentin a directed graph; MRF graphs, however, are

undirected.

20

a b

c

d e

ϕ(c, a, b)

ϕ(d, c) ϕ(e, c)

Figure 2.2: A Markov Random Field equivalent to the Bayesian Network from Figure 2.1.

able distinguish group-wide relations from those that onlyinvolve a few of the nodes in the

group.

2.3.3 Binary Decision Diagrams/Branching Programs (BDDs)

Binary decision diagrams (BDDs), orbranching programs, are directed acyclic graphs used

to represent complex Boolean functions [4]. Nodes are eitherdesignated as query nodes,

which represent a single Boolean variable and have two outgoing edges representing 0 and

1, or output nodes, which are sink nodes that are labeled 0 or 1[115]. Given an arbitrary

assignment of values for a set of Boolean variables, we can simply traverse the graph based

on the assignment of the variables in each query node until wereach an output node, thereby

giving us the result of the Boolean statement.

These programs can also be optimized asread-once branching programs, where we are

only required to check the value of each variable at most once. Unfortunately, we are unable

to optimize our own graphs into a read-once branching program, as our graph’s indicator

sequence setup (which include both indicator order and the time windows they must appear

in) means that nearly every node in the graph must be treated as a unique variable.

While we can potentially alter a branching program to handle non-binary outputs, cap-

turing complexities beyond whether or not a variable is present is a tricky endeavor, and

would involve creating a new variable to represent relationships like ’DidX occur before

21

Y ?’ While setting up such a program is possible, we would prefera simpler representation

of our indicator sequences.

2.3.4 Custom Algorithms

Some protection systems forgo formal methods altogether, and instead develop their own

custom system to handle event detection. Oftentimes this involves observing known, ac-

cepted behavior and using it as a model to verify future behavior, such as with SCADA-

Hawk’s snapshots [123] and Amilyzer’s flow-matching system[14]. While such techniques

can be effective, they have a high risk of false positives dueto their learning phases, as any

legitimate behavior that does not appear during this phase will be later flagged as suspi-

cious. The cost of avoiding this problem is a prolonged learning period, which is time that

grid defenders may not be able to spend.

2.3.5 Factor Graphs

Formally, a factor graph is a bipartite graph that connects aset of nodesV that repre-

sents system variables with a set of nodesF that represents functions relating these vari-

ables [42]. If a function is dependent on a variable, an edge is added to the graph between

the nodes that represent this variable and function.

If we go back to our simple example from Section 2.3.1, we define a variable node for

each member of our set{a, b, c, d, e}, and then define a function node for each conditional

probability. We then add edges to show which functions relate to which variables—in this

case, we relateP (a) to a, P (b) to b, a andb to P (c|a, b), P (c|a, b) to c, and so forth.5 The

final result is show in Figure 2.3.

The key to a factor graph’s flexibility are the functions represented byF : These func-

5Note that while we use directed factor graphs for TEDDI to better depict the input and output variables
for function nodes, factor graphs can be either directed or undirected [42].

22

a b

c

d e

P(c|a, b)

P(d|c)P(e|c)

P(a) P(b)

Figure 2.3: A factor graph equivalent to the BN and MRF shown in Figures 2.1 and 2.2,
respectively. Variable nodes are shown in white, while function nodes are show in black.

tions can be any “arbitrary factorization of the joint distribution” [42]. This feature allows

factor graphs to model any distribution that can be modeled by a BN or MRF, but do it

using a simpler model, as its functions “can simplify a complex BN or a complex MRF by

reducing the number of functional relations that have to be defined” [23]. (This statement

applies to branching programs as well, as it is trivial to model whether a variable is set to 0

and 1 within a factor graph.)

For example, while Figure 2.3 may seem a bit cluttered compared to its BN and MRF

counterparts, it offers significant benefits for TEDDI, which looks for specific indicator

sequences that denote events:

• Rather than having to define a variable for every single pieceof a relation function

(Is y present? Wasx present beforey? Did y appear too long afterx did?) as we

would be forced to do in a BN, we can represent the entirety ofx andy’s relationship

in a single graph node.

• If a relationship only involvesz variables, we can define a function node that only

involves those variables. This allows us to explicitly depict how variables relate to

one another, rather than obscuring relations between groups of variables as in an

23

MRF.

Therefore, using a factor graph gives us the flexibility to relate our variables in almost

any manner we like. For these reasons, we chose factor graphsas the fusion algorithm for

TEDDI.

Factor graphs have been applied to a number of different fields in the past, including

signal processing [73], robot navigation [57], evaluatingtrust on ad-hoc networks [128],

and even detecting malicious users in a system [23]. To the best of our knowledge, however,

TEDDI is the first system to use factor graphs for physical tamper protection.

2.4 XACML and the Power of Distributed Systems

At a high level, XACML is a specialized XML-based language designed for use in creating

and enforcing access control policies [31]. The goal of XACMLis to provide “a com-

mon language for expressing security policy” [91] to assistcompanies and other groups

in managing the security policies of every system operatingon their network [91]. Of

most importance for our purposes is one of the requirements laid out by version 3.0 of the

XACML standard:

“To provide a method for handling a distributed set ofpolicy components,

while abstracting the method for locating, retrieving and authenticating the

policy components”[91]. (emphasis added by original author)

To that end, the standard borrows a pair of terms from RFC 3198 [152] for its decision

and enforcement entities, and adds a third term to representsources of policy attributes:

“Policy Decision Point (PDP)...A logical entity that makespolicy decisions for

itself or for other network elements that request such decisions” [152].

24

“Policy Enforcement Point (PEP)...A logical entity that enforces policy deci-

sions” [152].

“Policy information point (PIP)...The system entity that acts as a source of

attribute values” [91]. (emphasis added by original author)

For TEDDI, we have co-opted the PDP, PEP, and PIP terminologyand purposes for our

tamper decision/enforcement/information points, which are all discussed in more detail in

Section 6. We made this choice because tamper events may not be distinguishable simply

by looking at the local environment of a single device. For example, a single box shaking

could signal that an attacker is trying to break into a device, but a lot of boxes shaking

simultaneously could signal a larger event such as a earthquake. The responses to these

events would be very different: An active attacker might merit a severe response, while an

earthquake might cause us to suspend our security procedures to allow workers from others

utilities to help repair the damage. Taking a distributed approach to tamper detection,

therefore, helps us to make better, more-accurate event decisions and improve the overall

security and availability of the grid.

2.5 Network Intrusion Protection Systems (NIPS)

Although TEDDI is a tamper protection system, it bears a striking resemblance to a network

intrusion protection system (NIPS). (We discuss this similarity a bit more in Section 6.7, but

the general idea is that packet sequences for a NIPS are analogous to indicator sequences

(Section 6.3) for TEDDI.) Below, we offer a brief descriptionof NIPS in general, and

discuss general attacks and defenses in this space.

NIPS generally work by monitoring traffic as it passes through their network, and ana-

lyzing this traffic to look for suspicious activity [96]. Many of these system use signatures

as their primary detection method, and look for either specific series of packets or specific

25

data within those packets that indicate a potential attack.While a NIPS lacks the device-

level information that a host-based protection system collects, its network-centric setup

allows it to detect “attacks that involve low-level manipulation of the network, and ...easily

correlate attacks against multiple machines on a network” [96].

Some of the common attacks against NIPS are:

Sequence Insertion:A packet is crafted such that the NIPS accepts it, but the target host

does not, disrupting the packet sequence that the NIPS sees and allowing the attack

to go through [96].

Sequence Evasion:A packet is crafted such that the NIPS rejects it, but the target host

accepts it [96]. Evasion can be done in several different ways, depending on the

configuration of the NIPS:

• The attacker can wait out the NIDS [114]. This can be done by fragmenting the

attack packets, and then sending them with just enough time in between each

one so that the NIPS does not reassemble the fragments, but the target host

does.

• The attacker can wait out the targeted host [114]. An attacker can do this by

fragmenting a set of benign packets, sending them to the target host, and waiting

until the host discards them. If the benign fragments are still being monitored

by the NIPS after the host throws them away, the attacker can then send mali-

ciously crafted packet fragments that match those still held by the NIPS, fooling

the NIPS into thinking the packets are harmless. The malicious fragments will

then reach the targeted host, and the attacker can now simplythe remaining

pieces of the malicious packets—the NIPS will think these fragments match

future segments, but the host will combine them and discoverthe malicious

payload.

26

• If a router lives between the NIPS system and the target host, the attacker can

use the time-to-live (TTL) field of the packet to evade detection [114]. Here,

the attacker splits their malicious packet into several fragments, and creates a

benign copy of one of the fragments (with a TTL field set to expire when it

reaches the router between the NIPS and the target. When the attacker sends

their packet fragments (with the benign fragment sent it place of its malicious

twin), the NIPS is fooled into think the packet is not a threat, but the target

receives a incomplete packet set (thanks to the router dropping the benign frag-

ment copy), and waits for the final piece of the packet. The attacker now gra-

ciously provides the remaining malicious fragment, which sneaks past the NIPS

(it thinks the fragment is part of a whole new packet) and completes the packet

set held by the target.

Despite these attacks, NIPS remain very popular among network defenders, and several

mature systems are commercially available (for example, Bro[21] and Snort [121]).

2.6 Autoscopy Jr.

Finally, we offer a few words about the work that preceded TEDDI, Autoscopy Jr. [99],

and how this work eventually inspired the TEDDI project.

Autoscopy Jr. is based on Kprobes [76], a kernel tracing framework built into Linux

that allowed a user to pause execution and inspect the current state of the OS, including

register values and kernel memory contents. For Autoscopy Jr., the goal of this inspection

is to see whether the kernel’s control flow is being altered unexpectedly, i.e. modified by

a rootkit looking to hide important information. The systems accomplishes this task by

examining the return address on the call stack when an important function is called, and

seeing where the current function was called from.

27

Autoscopy Jr. starts in alearning mode, where it monitors the kernel to see what its

various control flows look like under normal operation, and is eventually switched to a

detection modeto check future behavior against its learned model. If the observed return

address of a function leads us to an unexpected location thatdid not appear during our

learning mode, Autoscopy Jr. reports this issue back to the user.

In addition to its avoidance of a virtual machine, AutoscopyJr. also offers aprobe

profiling tool to further avoid overburdening an edge device. The profilingtool allows a

user to measure the amount of system overhead imposed by individual probes, and remove

probes that are interfering with the device’s primary tasks.

The response to Autoscopy Jr. was incredibly positive, and we managed to success-

fully transfer the technology to Schweitzer Engineering Laboratories (SEL) for use in their

own products.6 However, the system falls short when considering the full grid defender’s

dilemma:

• Its host-centered design leaves it unable to detect distributed events happening in the

larger network. (In fact, as an intrusion detection system,it neglects tamper events

entirely.)

• It detects problems, but does not have the ability to respond to them.

• Building a model of allowed behavior via the learning mode may take more time and

resources than a grid defender can spare.

To solve this dilemma, we will need to broaden our scope beyond a single device, and

build a system that can detect and respond to the events we areconcerned about.

6This also established the partnership that eventually led to SEL returning to us several years later with
the tamper problem that led to the creation of TEDDI.

28

Chapter 3

A Taxonomy of Tampering

In this chapter, we discuss the different types of physical tamper attacks that an edge device

may face, and highlight some examples of these attacks foundin the literature and the real

world. Based on the nature of these attacks, we group them in four categories: device

data accesses, device additions, device modifications, anddevice replacements. We also

highlight some of the defense techniques used to detect and prevent tampering.

3.1 Device Data Access

This first category of tampering attacks does not involve altering the device’s operation at

all—rather, the attacker simply tries to access secret information stored on the device for

future use. Some example techniques of this attack include:

• Placing passive probes on the circuitry of a device to record the signals that ap-

pear [151].

• Inserting a hardware Trojan that monitors and transmits the inter-chip communica-

tions of a device [39].

29

• Cutting through the sensor-mesh-encasing potting material that covers sensitive de-

vice components, which can be accomplished using lasers, chemicals, sandblasters,

or even a knife in the hands of a careful individual [151]. (This sort of attack was one

of the prime protection focuses of the IBM 4758 [119].)

• Imprinting data on a memory chip using radiation, low temperatures, or high volt-

ages [151].

Edge devices in the power grid, which could possess secret cryptographic keys for

communication or house sensitive customer demographic andusage information, are prime

targets for these techniques. Based the above techniques, wecan construct the following

tamper attacks:

Simple User Data Heist: An edge device stores a batch of customer power usage data

in a non-volatile memory chip, and periodically sends this data to a utility control

center. To access this data, an attacker performs the following steps:

1. First, the attacker opens the case of the device.

2. Next, they place probes on the output pins of the memory chip.

3. Finally, they read out the data when the device sends it to the utility.

Complex User Data Heist: This is similar to the above attack, except that the data in

question is stored in volatile memory, and the attacker doesnot want to wait around

for the device to send it to the utility. To obtain the data, the attacker uses an imprint-

ing attack as described by Weingart [151]:

1. The attacker starts by bombarding the device with X-rays (or other suitable

radiation), permanently burning the data into the chip.

2. The attacker then cracks open the device’s case to access the memory chip.

30

3. Rather than probing the chip, the attacker simply removes (and potentially re-

places) it

Device Credential Heist:An edge device stores its encryption key in a memory location

that is physically secured by a sensor mesh encased in a special potting material,

just as in the IBM 4758 [119]. To gain access to the key, an attacker must do the

following:

1. Pry open the case of the device.

2. Find a way through the mesh surrounding the key storage memory.

3. Probe the chip to extract the key material.

3.2 Device Additions

The second category of tampering attacks involve maliciousadditions to the device that

make it behave in unexpected ways. Here, we highlight two specific tamper attacks:

Pin-In-The-Meter Attack [132]: In 2010, an outlet reported that one consumer stopped

their (mechanical) meter in the following way:

1. They drilled a hole in the bottom of the device.

2. They stuck a pin through the hole, which kept the wheel inside the meter from

spinning.

Maintenance Mode Attack [33]: After two months of receiving anomalous readings

from some of its meters, a Brazilian utility discovered that their devices had been

victims of a sophisticated tampering scheme:

1. The attackers had first opened the device and broken a tamper-evident seal un-

derneath it.

31

2. Next, they installed a microcontroller attached to an RF receiver inside the me-

ters, allowing them to remotely send signals to the meters and switch them into

a special mode that “disconnects the meter without interrupting the electricity

flow to the consumer” [33].

3. Finally, the attackers made a convincing replica of the tamper-evident seal on

the device, making it appear as if the meters had not been altered.

What makes the maintenance mode attack even more interestingis that legitimate

technicians go through the same process (minus the additional hardware) when per-

forming regular maintenance—in fact, this is what the special mode was intended

for in the first place! Defending against this attack, therefore, may require additional

information than just the attack steps.

3.3 Device Modifications

Our next group of attacks, and perhaps the most common one, isthe actual modification

of the software and/or hardware of an edge device to bend it tothe attacker’s will. Some

examples in this space include:

• Unauthorized alteration to a meter’s firmware, causing it (and in a worst-case sce-

nario, many others simultaneously) to disconnect from the grid [14].

• The Ukraine power grid cyber attack, in which attackers loaded malicious firmware

onto the utility’s serial-to-Ethernet converters, deleted the master boot records of

workstations to render them inoperable, and even reconfigured one of the utility’s

backup power supplies to cause it to disconnect soon after the attack began [70].

• The Maroochy Water Services attack, where a rogue ex-employee disabled alarm

32

systems and generally altered the system “so that whatever function should have oc-

curred at affected pumping stations did not occur or occurred in a different way” [3].

• The Stuxnet worm, which modified the code on programmable logic controllers to

sabotage the centrifuges they were running, and which featured infected USB sticks

as one of its delivery methods [40].

While many of these are software modifications, and thereforeoutside of TEDDI’s

scope, our goal is to detect when the attacker has physicallyaccessed the box,beforethey

have the chance to modify the device’s software. We highlight two potential physical tam-

pering scenarios:

Malicious USB Firmware Update: In this scenario, a malicious third party with legiti-

mate credentials (such as a contractor hired by the utility)takes the following steps:

1. They access a cabinet-enclosed edge device using a key.

2. They open the cabinet and remove the plugs blocking the device’s USB port(s).

3. Finally, they plug in an infected USB device intended to upload a malicious

firmware update. (What the update actually does to exploit thesystem is less

important, as it is the exploit delivery process that TEDDI focuses on.)

Once again, we note that this event has a benign counterpart in which a utility tech-

nician uploads a legitimate software update to the system, which means that we need

to verify whether or not a firmware modification is expected ornot.

Return-To-Debug Attack: This scenario is based on Weingart’s description of how ion

beams can be used as a tampering tool [151]. The attack is as follows:

1. The attacker removes the cover of an edge device.

33

2. Using an ion beam, the attacker alters the circuitry in thedevice by connecting

the debug pins on the device’s circuit board, granting the attacker access to key

storage locations on the device.

From here, the attacker can access sensitive data on the device, and potentially mod-

ify this data to cause to malfunction or misreport its state.

3.4 Device Replacements

Finally, we consider the fourth category of tampering attacks, where an edge device is

removed from the network and is either replaced by a malicious device or removed to be

used and/or modified for malicious actions at a later date. Wedefine the following scenario

for this category:

The Schweitzer Scenario:This scenario is the one that originally inspired the TEDDI

project. In the summer of 2013, while I was interning at Schweitzer Engineering

Laboratories (SEL) for the summer, one of the group’s leaders came to us with a

troubling scenario involving the vandalizing of some of their edge devices. The at-

tackers went through the following steps:

1. They used a tool (either a crowbar or hammer) to break the lock off of the

cabinet containing a device.

2. They opened the cabinet using the newly-unlocked door andproceeded to van-

dalize the device, although we received no details as to how the devices were

manipulated.

While this attack was more of an annoyance than a major problem, members of the

Schweitzer product team worried what might have happened had the attackers taken

one more step:

34

4. Disconnecting the edge device from its network access point, and connecting

the attacker’s own device (for example, a laptop pre-loadedwith exploits to use

against other devices) in its place.

Given the structure of some SCADA networks, this fourth step could allow attackers

to reach deeper into the network to attack higher-value targets.

The Sensor Subversion Scenario:This scenario is a slight variation of the Schweitzer

Scenario, in which an attacker knows that the above sequenceis being used to protect

a device. To subvert this sequence and access the edge device, the attacker attempts

the following:

1. The attacker starts by drilling a small hole in the cabinetcontaining the edge

device.

2. Next, the attacker inserts a tube into the hole and squirtsglue onto the cover

switch [117], causing it to seize up and not move when the cabinet door is

opened.1

3. The attacker then proceeds as they would in the Schweitzerscenario, opening

the cabinet and unplugging the edge device.

There are more ways that an attacker could get into the cabinet—for example, they

could cut a hole through the side with a torch, and bypass the cover altogether—but the

overall event structure is similar to the two described above, so we do not discuss it here.

Additionally, tamper events involving device thefts can also be considered, with the differ-

ence being that the device is unplugged, but not replaced.

1While this possibility was not brought up by our Schweitzer contacts (and thus was not included in the
Schweitzer Scenario), we discuss it here to illustrate the wide variety of tamper scenarios the grid faces.

35

3.5 Non-Malicious Tampering

The four types of tampering we discussed so far were cases of malicious tampering. While

we mentioned that a few malicious attacks have benign counterparts (such as firmware up-

dating), the grid faces a large number of non-malicious tamper events that affect its avail-

ability. (In fact, there has been some debate over whether squirrels actually pose a bigger

threat to the grid than hackers [92], and trees have played a role in a substantial number of

blackouts, such as a large 2003 blackout in Italy [12] and an August 1996 blackout on the

U.S. West Coast [50].) To cover the realm of accidents, mistakes, and natural disasters, we

present the following examples of non-malicious tampering:

The Taum Sauk Reservoir Overflow[62]: We examine a structural failure at the Taum

Sauk hydroelectric facility, where water is pumped from a lower reservoir into an

upper one during periods of low electricity demand, and released back into the lower

reservoir to spin turbines and generate electricity duringpeak demand periods [80].

In December of 2005, the facility’s water pumping system overfilled the upper reser-

voir, causing that reservoir’s dam to fail and dump the reservoir’s contents onto the

surrounding countryside [62]. From the post-failure investigation report, we see that

the problem stemmed from the pressure transducers that wereused to measure the

dam’s water level:

1. Some of the pipes covering and protecting those transducers had broken free

and moved from their initial positions.

2. The movement of the transducers caused them to report water levels lower than

the true level of the reservoir.

3. The errant water level values misled the pump system into overfilling the reser-

voir.

36

Earthquakes: Natural disasters are interesting events to investigate because they are of-

ten wide-spread events, and thus require information from anumber of distributed

sources to detect. As an example, consider the following earthquake scenario:

1. When an earthquake strikes, each individual edge device inthe area experiences

severe shaking at roughly the same time.

2. Each device must then gather information from others around it to confirm that

the event is wide-spread, and not an isolated local incident. The latter scenario

may indicate that a malicious tamper event is beginning, while the former leads

us to conclude that an active attacker is not involved (and furthermore, we may

want to initiate a utility’s disaster response protocol to prepare for potential

damage/outages).

3.6 Tamper Protections

People have been trying to keep malicious actors from tampering with important data for

centuries, as demonstrated by the ancient practice of usinghot wax and signet rings to both

seal and authenticate documents [22]. This problem carriessignificant weight in the digital

world, as many important identity assertions, such a digital certificates, rely on the ability

of a party to keep sensitive data secret. Thus, we must store such data in a place with

sufficient tamper protections to keep adversaries from accessing or altering it.

However, the term “tamper protection” is rather vague, and can mean different things

to different people. Smith and Marchesini summarize the thinking in this space:

• “ Tamper resistance:It should be hard to penetrate the [tamper protec-

tion] module.

• Tamper evidence:Penetration attempts should leave some visible signal.

37

• Tamper detection:The device itself should notice penetration attempts.

• Tamper response:The device itself should be able to take appropriate

countermeasures when penetration is detected”[117].

Existing tamper protection schemes fall into one (or more) of these four categories.

The race between the developers of these schemes and the attackers who try to defeat

these schemes has become a cat-and-mouse game, and technologists have developed a

number of sophisticated attack and defense mechanisms overthe years. Weingart offers a

comprehensive summary of these tactics [151]; we highlightsome of his defense categories

below:

Barriers: Materials that need to be penetrated to reach the inner logicof edge devices.

Examples range from conventional materials (such as metal and brick) to special

coatings that protect chips on a circuit from probing.

Sensors:Monitors that look for environmental phenomena that indicate a potential attack.

Examples include voltage sensors, temperature sensors, probe sensors, radiation sen-

sors, accelerometers, and meshes of wire sensors wrapped around a device.

Seals/Switches:Mechanisms that leave evidence when tampering occurs. Thiscategory

not only covers tamper-evident solutions like paints, labels, and packaging, but also

microswitches that can detect vibrations or small movements.

Data Destruction Methods: Methods of destroying data such that the adversary can-

not recover it, such as overwriting data on RAM chips or physically destroying the

memory and/or device.

In recent years, even policymakers have waded into the tamper protection field. In

1994, the National Institute of Standards and Technology (NIST) released Federal Infor-

mation Processing Standards Publication 140-1 (FIPS PUB 140-1) [134] to provide a stan-

dard for cryptographic modules that could be used by the United States government. These

38

guidelines were updated in 2001 by FIPS PUB 140-2 [135], which is the most recent of-

ficial version of the standard (although draft versions of FIPS PUB 140-3 [136] have been

released).

The FIPS standards outline four security certification levels that modules can obtain

based on the amount of protection they provided, with one being the lowest and four being

the highest, and listed the features that modules needed to reach each level:

• Level 1 provides no special guidance for physical securitybeyond mandating the use

of “production grade equipment” [135].

• Level 2 requires either tamper-resistant or tamper-evident controls on the module,

such as “tamper-evident coatings or seals or...pick-resistant locks” [135].

• Level 3 adds tamper detection and response controls to the list, mandating that the

mechanisms used “have a high probability of detecting and responding to attempts at

physical use, access, or modification” [135].

• Finally, Level 4 adds environmental testing requirementsto ensure a module is not

compromised by operating outside its specified voltage and temperature ranges, and

demands that the provided detection and response controls “provide a complete en-

velope of protection around the cryptographic module” [135].

Obtaining Level-4 certification is extremely difficult: According to NIST, only twelve

such certifications has ever been awarded, and only two have been awarded since 2003 [83].

An example of such a module is the IBM 4758 [119, 120], which wasthe first ever module

to obtain Level 4 certification under these guidelines. The 4758 design included a grid

of conductors wrapped around the device to detect physical tampering of the device, a

set of temperature sensors to ensure the device remained within its operational limits, and

a series of hardware “ratchet” locks that restrict softwareaccess to important data once

the ratchet reaches a certain level [118]. The design has held up remarkably well over

39

time; attacks against the 4758, such as Clayton and Bond’s attack on IBM’s Common

Cryptographic Architecture [28], focus on flaws in the applications running on the 4758

rather than the hardware itself. To the best of our knowledge, there are no known successful

attacks against the device’s physical and software configuration security. IBM has produced

several iterations of its cryptographic coprocessor sincethe debut of the 4758; the current

model on the market is the 4765 [55].

40

Chapter 4

The Grid Defender’s Dilemma

With all the time and effort spent on tamper protection research in the past, why have

current solutions not found their way into the power grid? Webelieve the issue lies with

the uniqueness of the grid environment and the sheer diversity of scenarios and threats the

grid must take into account, giving rise to a problem we call thegrid defender’s dilemma. In

this chapter, we describe in detail the issues that underly the dilemma, and list the reasons

that current protection solutions cannot fully address it.

4.1 What Is The Dilemma?

Fundamentally, the grid defender’s dilemma boils down to the tension between the integrity

and the availability of the grid’s SCADA network—more specifically, the struggle between

keeping attackers off the network and keeping the lights on.We give a more detailed

explanation below:

• First, grid SCADA networks are open to attacks that could have severe, long-lasting

consequences. For example, an attacker could cause a widespread, long-lasting

power outage by taking down critical substations during a period of high demand

41

on the grid [116]. Protecting against these types of attacks, therefore, is an absolute

necessity.

• However, edge devices within the grid have to deal with a number of different types

of tampering, not all of which are malicious or even involve an active adversary.

Some examples include:

Technician Visits. Broken and malfunctioning devices are a fact of life in the

power industry, and utilities often have to send technicians out to their remote

sites to “tamper” (update, repair, replace, etc.) with their equipment.

Natural Disasters and Weather Events. Earthquakes, hurricanes, and other such

disasters often wreak havoc on a utility’s infrastructure,and may damage or

destroy their edge devices.

• For standard IT networks, administrators err on the side ofintegrity, as the conse-

quences of a network breach are far more significant than a network outage, and thus

most tamper protection systems are geared towards this order of priorities. In the

power grid, however, these priorities are inverted: Availability is the top priority, as

the critical nature of these networks dictates that they need to be up and running as

much as possible, even in the face of malicious attacks.

• This focus on availability places a huge burden on both griddefenders and any pro-

tection solutions they use, because:

– Selecting the proper response to a tamper event affecting the grid is absolutely

critical. Under-responding to a malicious event leaves thegrid open to a major

attack, but over-responding to a benign event could lead to unnecessary techni-

cian visits, device replacements, and service outages. Thecost of unnecessary

responses can be staggering: TekTrakker estimated that sending a technician on

a single trip to a field site would cost a utility an average of over $400 [126],

42

and a study of Pacific Gas and Electric’s customers found thata 4-hour power

outage would cost a small/medium-sized business nearly $5,000, while a large

business would lose over half a million dollars [109].

– Correctly identifying a tamper event that is affecting the grid becomes important

as well, since defenders have little chance of choosing the correct response if

they do not know what event they are dealing with. This also means we must

be specific in our identification; just reporting that “a device is being tampered

with” is not enough.

– The real-time nature of the grid means responses may need to be selected and

executed quickly, so there may not be time to query a human forinput. In

these cases, the system should be able to select the proper response and enact

it quickly without outside intervention. Ideally, an eventwould be detected and

responded to early enough that if a malicious attacker is present, he or she does

not gain access to the SCADA network at all.

• Finally, grid defenders are busy people, and while they mayhave a rough idea of the

threats they face and the events they want to detect, they maynot have the time or

resources to build and configure a complex protection system.

4.2 Why Haven’t We Solved The Dilemma?

Despite the large amount of research in tamper protection, current state-of-the-art solutions

suffer from several problems that keep them from solving this dilemma:

Lack of Context Awareness:Current protection systems lack the power and/or context to

differentiate between important events. A large number of tamper protection systems

are focused on protecting data on a single host, and thus failto account for a large

class of tamper events simply because they do not gather the appropriate contextual

43

information. For power grid networks, however, being able to detect these events is

vitally important, as it may make the difference between distinguishing a malicious

event from a non-malicious one. If an edge device is shaking,is it because of an ac-

tive adversary, a natural disaster like an earthquake, or isit just sensor noise generated

by a vibrating appliance or a passing car? If an edge device’scabinet is breached,

is the perpetrator an attacker trying to exploit the device,a utility technician trying

to fix the device, or a colony of bees just looking to build a hive? Most protection

systems simply do not collect enough information to answer these questions.

Lack of Tampering Awareness: Current protection systems treat any sort of tampering

as malicious. Part of the response to the above points is to simply declare any sort

of tampering as malicious, and respond accordingly. The problem, however, is that

these lone responses serve as “catch-alls” for whatever tamper event they detect, so

they are naturally geared towards covering worst-case scenarios like malicious at-

tacks. The grid’s focus on availability and the presence of non-malicious tamper

events, however, makes this approach infeasible, because astrong response will be

overkill for most situations, and may end up doing more harm than good. For exam-

ple, reacting to a service technician as if they were an attacker could lead to added

costs and decreased system availability, while a severe tamper reaction to a natural

disaster could slow down recovery efforts unnecessarily.

Additionally, certain responses are ruled out by the grid defender’s dilemma, regard-

less of the severity of the event. For example, the IBM 4765 “zeroizes its critical

keys, destroys its certification, and is rendered permanently inoperable” [55]. Such

a response makes reducing the grid’s availability easy: Simply poke and prod the

device until it destroys itself!

Lack of Response Granularity: Current protection systems have either no response or a

single response. Sadly, system with single catch-all responses are better positioned

44

than the majority of tramper protections systems, which have no response mechanism

at all and thus are left wide open to a malicious attacker.

Lack of Timeliness: Current protection systems are reactionary—that is, they are reliant

on looking for activity that indicates a malicious actor is on the network, at which

point the actor is already putting their attack plan into effect. Given the importance

of grid SCADA networks, operators would prefer to stop the attack earlier in the “kill

chain” [54] and try to keep malicious actors off their network completely. While it is

impossible to accomplish this goal 100% of the time, an earlier response could still

limit the amount of damage an attacker can do.

Lack of Appropriateness: By “appropriateness,” we mean the ability of a solution to do

its job without interfering with the edge device’s primary tasks, and current protec-

tion systems cannot adhere to the grid’s inherent performance constraints. Exceeding

the time and resource constraints from Section 2.2 means keeping a power edge de-

vice from doing its job, which is exactly the situation we want to prevent. Systems

designed for a traditional IT setting are simply not equipped to meet these demands.

Lack of Automation: Current protection systems require a lot of manual configuration.

For example, the Response and Recovery Engine [161] requires that the operator

construct a full attack response tree (ART), complete with every potential step taken

by an attacker and the responses that correspond to each step, for each security goal

they want to maintain, while SCADA-Hawk [123] must run for a prolonged period

to collect data and capture the behavior snapshots it needs for anomaly detection.

Grid defenders, however, have neither the time nor the expertise to build these sorts

of systems.

These problems open the door for a different type of tamper solution, one that is flexible

and accurate enough to handle different types of tamper events, powerful enough to enact

45

the proper responses to these events, and simple enough to capture an operator’s intuition

about the problem without placing an undue burden on him or her.

46

Chapter 5

Related Work

In this section, we discuss some of the literature on tamper protection schemes, and how

they differ from our TEDDI proposal.

5.1 Tampering vs. Intruding

Before we begin, we need to address the similarities between tamper detection and its

closely-related cousinintrusion detection. Both fields have received extensive attention

over the years, and occasionally the question of what constitutes a tamper detection sys-

tem or an intrusion detection system (IDS) is just how the systems are labeled. (A good

example of this is SCADA-Hawk [123], which operates much likean anomaly-based IDS

despite being labeled as a tamper detection program.) While we consider work from both

disciplines as relevant to our own research, we differentiate the fields as follows:

• Tamper protection focuses on preventing both unauthorized physicalaccess to a de-

vice and unauthorized changes to a device’sstructure. For example, a system that

prevents malicious actors from changing a line of code through the device’s local

interface or modifying the internal circuitry of a device would be a tamper protection

47

system.

• Intrusion protection focuses on preventing both unauthorized networkaccess to a

device and unauthorized changes to a device’sbehavior.For example, a system that

prevented attackers from remotely exploiting a device vulnerability or feeding the

device bad data or operational parameters would be an intrusion protection system.

We can break these fields down further into five major categories, as shown in Fig-

ure 5.1:

Software Tamper Protection: Programs that prevent unauthorized access/changes to a

device’s software.

Hardware Tamper Protection: Programs that prevent unauthorized access/changes to

a device’s hardware.

Signature-Based Intrusion Protection: Programs that protect against known examples

of bad behavior that are taken either by or against a device.

Anomaly-Based Intrusion Protection: Programs that protect against devices that devi-

ate from a known or learned set of “normal” behaviors.

Hybrid Intrusion Protection: Programs that can use both signature- and anomaly-based

techniques to protect devices.

By these definitions, TEDDI falls into the Hardware Tamper Protection category. How-

ever, TEDDI also shares a striking number of characteristics with a signature-based intru-

sion protection system, which we discussed previously in Section 2.5.

In addition to the categories above, there are also some defense types that do not fit

nicely into any of them; we discuss some of these in Section 5.7.

48

Intrusion

Protection

Signature-Based

Protections

Anomaly-Based

Protections

Hybrid Intrusion

Protections

Tamper

Protection

Software

Protections

Hardware

Protections

Cyber

Physical

Figure 5.1: A taxonomy for prior work in both tamper and intrusion detection. Note that
tamper protections are split between cyber and physical attacks, while intrusion detection
systems focus primarily on the cyber domain.

5.2 Software Tamper Protections

Software tamper detection receives a lot of attention in conjunction with digital rights man-

agement, and a number of tools have been released (such as packers like UPX [140]) to

make software harder to understand and thus harder to modify. Obfuscation, or altering

a piece of code to make it harder to understand and/or reverseengineer, has also received

considerable attention in the academic world: Neves and Araujo integrate techniques like

overloading directly into a C++ compiler to allow it to obfuscate compiled code automat-

ically [85], while Collberg et al. take a more dynamic approach by constantly changing

the arrangement of code on the client, exhausting the attacker’s ability to adapt and keep

pace [29]. Anckaert, Sutter, and De Bosschere take this approach to the extreme by mak-

ing every particular copy of a program unique, including updates, and ensuring that other

modified copies of the program are not usable [8]. (While this defense is primarily geared

towards software piracy, this would hinder malicious, security-specific tampering as well,

as each individual copy of the software would need to be tampered with in a different way

to achieve the attacker’s malicious goal.) Finally, Okhravi, Riordan, and Carter cross over

into the hardware tamper protection realm by evaluating theeffectiveness of changing the

hardware and/or operating system behavior on the fly, and determining where the benefits

49

of dynamic changes lie [90].

Another popular method of tamper detection is self-verification, where a program runs

through a series of tests to determine if its code has been modified inappropriately. Of-

ten this process is accomplished through checksums, where amessage (or piece of code,

in this case) is run through a hash function to create a special value that is hard to du-

plicate with a different (i.e., erroneous or maliciously-crafted) input [117]. For example,

Giffin, Christodorescu, and Kruger use self-checksumming, augmented with a special self-

modifying-code mechanism, to detect and defeat code modification attacks [43], while

Tsang, Lee, and Pun take a checksum-like approach by placing“protectors” at various

points in the code and taking an appropriate response (whichcan vary by protector) if the

code has been changed [131]. Chang and Atallah use a set of “guards” embedded in the

code to perform certain security tasks, such as checksumming or code repair, that increase

the difficulty of modifying the code without authorization [25]. All of these techniques

increase the difficulty of tampering with protected programs, as an attacker is forced to

create a tampered version of the code that accomplishes their evil task while also matching

the original checksum value, an almost-impossible task if the checksum is created using a

cryptographic hash function [117].

5.3 Hardware Tamper Protections

Hardware tamper protections are what most people think about when they consider “clas-

sic” tamper protections. The roots of this area of research run deep, and includes semi-

nal works such as Kent’s ideas fortamper-resistant modules[65], White and Comerford’s

ABYSSplatform [153], White et al.’s work on theCitadel system [154], Tygar and Yee’s

Dyadplatform [133], and Smith, Palmer, and Weingart’s work on the IBM 4758[119, 120].

Today, a number of hardware solutions are available commercially, either in the form of

trusted platform modules ([9, 51, 58]) or cryptographic coprocessors [55]. However, these

50

solutions are geared towards single-device protection, and may have trouble operating in

the extreme conditions power devices must face (for example, the IBM 4765 is only de-

signed to run within a temperature range of 10 to 35 degrees Centigrade, and treats any

temperature outside that range as a potential attack [55], while the SEL-651R recloser con-

trol must be able to run within a temperature range of -40 to 55degrees Centigrade [110].

In recent academic work, Dragone uses several layers of “patches” connected by a

wire mesh and laid out in a random pattern such that anyone attempting to drill through the

material could not avoid hitting a patch and triggering a response [37], while Megalingam et

al. discuss connecting a smart meter’s power supply to the screws that hold its case together,

rendering the meter useless if anyone tries to open the case and access its internals [78].

Desai, on the other hand, takes an obfuscation approach by adding extra dummy states to

a chip’s finite state machine, and only transitioning to the true functional states if a special

code-word is provided to the chip [36].

Physically unclonable functions (PUFs) have also receiveda lot of attention as a pro-

tection technique, as they can verify the integrity of a device or piece of code in a way

that is difficult for an attacker to replicate. For example, if a user produces a message

authentication code (MAC) for a piece of software using the output of a PUF as a key, if

an attacker wishes to tamper with the software, he or she is forced to either replicate the

PUF’s secret or find a key/malicious code pair that produces the same MAC, neither of

which is an easy task. Much of the work in this space focuses onimproving PUFs them-

selves, such as Niewenhuis et al.’s work on using scan chainsas a low-cost PUF [88], Maiti

and Schaumont’s proposal to improve the quality of ring-oscillator-based PUFs [75], and

Rührmair and van Dijk’s analysis (and critique) of “Strong PUF” proposals [107]. Other

work highlights the many ways PUFs can be used for security, including Bolotnyy and

Robins’s research on using PUFs to improve the security of RFIDsystems [19] and Suh,

O’Donnell, and Devadas’s processor architecture that combines PUFs with several off-chip

memory protections to provide a private and secure execution environment [125].

51

Finally, hardware Trojans can been viewed as a tamper protection scheme with the tra-

ditional roles reversed, as now the attacker is the one trying to protect device hardware (or at

least their malicious addition) from being circumvented bydefenders. Here, both sides are

on the lookout for tampering, with attackers trying to protect the sanctity of their additions

and defenders looking for ways to verify that the hardware they receive is the hardware

they expect, so analyzing both sides can provide some insight into tamper protection and

detection. On the offensive side, malicious actors use a number of techniques to avoid be-

ing discovered, such as use rare or distributed trigger conditions to avoid exposure during

testing [16]. Meanwhile, on the defensive side, some recentprotection schemes include fin-

gerprinting chip designs using path delays [60], insertingdummy flip-flops to circumvent

triggering mechanisms [108], using linear programming to examine the physical properties

of logic gates and detect the presence of extra circuits [95], using capacitor behavior as

a detection mechanism [39], and combining a number of known detection techniques to

reduce the chance of a Trojan hiding and activating [16].

5.4 Signature-Based Intrusion Protections

Signature-based detection methods have taken a lot of heat in recent years, as they provide

little protection against new and novel attacks, or even older attacks that have undergone

small changes [129]. Nevertheless, the topic remains an active area of research. Litty,

Lagar-Cavilla, and Lie’sPatagonixsystem studies the behavior of a system’s hardware to

identify programs that are running (and which may be hidden from the operating system)

and verify the programs against a trusted set of binary hashes [72]. Jiang, Wang, and Xu’s

VMWatcherreconstructs the workings of a potentially-compromised OSfrom the safety

of a virtual machine, allowing an antivirus program or otherprotection device to analyze

the untrusted OS without fear of being compromised [59]. However, as pointed out in my

prior intrusion detection work [99], both of these programsare based on the use of a virtual

52

machine, which is not feasible for use on resource-constrained embedded systems.

Azab et al.’sTrustZone-based Real-time Kernel Protection system (TZ-RKP) makes use

of ARM’s secure TrustZone environment to build a system that is isolated from untrusted

programs yet still able to effectively protect the kernel from a malicious attacker [10]. From

within TrustZone, TZ-KRP can evaluate the impact of running specific pieces of code on

the system and block them from harming the system if necessary, while also restricting

user processes from accessing kernel memory directly. However, strict enforcement of

these rules may cause problems with legacy programs that rely on this functionality, and its

host-centric design may have trouble gathering information on regional events.

Grochocki et al. study a number of potential grid attacks anddetermine the optimal in-

trusion detection system to combat them: A centralized intrusion detection system coupled

with sensors embedded in the remote devices [47]. While this approach is very similar to

our own proposal, the sensors in this case are focused on internal values such as “health

reports, firmware and software integrity, and memory contents” [47], rather than the state

of the device’s physical environment.

Zhao, He, and Yao’sFilter driver and Proxy based Website Anti-tamper System (FP-

WAS)system applies a distributed approach to the problem of protecting websites, using a

file monitoring system and a set of web proxies to protect against a set of known website

attacks [159]. While the proposal is labeled as a tamper protection system, its behavior

more closely resembles an IDS looking for known bad behavior—for example, scanning

files on the server for illegal modifications. However, giventhe number of additional proxy

servers required by the system, deploying this system wouldbe a costly proposition.

Zonouz et al.’sSecurity-Oriented Cyber-Physical State Estimation (SCPSE)system

combines intrusion detection alerts with power system information to more accurately es-

timate the security state of an electrical network [162]. SCPSE builds an attack graph that

traces the possible paths an attacker could follow via exploiting network nodes, and deter-

53

mines how power information in the system should be correlated to devices in the network.

In its monitoring mode, SCPSE uses power flow information and intrusion alerts to esti-

mate the attacker’s path through the graph, and thus reveal which devices in the network

are potentially compromised. Despite its increased awareness, however, this system still

ignores external environmental factors that might affect the network’s security state, and

does not incorporate possible responses into its design.

Roblee, Berk, and Cybenko’sProcess Query Systems (PQS)combine host and network

monitoring to determine which nodes in a network might be compromised [105]. Process

sensors at the host level report information back to PQS’s fusion engine, which uses con-

ditional probabilities to relate events to one of its attack/failure models. While the system

focuses on bad behavior within devices and their network, the system could potentially be

configured to handle environmental events as well. However,trying to track a large number

of behavior models may produce a prohibitive amount of overhead on an edge device in the

grid.

Wang and Hauser’sevidence-based trust assessment (EBTA) frameworktries to eval-

uate the trust they can place in a device based on the evidencethey collect [146]. The

authors collect a series of data vectors within a small time window, define a loss function

that captures the consequences of taking an actiona when the device’s trust level ist, and

finally use a parameterized risk function to decide whether the device is trustworthy. How-

ever, the program suffers from the weakness of its Bayesian basis, and only makes a binary

trust decision, which is not granular enough to extend to intrusion response (and such an

extension would make the system too unwieldy and complex to use, as it would need to

make a separate trust decision for each tamper event we care about).

Cheetancheri et al. propose a coordination system for local detection programs targeted

at detecting worm outbreaks within a network [26]. When a device receives an alert from

its local IDS, it sends a message tom randomly-selected other devices in the network. If

54

a recipient has also received an alert from its own IDS, it combines the message with its

own data and forwards the message to anotherm randomly-selected nodes. If a message

chain is forwarded enough times (i.e., enough devices are reporting an intrusion), a global

outbreak message it sent to all of the devices. The major issue with this approach is that

large portions remained ill-defined: What responses (if any)are taken in response to the

global warning? How does the IDS this system relies on detectworm attacks?1 Without

more clarity, its applicability to the grid defender’s dilemma is unclear.

Valdes and Skinner’sProbabilistic Alert Correlation (PAC) systemuses Bayesian-based

data fusion as a way to reduce false positives within an intrusion detection system [141].

The system maintains a list ofmeta alertsthat might represent an attack, and adds individ-

ual alerts to a meta alert if the system thinks they are similar. The system also maintains a

minimum similarity threshold and a priority field within themeta alert, all with the goal of

showing the administrator only the issues that are most likely to be security violations. The

similarity metric, however, can become cumbersome as the number of meta alerts and alert

features grow, and attack class similarity is evaluated viaa static matrix that would require

updating as different threats emerge.

TheResponse and Recovery Engine (RRE)takes the concept of attack signatures a step

farther than most systems: Instead of simple signatures, the RRE usesattack response trees

(ARTs) to define the security goals it wants to maintain, the various ways these goals might

be violated, and the possible responses that could be taken to maintain those goals [161]. As

intrusion alerts come in, the system determines which nodesin the tree have been reached,

which represents what the attacker has achieved thus far. The trees are converted to Markov

decision processes, which are then solved to determine the optimal action to take against

the attacker. The RRE also has local and global components, which allow it to monitor

both the state of individual boxes and the overall state of the network. While the RRE
1We assume that this is based on a signature-based IDS, as pairing it with an anomaly-based IDS would

cause problems with making sure every device saw the same anomaly.

55

is arguably the system that most closely resembles TEDDI within the current literature,

however, it currently does not consider external events such as environmental factors, and

the response trees have to be complete enough to cover the entire attack space that the

administrator is concerned about.

5.5 Anomaly-Based Intrusion Protections

Another popular method of intrusion detection involves verifying device actions against a

pre-defined or learned model of system behavior, and raisingan alarm when the system

deviates from its model. There are two common flavors of this type of system:

Specification-Based Intrusion Detection: The model of system behavior is derived

from a known specification or protocol. Specification-basedsystems have become

very popular for SCADA network protection, as SCADA networks are fairly static

and tend to exhibit predictable behavior that rarely changes [27]. In most cases,

the restrictions focus on the allowed behavior of the protocols spoken by SCADA

devices, including Modbus [27, 45], IEC 61850 [48], IEC 60870-5-104 [157], ANSI

C12.22 [13, 15], and even more general protocols such as IEEE 802.15.4 [61].

These specification can also be based on the physical properties of a device, such as

with Edwards’s hardware-trojan-detecting IDS [39], or designed in accordance with

a specific security policy, such as with Riley, Jiang, and Xu’sNICKLE [104] and

Wang et al.’sHookSafe[147].

Learning-Based Intrusion Detection: The model of system behavior is learned by the

system, either through canned or live instances of normal behavior. This approach

is the most popular in standard IT networks, although it often focuses on network

traffic to minimize the damage an adversary can cause to the wider network. For ex-

ample, Cucurull, Asplund, and Nadjm-Tehrani analyze a number of features (packet

56

rates, packet type ratios, etc.) to calculate the distance any given packet is from

a device’s “average” packet, and raise an alert if the numberof suspicious packets

reached a certain threshold [32]. Mehdi, Khalid, and Ali Khayan propose combin-

ing Software-Defined Networking technology with standard anomaly-detection algo-

rithms to improve the detection rates of security problems in smaller home or office

networks [79].

Kenaza et al. aim to reduce an IDS’s false-positive rate via an adaptive support vector

data description (SVDD)-based learning approach [64]. While the approach begins

with a set of labeled data for training, the system is periodically tested during oper-

ation, with the feedback from the test getting fed back into the system to allow it to

update its algorithm. Over time, the additional knowledge improves the classification

rate of the IDS, reducing false positives while maintaininga similar detection rate to

a similar system without the extra learning. However, the system requires expert in-

tervention to provide the necessary feedback, which may notalways be available, and

the evaluation is focused on software and network attacks rather than tamper events.

Boggs et al. look into aggregating intrusion alerts across multiple entities to detect

zero-day attack as the exploits propagate across the Web [17]. Each individual device

exchanges information with the others regarding abnormal requests that it receives.

The appearance of a similar abnormal request at multiple devices signals that it may

be an exploit, and the system alerts an administrator when this scenario occurs.

Düssel et al. propose an anomaly-based detection system to look for new and un-

known attacks against critical infrastructure [38]. The system extracts features from

the byte sequences inside captured packets, and compares them to its previously-

learned “normal” state to look for unusual payloads. Their evaluation produced some

impressive numbers, with attack detection rates above 88% and a low false-positive

rate of 0.2%. However, this system requires a large dataset up front to learn what nor-

mal packets look like, and by the time the system encounters the anomalous packets,

57

the attacker has already penetrated the network boundary.

TheState Relation based Intrusion Detection (SRID) systemtries to defend SCADA

systems for bad data injection attacks by using the implicitrelationships between dif-

ferent variables within the system [145]. The system startsby determining how each

component of a system influences the others (for example, raising the temperature

of a boiler increases the pressure of the steam it outputs). From there, SRID uses

these component relationships to look for anomalies that indicate bad data (from the

above example, if the boiler temperature drops but the pressure readings remain the

same, something is wrong). However, the time needed to analyze the system and

learn about component relationships may be time that grid operators do not have.

Ali and Al-Shaer propose an anomaly-based IDS using a model built from event logs

collected from smart meters [6]. Noting the predictable behavior of these devices, the

system constructs a labeled Markov chain based on the log data it collects, and uses

it to verify the future behavior of the meters. However, thissystem requires a fair

amount of data (namely, event logs) to capture the network’sbehavior, and forces the

operator to translate their desired security properties into temporal logic predicates.

Mitchell and Chen’sBehavior-Rule based Intrusion Detection System (BRIDS)puts a

distributed twist on anomaly detection by distributing themonitoring chores among

all the various end devices—more precisely, the behavior ofevery devicex in the

system is observed and verified by another devicey [81]. This relationship is not

necessarily one-to-one, as devices with more resources areasked to monitor more

devices, which minimizes the burden on the network’s resource-constrained devices.

Yoon et al.’sSecureCore systemexamines how multi-core embedded devices could

be leveraged for anomaly detection [158]. SecureCore dedicates one or more cores

to monitoring the behavior of the remaining cores, validating behavior by comparing

pre-developed execution timing profiles of important applications with the program’s

58

behavior at runtime.

Bohara, Thakore, and Sanders take a machine-learning approach to intrusion detec-

tion by using unsupervised clustering algorithms to spot anomalous behavior in se-

curity logs [18].Their systems looks at logs both from individual machines and from

network-wide monitors, and extracts features from these logs to look for data clusters

that are indicative of either a denial-of-service attack ofthe presence of malware on

a host. While this system must currently wait until an attack is already taking place

before it detects a problem, the system appears to be adaptable to monitoring logs

generated by physical or environmental sensors.

Despite its billing as a tamper detection system, we find thatSousan et al.’sSCADA-

Hawk system[123] more closely resembles a classic anomaly-based intrusion detec-

tion system: Despite being one of the few systems to include hardware monitoring in

its scope, it looks only for unexpected hardware behavior, and has no mechanism to

prevent hardware modification. SCADA-Hawk uses a system of “collectors” (low-

level signal monitors) and “agents” (storage programs for collector data) to learn

what behaviors are considered normal in different parts of the network. The system

can then be shifted into a monitoring mode that looks for behavior that deviates from

the learned models.

Like SCADA-Hawk, the “model-based IDS” presented by Roosta etal. [106] also

falls under the anomaly-based umbrella. This IDS targets towards protecting wireless

process control systems, and much like TEDDI, the system is comprised of both

field andcentral IDSes, with the former monitoring devices in their own corner of

the network and the latter monitoring data from both the fieldIDSes and external

data sources. Like other anomaly-based approaches, however, this system requires

enough data to proper distinguish normal and abnormal behavior, which may not

be readily available. Also, while responses can be automated, only the central IDS

can initiate a countermeasure, as the field IDSes are just passively monitoring their

59

sensors

Finally, a number of systems rely use control-flow integrity(CFI) as a mechanism for

determining when an attacker has modified a system. Van Der Woude [142], Petroni

and Hicks [93], and our lab’s recentAutoscopywork [97, 99, 100] all monitor execu-

tion paths within the kernel to learn what behavior is expected and detect anomalous

flows. Similarly, Tang, Sethumadhavan, and Stolfo [127] look for anomalous “mi-

croarchitectural execution patterns” [127] caused by malware that can be observed

via hardware performance counters.

5.6 Hybrid Intrusion Protections

Some intrusion detection systems combine elements of the signature-based and anomaly-

based protection methods to protect systems. The two most notable examples of this are the

open-source intrusion detection systems Bro [21] and Snort [121], which can be adapted to

use the detection scheme that is best suited to the environment. However, both require poli-

cies to be expressed in their own special scripting language, and Snort’s Active Response

feature is limited to simple network actions.

On the academic side, Benmoussa, El Kalam, and Ouahman install both a misuse de-

tection agent and an anomaly detection agent on collaborator networks that serve as early-

warning systems for their important networks [11]. When something suspicious is found,

these agents report back to a manager agent on the critical network, which allows the net-

work to prepare for similar suspicious behavior within its own borders. While this project’s

distributed setup and use of packet and log parsers as sensors make it similar to TEDDI,

there are two key differences: This system i) currently restricted to detecting software

attacks, and ii) intervenes only after viewing suspicious behavior on its collaborator net-

works. TEDDI, in contrast, attempts to intervene even earlier than this by stepping in the

moment someone accesses a device on the collaborator network.

60

The idea of acontextualIDS, or providing external context information about the sys-

tem to a generic IDS, has gained some attention in recent years. Examples include Hansen’s

proposal to add SCADA-specific context to assist in judging the intent of an action [49] and

Amann et al.’s input framework for incorporating blacklists, malware checks, and other ex-

ternal services into a standard IDS to augment its protection capabilities [7].

5.7 Other Protection Work

One protection technique that does not fit nicely into our taxonomy is “Security-as-a-

Service,” (SECaaS), where a company simply brings in an outside expert to manage the

security of their enterprise. These experts ensure that thecompany’s security tools are

always up to date, and they may even bring in lessons learned from their work in other

domains to further inform their security posture. Some commercial examples of SECaaS

include AlertLogic’s ActiveWatch [5], McAfee’s cloud-based security services [77], and

WebRoot’s SecureAnywhere endpoint protection [150].

Lin et al. examine the challenges involved in detecting attacks on cyber-physical sys-

tems, propose that combining information from both the cyber and physical domains is key

to detecting these attacks, and discuss some potential methods for detecting and responding

to attacks [71]. While the authors highlight some of the same concerns that TEDDI raises,

such as the difficulty in distinguishing attacks from other physical events, the paper mostly

focuses on the impact of malicious commands and data, ratherthan attacks characterized

by physical indicators.

Laszka et al. consider the problem of setting an optimal attack detection threshold for

an IDS [69]. They model the process of compromising a device as a game between an

attacker and defender, and algorithmically determine the optimal threshold settings based

on the costs of IDS false positives and the amount of damage anunmitigated attacker

61

can do. However, the paper gives few details about whether the IDSes involved here are

signature- or anomaly-based.

Another hard-to-categorize system in the CAPMS system, which attempts to detect and

respond to cyber attacks against the grid in real time [138].While the proposal is still

light on specific details, the setup is fairly similar to TEDDI: They plan to use a distributed

set of nodes to gather information about the network, combine “advanced algorithms with

cybersecurity monitoring” [74] to determine the state of the network, and automatically

respond to problems to mitigate them earlier than other systems. However, this system

does not consider physical tamper events, and does not address either the handling of non-

malicious tamper events or the ease of configuring such a system for an individual utility

network. Additionally, as it still appears to be in the earlystages of development, we

cannot definitively determine which category of intrusion detection (signature, anomaly,

specification, or something else) that the system falls under.

Emulation-based intrusion detection, where a suspicious program is run in a simu-

lated environment to reveal its behavior, is also a potential protection approach [2]. How-

ever, there are a number of evasion techniques against this approach, such as using self-

modifying code or simply using esoteric instructions [2], and the time and effort needed

to set up an emulation environment and run suspicious code through it is more than a grid

defender can spare.

5.8 Prior Work vs. The Grid Defender’s Dilemma

With all of the work done in this space, the question arises: Can any of these systems

solve the Grid Defender’s Dilemma? As shown in Table 5.1, theanswer is a definitive

“No.” Every system we evaluated fall short in one of the key aspects of the dilemma, and

many fall short in several categories. Only TEDDI, which we built specifically with critical

62

infrastructure and the grid defender’s dilemma in mind, satisfies all of our criteria.

5.9 Factor Graphs and Security

Finally, we should note that we are not the first to propose using factor graphs as a secu-

rity mechanism; this distinction belongs to theAttackTaggersystem developed by Cao et

al. [23].2 AttackTagger used factor graphs to discern the state of a user (either benign, sus-

picious, and malicious) based on the sequence of actions that the user takes. The authors

demonstrated how graphs could be used in this manner could beused to detect compro-

mised user accounts, even before the accounts had compromised the actual system, and

also discovered several attack sequences that had been previously overlooked. The system

does not, however, consider physical tampering in its scope.

2In fact, it was this team that originally suggested that we use factor graphs in TEDDI after seeing how
well they worked in AttackTagger!

63

Table 5.1: A sampling of current protection systems and how they fare against the grid
defender’s dilemma.

System Handle Handle Flexible Responds Easy To Adheres
Distributed Benign Response Early In Configure? To Grid

Events? Events? Setup? Kill Chain? Constraints?

NA [85] Yes Yes Yes
CMMN [29] Yes Yes
ADSDB [8] Yes Yes Yes
GCK [43] Yes
TLP [131] Yes
CA [25] Yes
Kent [65] Yes N/A

ABYSS [153] Yes Yes
Citadel [154] Yes Yes
Dyad [133] Yes Yes

IBM 4758 [119] Yes Yes
Dragone [37] Yes Yes
MKRN [78] Yes Yes
Desai [36] Yes

PUFs Yes Yes Yes
Patagonix [72] Yes

VMWatcher [59] Yes
Autoscopy [99] Yes Yes
FPWAS [159] Yes Yes
SCPSE [162] Yes Yes
PQS [105] Yes Yes Yes

EBTA [146] Yes Yes N/A
CADLRS [26] Yes

PAC [141] Yes
RRE [161] Yes Yes Yes Yes

Edwards [39] Yes Yes
KLBS [64] Yes N/A
BHSS [17] Yes Yes

DGLBSK [38] Yes Yes
SRID [145] Yes Yes

CAPMS [138] Yes Yes Yes Yes
AAS [6] Yes Yes Yes

BRIDS [81] Yes
SecureCore [158] Yes Yes

BTS [18] Yes
S-Hawk [123] Yes Yes Yes
RNLV [106] Yes Yes Yes Yes
VDW [142]

PH [93]
TSS [127]
BEO [11] Yes Yes

TEDDI Yes Yes Yes Yes Yes Yes

64

Chapter 6

The TEDDI System

In this chapter, we describe the general architecture of TEDDI, and explain each component

of the system in detail. We also describe the TEDDI Generation Tool, which we use to

create TEDDI systems for arbitrary SCADA networks.

6.1 Problem Assumptions and Attacker Model

Before we get into the details of TEDDI, we first state our assumptions about the problem:

• We assume that the SCADA network is always available, and that packets always

reach their intended destinations. Given that utilities require reliable SCADA net-

works to properly manage and maintain their infrastructure(and any disruption in

this service would draw the utility’s attention), this assumption appears to be reason-

able.

• We assume that the sensors used by TEDDI always report the correct values, and

are immune to malfunctioning or manipulation. We believe this is a reasonable as-

sumption because the same physical (i.e., the cabinet or device exterior) would be

protecting the sensors as well as the edge device. (We note that our Sensor Sub-

65

version Scenario from Section 3.4 violates this assumption, but point out that the

attacker still has to penetrate the boundary to compromise the cover switch.)

• TEDDI makes one assumption about the topology of the underlying network: There

is at least one node present that does not require protectionand is able to support a

tamper decision point (TDP, Section 6.5). (If the utility has several disconnected net-

works to maintain, each network requires at least one TDP-eligible node.) Otherwise,

TEDDI can operate on any arbitrary SCADA network with minimalconfiguration.

• We assume that all of our tamper information points (TIP, Section 6.4) are equipped

with equivalent sensor sets, and are synchronized to take their sensor snapshot at

roughly the same time. While the system will still operate without the latter as-

sumption, it makes calculating the regional tamper states of a TDP more challenging

because of the time difference between readings. (The levelof synchronization re-

quired will depend on how long we wish to wait for data to reachthe TDP; we discuss

this more in Section 6.5.)

Next, we define the capabilities of the attackers we are targeting as follows:

• We assume that the attacker must go through an edge device toaccess the SCADA

network. More specifically, we assume that the attacker mustpenetrate some sort of

physical boundary, which could be as simple as the device’s own exterior, to access

the edge device’s hardware and network access point.

• The attacker is unable to inject packets into the network without first gaining access

to an edge device and plugging a cable into the device’s access point. Wireless ac-

cess points are not considered in our analysis, as they may bereachable outside the

device’s physical boundary.

• We only consider attacks on edge devices, and not other sorts of power equipment.

Tampering with power lines, for example, is considered out of scope.

66

• Network attacks originating from outside the SCADA networkare considered out of

scope.

• While TEDDI’s sensors monitor the device’s physical boundary, we assume that

there are no limits to the tools an attacker can use or the timethey can take to pene-

trate this boundary.

6.2 TEDDI Architecture Overview

TEDDI is made up of three components:

• Tamper Information Points(TIPs, Section 6.4): Programs that collect sensor data and

attempt to make local tamper decisions.

• Tamper Decision Points(TDPs, Section 6.5): Programs that take the sensor data from

TIPs, determine the regional state of the network area they monitor, and make tamper

decisions when asked by the TIP.

• Tamper Enforcement Points(TEPs, Section 6.6): Programs that listen for tamper

decisions and execute responses based on those decisions.

TEDDI takes a distributed approach to tamper detection by placing TIPs, TDPs, and

TEPs all throughout the network it is protecting, which improves its information-gathering

capabilities and allows the system to detect regional tamper events that locally-based pro-

tection systems, such as the IBM 4758 [119], would miss.

To illustrate how TIPs, TDPs, and TEPs work together to make tamper decisions, con-

sider the following example:

1. A utility operator uses the TEDDI Generation Tool (Chapter7) to construct a simple

tamper system consisting of a single TDP and three TIPs:A, B, andC. The operator

67

TDP

TIP A

TIP B

TIP C

2

4

Attacker?

Earthquake?5

3

1

To substation

T
o
 re

m
o
te

 d
e
v
ice

s

TEPTEP

TEP

TEP

TEP

TEP6

Response?
7

8

Figure 6.1: A diagram of the example given in Section 6.2. First, a utility operator builds
the tamper system using the generation tool (Step 1), and then deploys the various compo-
nents to their proper locations in the network (Step 2). When aTIP senses shaking (Step
3), it sends an alert to the TDP (Step 4), which then uses it full information base to decide
exactly what is happening (Step 5). This decision is then sent to the appropriate TEPs (Step
6), who then decide the proper response to the event (Step 7).

denotes that the TIPs are equipped with an accelerometer as part of their sensor

set, and tells the system to watch out for shaking as either part of an attack or an

earthquake.

2. The TDP and TIPs programs are deployed, and the TIPs begin monitoring their en-

vironment for event indicators.

3. TIPA experiences intense shaking, causing its accelerometer toexceed its thresh-

old. (See Section 6.4 for more information on how TEDDI dealswith thresholds

for multi-dimensional monitors such as accelerometers.)A’s limited factor graph

(Section 6.3) knows that either an attack or an earthquake isoccurring, but it cannot

differentiate between the two possibilities without knowing the state of other boxes

in the system.

4. A sends an alert to the TDP about its situation, and requests assistance on making a

decision.

68

5. The TDP receivesA’s alert and attempts to determine the overall state of the system.

In doing so, it finds thatB andC have also experienced intense shaking (and in turn,

have also sent the TDP alerts about potential tampering).

6. The widespread shaking causes the TDP’s full version of the factor graph (Sec-

tion 6.3) to decide that the shaking is due to an earthquake. This decision is passed

along to the two TEPs associated withA.

7. Because the shaking is due to an earthquake,A’s TEPs do not take any action for

the time being, since the utility does not want to reduce the system’s availability

unnecessarily. (However, if the shaking had been identifiedas part of an attack, the

TEPs could execute a severe response set—revoking certificates, monitoring traffic,

etc.—to ensure an attacker does not gain access to the SCADA network.)

6.3 TEDDI Factor Graphs

At the heart of our tamper decision engine is a factor graph [42] that looks for sequences

within its sensor data to determine what event is occurring.By using these graphs, we

simplify the TEDDI setup process by capturing the grid defender’s intuition about tamper

events, and by not requiring a large amount of data or configuration to operate the system.

Our graph, as shown in Figure 6.2, is constructed from two important datasets:

Events: The setE = {e1, . . . , ej} of tamper events we want to detect.

Indicators: The setI = {i1, . . . , ik} of phenomena connected to the events inE. For

example, ifE includes the Schweitzer Scenario from Section 8.2,I will need to

include an indicator representing an open cabinet door. Thepresence or absence of

an indicatori is calculated by looking at its corresponding monitorm to see if the

69

monitor reading has reached or crossed an operator-defined threshold. (Our threshold

setup may require some pre-processing of sensor data; see Section 6.4 for details.)

Indicators can be classified aslocal, in which their value depends solely on the value

of the monitor at the edge device, orregional, which depend on the monitor values of

all of the TIPs operating under a TDP, and are therefore only visible to TDPs. (How

a TDP calculates its regional indicators is discussed in Section 6.5.)

While they are not explicitly included in the factor graph, the system’smonitorsrep-

resent a third important set. Monitors are excluded from theformal factor graph because

TEDDI assumes a one-to-one relationship between them and the indicators they look for.

We make this assumption for simplicity and without loss of generality, as anything that

breaks this assumption can be easily modeled by breaking monitors down into separate

components or using multiple indicators with different thresholds.

We build our factor graph via a three-step process:

1. For each concerning eventej, the operator defines a sequence of indicators that sig-

nalsej ’s presence, as well as the maximum amount of time that can pass between

each indicator. This process is described in more detail in Section 6.3.1. In Fig-

ure 6.2, for example, we define the sequence “Indicator 1, andthen Indicator 3 within

W seconds of 1” for Event 1, “Indicator 4, then Indicator 1 within X seconds of 4,

and then Indicator 2 withinY seconds of of 1” for Event 2, and “Indicator 5, and

then Indicator 1 withinZ seconds of 5” for Event 3.

2. The operator ranks the events by their importance, declaring which events are the

most important to detect. Here, the events happen to be ranked in numerical order:

Event 1 is the most important event, Event 2 is the second-most important event, and

Event 3 is the least important event of the three.

3. Finally, the indicator sequences are arranged within thefactor graph in order of their

70

Event 1 Event 3

I�������� �

<W 	
��	 ��

I�������� �

<X 	
��	 ?

I�������� �

<Y 	
��	 ��

I�������� �

<Z 	
��	 �?

N

N N

N

N

N

N

Figure 6.2: An example factor graph generated by our TEDDI system. The blank nodes
represent intermediate steps in each event sequence, but are just treated as placeholders
between factor nodes in our system. Note that this example looks for the sequences “1,
then 3 withinW seconds of 1” (Event 1), “4, then 1 withinX seconds of 4, then 2 withinY
seconds of 1” (Event 2), and “5, then 1 withinZ seconds of 5” (Event 3). See Section 6.3.1
for an explanation of why sequences are encoded in reverse.

rank, assuring that events are checked in that order. In the figure, Event 1 will be the

first event TEDDI looks for, followed by Event 2, and then by Event 3.

Whenever we poll our monitors for data, we calculate the presence of indicators based

on this data, and then use our factor graph to see what events are occurring, starting from

the most-important event.

This setup offers two advantages over other fusion algorithms. First, the resulting graph

is much less complex than a comparable graph generated usinganother fusion algorithm.

For example, a equivalent graph created using a Bayesian network would require that our

factor nodes be split into its ordering and time-window components, leading to an explosion

in the potential state space. Second, in comparison to the setup requirements of other

systems, such as the complete attack response tree of the RRE [161] and the initial training

71

period for SCADA-Hawk [123], constructing a factor graph in the above manner is simple

and less time-consuming. However, we must raise the following points:

• The sequences themselvesmustbe linearized to be properly encoded in the factor

graph. For example, a sequence such as “1or 2, then 3” would have to be split into

two the separate sequences “1, then 3” and “2, then 3,” and then ranked sequentially

to ensure they are properly prioritized. This splitting is currently a manual process,

and while we assume that a grid defender will have a clear ideaof how events should

be encoded and ranked, Section 6.7 discusses what could happen if this is not the

case.

• Currently, TEDDI only returns a single event decision even if multiple events are

present simultaneously, which makes properly ranking the events a critical task. We

are reliant on the operator having a clear sense of the relative importance of events,

and list in Section 6.7 what could happen if this assumption is violated.

When we generate the final factor graph, we create two versions: a full version for

tamper decision points, and alimited version for tamper information points. We create

the two versions to account for differences in the information bases between decision and

information points:

• If a sequence contains one or more regional indicators, thesequence is truncated at

thelatest-occurringregional indicator (i.e., the first one that TEDDI will encounter in

the sequence) in the limited factor graph. If this sequence truncation causes multiple

sequences to appear the same in the limited graph, those events are collapsed into a

single sequence with a rank equal to that of the highest-ranked event.

For example, if Indicator 1 in Figure 6.2 were a regional indicator, then the lim-

ited factor graph given to the TIPs would look like Figure 6.3. Any time the graph

encounters Indicator 1 when looking through its event sequences, it would have to

72

TO TDP TO TDP

Indicator 3
TO TDP� �

Figure 6.3: A limited version of the factor graph from Figure 6.2, where Indicator 1 is
classified as a regional indicator. In this case, since Indicator 1 is part of every sequence,
the TIP will not be determine if any of the events it is lookingfor are present, and will have
to request assistance from its TDP every time it reads data from its monitors.

defer its event decision to its TDP, which would have the proper context information

to resolve whether or not the indicator is present.

• If an information source is only available to tamper decision points (such as data

from an external database), monitors and indicators associated with that information

source are not included in the limited factor graph. (Note that the limited graph in

Figure 6.3 would look the same if Indicator 1 was an external indicator rather than a

regional one, as both types are only resolvable by the TDP)

While TEDDI’s use of indicator sequences captures a grid defender’s intuition about

potential tamper events, the way TEDDI looks for these events is a bit unorthodox. We

discuss TEDDI’s sequence-checking method in the next section.

6.3.1 How TEDDI Looks For Sequences

People generally define indicator sequences by the order in which the indicators occur: “A

first, then B, and then C.” However, TEDDI must wait for the entire sequence to appear

before making an event decision, and thus its decision is made at the moment in time when

the last indicator in the sequence occurs. Therefore, we encode the sequences inreverse

73

Indicator

A

Indicator

B

Indicator

C

A first, then B,

and then C

C now, then B before C,

and then A before B

time

Figure 6.4: A diagram showing how users and TEDDI define indicator sequences in op-
posite directions. Users normally think of sequences by starting with the earliest indicator
and ordering them chronologically. TEDDI, however, has to wait for the entire sequence to
appear before declaring that an event is present, so it starts by waiting for thelast indicator
in a sequence to appear, and then looking backwards in time tosee if the earlier indicators
appeared in the correct sequence and within the allowed timewindows.

order within the factor graph: “Look for C, then see if B has occurred in the past, and

then see if A has occurred before B.” This setup leads to a mismatch between a user’s

mental model of the sequence and the implementation of the sequence within the code (see

Figure 6.4), so we rely on the TEDDI Generation Tool to translate from one to the other.

When traversing the factor graph, TEDDI uses the following procedure to determine

the presence of sequences:

• If the node represents an indicator at the end of a sequence (i.e., it’s the first node

TEDDI sees in the graph sequence), TEDDI looks to see if the indicator is currently

present. If it is, TEDDI moves to the next node in the current sequence; otherwise,

TEDDI moves on to the next sequence in the graph.

• If the node represents an indicator that is not at the end of asequence, TEDDI exam-

ines the last five time periods that this indicator was present. A time periodp for an

indicatori is defined by the pair(a, d), wherea is the timestamp representing when

i switched from absent to present (i.e.,i was absent at timea− 1, but present at time

a), andd is the timestamp representing when the first timei became absent aftera

(i.e.,d = a + k, wherei was found to be present from timesa througha + (k − 1)

74

but absent at timea+ k).

If one of these periods occurred both before the last indicator that TEDDI checked

and within the allowable time window as defined by the user, TEDDI moves to the

next node in the current sequence (or, if this is the first nodein the sequence, declares

that event to be present). Otherwise, TEDDI moves on to the next sequence in the

graph.

• If TEDDI goes through all of the sequences in the graph without finding any of them,

it reaches the end of the graph and declares that no events arecurrently happening.

As an example, consider the following scenario:

• An edge device is installed in a locked cabinet on a utility pole, but the grid operator

is concerned about someone cutting through the cabinet wallwith a torch and drilling

through the potting material surrounding the memory holding the encryption keys for

the device, allowing the attacker to then spoof traffic as that device.

• The operator decides to install a light and temperature sensor with the edge device,

and defines the following event sequence for his factor graph:

– High temperaturecaused by the torch.

– Light as the box is penetrated and the attacker searches for the device and mem-

ory they want to access. The time window between the high temperature and

light indicators is set to ten minutes.

– Finally, a tamper signalfrom the potting material1 indicating that someone is

trying to remove it. The time window between this indicator and the light indi-

cator is set to five minutes.
1Generally, potting materials inside tamper-resistant devices have sensors embedded within them to detect

when they are being penetrated.

75

• When a malicious actor performs the above attack, TEDDI notes the presence of the

initial indicators as they appear, but does not actively respond until the last signal—in

this case, an alert from the potting material sensors—appears. When this indicator is

present, TEDDI goes through its factor graph like so:

1. TEDDI checks to see if the potting material tamper indicator is present (it is in

this case).

2. TEDDI moves on to the next indicator (light), and examinesthe last five time

periods the light indicator was present. If none of these periods appear within

the five minutes preceding the potting material indicator, TEDDI moves on to

the next sequence in the graph.

3. If one of the above light indicator time periodsdoesoverlap with the five-minute

time window, TEDDI moves to the first indicator in the sequence (high tempera-

ture) and repeats the checking sequence. If any of the last five high temperature

time periods falls within the ten minute window preceding the light period se-

lected above,2 TEDDI declares that the attack event is occurring, and movesto

take the appropriate response.

Note that while the above factor graph traversals are very linear, TEDDI could be

adapted to process the sequences in parallel; however, thiswould require breaking the

graph-checking code into individual threads for each sequence, and single-processor edge

devices would render this change useless.

6.4 Tamper Information Points (TIPs)

Tamper information points are the eyes and ears of TEDDI, andare responsible for collect-

ing the sensor data needed for decision making. A TIP is assigned to each edge device in
2Choosing which of the light indicators to base our window on introduces a conflict between accuracy

and performance; see Section 9.2.1 for further discussion of this problem.

76

the network, and lives either on or near (i.e., within the same cabinet) the device to monitor

the surrounding environment. (Exactly where the TIP lives may be dictated by the sorts

of indicators you are looking for—for example, if “network disconnect” is in the indicator

set, the TIP will need to be on an auxiliary device (such as theSEL 3622 [112]) to avoid

getting disconnected along with the edge device.)

Every few seconds, the TIP performs the following tasks:

• First, it takes a snapshot of its monitor values and determines whether any indica-

tors are currently present by comparing these values to operator-defined thresholds.

These thresholds are just single numbers in our prototype, so the TIP may need to

pre-process the monitor data to fit its threshold setup:

– The TIP could use a simple heuristic to calculate the value tocompare with the

threshold. For example, an accelerometer that detects motion in three directions

would need its components combined into a single magnitude value for com-

parison. This setup, however, may not be fine-grained enoughto differentiate

different event behaviors.

– The TIP could use a machine-learning algorithm for pre-processing, and output

a specific indicator value based on its findings (i.e. it couldoutput 1 for a minor

benign shake, 2 for a stronger force possibly generated by anattacker, 3 for a

severe shake caused by a natural disaster, etc.). This decision, however, may

conflict with our goal of reducing the configuration burden ongrid defenders,

since they will need to gather the data needed to train the algorithm.)

When a monitor exceeds its threshold, the corresponding indicator is considered

presentin our factor graph; otherwise, the indicator isabsent. This set could po-

tentially be expanded to include non-binary indicators, but we can model these cases

using our existing binary indicators—for example, “is the current temperature above,

77

below, or within the normal operating range?” can be captured through the indicators

“are we belowX degrees?” (too cold) and “are we aboveY degrees?” (too hot).

• As indicators appear and disappear, the TIP updates its history counters to save the

last five times each indicator was seen. (We chose five to balance the threat of attack-

ers circumventing sequences by repeating indicators with the additional complexity

introduced by having these indicator options (see Section 9.2.1 for more details).

• Once the indicator set is built, the TIP sends it to the tamper decision point that

manages the TIP. The TDP uses this data for its own decision-making process, and

takes the data as a sign that the TIP is still active.

Along with its data, the TIP sends both its ID and the current timestamp, which

the TDP uses to authenticate the message and make sure that the data they receive

is fresh. To preserve the integrity of the message, the TIP takes its message, as

well as a 64-bit secret key, and generates a hash-based message authentication code

(HMAC) [67] with the SHA-256 cryptographic hash function. The MAC is appended

to the message, and the TDP verifies this value upon receipt tovalidate the message’s

integrity.3

• Finally, the TIP runs its indicator set and history counters through its factor graph to

make a local tamper decision by itself, and if successful, sends this decision directly

to the appropriate TEPs. However, as mentioned in Section 6.3, TIPs only have a

limited factor graph, and thus may not be able to definitively resolvesequences with

regional indicators. When this happens, the TIP defers to itsTDP and sends an alert

message to ask the TDP for assistance.

3A similar authentication scheme is used for TIP-to-TEP and TDP-to-TEP communication.

78

6.5 Tamper Decision Points (TDPs)

Tamper decision points serve as the final word regarding whattamper events are occurring

on a SCADA network. Ideally, TDPs live in centrally-located,higher-security areas of

a utility’s SCADA network, such as within a substation, but any node in the network is

eligible to host a TDP provided it is not already hosting a TIP. (We restricted TDPs to

non-TIP nodes because we assume that the edge devices that are hosting TIPs have limited

resources, and thus are not suited to host both a TIP and TDP. However, a TIP could be

installed to protect the device hosting the TDP from local attacks.) We discuss the optimal

placement of TDPs in Section 7.

Each TDP is given a full copy of the system’s factor graph, which allows them to make

definitive tamper decisions based on the data they receive. Its primary source of data is the

set of TIPs it serves, but it can also query external databases (for example, weather feeds

or utility incident databases) to make tamper decisions. (We added a MySQL connection

to our original TDP prototype to demonstrate the feasibility of the idea, but given the wide

range of potential data sources, we did not include externaldata sources within the TEDDI

Generation Tool.) While every TIP in the system is paired witha specific TDP, the exact

number of TIPs that each TDP serves is up to the network administrator: More TIPs give the

TDP a better sense of the network’s overall tamper state, butservicing too many decision

requests may overwhelm the device the TDP lives on.

Each TDP is made up of three threads that are spawned when the program starts:

Heartbeat Thread: This thread is responsible for processing the non-alert messages

coming from its TIPs. Upon receiving a message, the heartbeat thread verifies that

the message is fresh and came from a legitimate TIP, and if so,it stores the set of

local indicators from the message and updates its history counters accordingly.

The heartbeat thread handles regional indicator calculations using a simple majority-

79

rules voting scheme that involves the corresponding local indicators. For example,

if a TDP needs to know the value of a regional shaking indicator, it takes the local

shaking indicator values from all of its TIPs, and checks to see if a majority of the

TIPs are currently experiencing shaking. In general, the TDP constructs its set of

regional indicatorsIregional as follows:

Iregional = {maj(i1),maj(i2), . . . ,maj(i|I|)} (6.1)

maj(ip) =

1 if the majority of TIPs

seeip aspresent

0 otherwise

(6.2)

If any of themaj(ip) functions do not find a clear majority (i.e. the TIPs are evenly split

on sensorp), the TDP has several options:

• It can break ties arbitrarily, and declare that an even split will always be reported

as present or absent.

• It can reach out to apeer TDPfor assistance. The requesting TDP sends all

of its state data to its peer, including current indicator values, past indicator

histories, and other important bookkeeping information such as the number of

TIPs that the requesting TDP serves. The peer TDP can then combine its own

TIP data with that of the requesting TDP, creating a new jointset of regional

indicators to use in making an event decision.

Using the combined regional indicator set, the peer TDP can make an event de-

cision and pass it back to the requester, who can then pass it on to the proper en-

forcement points as needed. (While this functionality was included in our orig-

inal TEDDI prototype, we did not include it in the TEDDI Generation Tool.)

80

Once the current regional indicators are calculated, we update their history counters

in the same manner as the local indicators. (Note that the heartbeat thread does not

deal with external indicators; these indicators are processed by the alert thread.)

Alert Thread: This thread is responsible for handling decision assistance requests from

TIPs. Upon receiving an alert and verifying that it comes from a legitimate source,

the TDP takes the following steps:

• First, the thread waits a short period of time to receive messages from other

TIPs. This is done to make sure we have current data from all ofthe TIPs before

we try to make an event decision—otherwise, if a global indicator was present,

the system would not recognize this fact until half of the TIPs had reported it,

and might make an incorrect decision for early-responding TIPs.

In our evaluations, our initial waiting time of 1 second proved to be too long, as

it causes the TDP’s alert socket queue to overflow in the face of steady traffic

(while also potentially providing the attacker more time toact before a response

could be executed). However, reducing this time too much opened TEDDI

up to TIP synchronization issues: If some of a TDP’s TIPs wereslower in

providing fresh data to the TDP due to clock drift, a TDP may beforced to

make decisions with stale, inaccurate data. We eventually settled on a wait time

of 100 milliseconds to balance these issues, but this duration could be adjusted

by a grid defender if necessary.

• Next, the TDP determines the status of its external indicators by querying the

data sources associated with the indicators. For example, if TEDDI requires

data from a SQL-based incident database about a potential maintenance visit, it

queries the database to see if the current time falls within aknown maintenance

window for the edge device in question.

• Once all of the external indicators are collected, the TIP combines them with

81

Alert

M����g�

L�g�timate

M����g��

W��� ���

M��� �ata

C�����ate

R�g��o�� �����

�� ���te

C�����

G�� ������on

F��! "���

R�o F�����

G��#$

Event

Present?

Decision

To TEPs

%& '('%)

Y*+

,-

Y*+

,-

Y*+

,-

Figure 6.5: A flowchart depicting how a TDP’s alert thread responds to a message. The
dashed lines indicate that getting help from a peer TDP is an optional step.

both its regional indicators and the local indicators of theTIP who sent the origi-

nal alert. The TDP runs the entire set through its full version of the factor graph,

which allows the TDP to make a definitive, fully-informed event decision.

• Once an event decision is made, the TDP sends its decision tothe appropriate

TEPs to handle the system’s response.

A flowchart of this process can be found in Figure 6.5.

Audit Thread: This thread runs periodically to look for “lost” TIPs and remove them

from future calculations. TIPs are considered lost if they do not report data within a

specified timeout window (set to 60 seconds in our prototype).

If a TIP is lost, a “lost TIP” event is sent to the appropriate TEPs to further action.

While TDP peering was left out of the current generation tool,for the sake of complete-

ness we define a fourth thread for handling peer assistance requests:

Helper Thread: This thread is responsible for servicing assistance requests sent by other

TDPs. When it receives a request, which includes the local data from the TIP who

initially sent the alert, the helper thread takes the following steps:

82

• It combines the TIP data from the requester TDP with its own TIP data, and uses

that to create an indicator setIcombined that represents the regional indicator state

of both TDPs. (If the state is still unclear, the helper thread could request help

from another peer TDP, and the pattern could continue arbitrarily until either

a TDP finally has enough data to get a clear idea of the regionalstate, or we

run out of TDPs to query. This feature, however, was not implemented in our

prototype.)

• It takes both the indicatorsIlocal from the TIP who initially sent the data, fuses

it with Icombined, and runs the whole set through its full factor graph. Once a

decision is reached, it sends the decision back to the requesting TDP.

Finally, once the alert thread decides that an event is present, it sends its decision to the

appropriate tamper enforcement points to handle the response.

6.6 Tamper Enforcement Points (TEPs)

Tamper enforcement points are positioned between the TIP and its TDP on the SCADA

network, and they are responsible for responding to decisions made by these devices.

For each TIP, anedge TEPis installed at the TIP’s location, and acentral TEPis placed

closer to the TIP’s associated TDP. The two TEPs allow us to execute responses in the

location that makes the most sense in the current context—for example, erasing secret data

on the edge device is best handled by the edge TEP, while filtering network traffic might be

more appropriate for the central TEP.

Unlike most tamper response systems, in TEDDI TEPs are not limited to making a

single response to a decision, but instead can execute an ordered series of responses to

mitigate any problems. Responses themselves are defined by three attributes:

83

• The shell script (provided by the user) that defines the actions that make up the re-

sponse.

• The severity classification of the response. Responses can be classified as either

weak, moderate, or strong.

• Whether or not the response is repeatable.

These attributes allow for flexibility in TEDDI’s response,which is critical when ad-

dressing the grid defender’s dilemma, given the costs associated with taking the wrong

response to an event (Section 4).

The system operators set exactly which responses to take foreach event, as well as what

order to take them in, using the TEDDI Generation Tool. In cases where responses need to

be taken by both the edge and central TEPs, the TEPs coordinate their response to ensure

that responses occur in the proper order.

6.7 Limitations of TEDDI

While the above architecture offers a number of advantages over existing systems, it is not

without its drawbacks:

• TEDDI is also vulnerable to “low and slow” attacks; that is,attacks that progress

slowly enough that one or more of the sequence’s timing windows are exceeded. This

technique is commonly used when exfiltrating data from a system, and could be used

to great effectiveness here. However, if an attacker must beon location to physically

tamper with a device, slowing down their attack may increasetheir chances of being

noticed in other ways (such as being spotted by a passerby).

This attack has a parallel in the network intrusion protection sphere, where packet

fragmenting can lead to similar issues with sequences and timeouts, albeit involv-

84

ing network traffic rather than environmental indicators [114]. Oftentimes, attacks

against a network intrusion protection system (NIPS) exploit differences between

the timeout values of the NIPS and the system it is trying to protect—for example, if

a NIPS waits forx seconds before discarding fragmented packets, but the protected

system waitsy > x seconds before doing so, an attacker can send a packet fragment

everyz seconds such thatx < z < y, causing the fragments to sneak past the NIPS

undetected and still get reassembled on the victim system.

The primary reason TEDDI is vulnerable to slower attacks, therefore, is that the host

system has no mechanism for “discarding” physical indicators, meaning thaty is

essentially infinite in this scenario. That means that patient attackers only have to

wait for thex time window to expire before continuing their attack. (However, since

x is different for each time window, the attacker may have trouble determining how

long they have to wait.)

• Because TEDDI only reports one tamper event at a time (the highest-ranked one that

it sees), improperly ranking events could lead to two problems:

– If a high-priority event is ranked too low, then TEDDI may miss the event if it

appears at the same time as a higher-ranked (but actually lower-priority) event.

– If the sequence for an eventEi is a exact subset (i.e., it has same indicators, in

the same order, and the same time windows) of a sequence for the eventEj,

then if Ei is ranked ahead ofEj, TEDDI will never detectEj because it will

always look for (and find)Ei first.

These issues make it possible for an attacker to mask an eventby inducing a concur-

rent sequence that corresponds to a higher-ranking event. However, the attacker must

be careful when taking this approach, as the response to the higher-ranking event may

still interfere with the event the attacker wants to mask. Additionally, TEDDI could

be modified to report any number of events that happen simultaneously, rather than

85

just the event with the highest rank; however, this change may complicate our re-

sponse mechanisms, as the actions taken for one event may be the very actions we

want to avoid for another.

• While we assume that the SCADA network is reliable and always available, this may

not always be the case in the real world. TIPs can still perform local event detection

when isolated, but if a regional indicator is needed, the TIPsimply sends an alert to

the TDP and assumes that the problem will be take care of by someone else, which

could lead to problems if the TDP is not available.

• A single component failure in our system may leave the systems supported by that

component open to compromise. For example:

– If a TIP fails, TEDDI will no longer receive indicator data from the correspond-

ing edge device. Eventually, the TDP will recognize that theTIP is no longer

active, and stop including its data in the TDP’s regional state calculations.

– If one of the threads spawned by a TDP fails, all of the TIPs managed by that

TDP are put at risk. Without the heartbeat thread, for example, the TDP would

not be able to collect current indicator data from TIPs, and would have to rely

on stale data to make event decisions (and eventually lose its ability to calculate

regional indicators). Losing the alert thread, on the otherhand, would keep

TEDDI from responding to any event with a regional indicator, as the TIPs

trust that the TDP will always be there to assist them and willblindly send

alerts even when the TDP disappears.

– Losing a TEP will effectively turn TEDDI into a detection-only protection sys-

tem for the corresponding edge device, as the TDP and TIP willcontinue send-

ing event decisions with the assumption that the TEP is available to handle the

response. This issue may arise even if only one of a TIP’s TEPs(either edge or

86

central) is lost, as the remaining TEP will likely end up waiting for the lost TEP

while trying to coordinate its response.

• The indicators available to TEDDI are constrained by the monitors available to the

operator, which means that there may be an added cost to deploying TEDDI in the

form of installing monitors around edge devices. (However,some manufacturers

have started building monitors into their products—for example, the SEL 3622 fea-

tures an accelerometer and light sensor [112].)

• Finally, the most glaring issue with TEDDI is that as a signature-based protection

system, it is only as good as the signatures (or sequences, inthis case) that it has.

A grid defender may have an incorrect mental model of a tamperevent, and end up

assigning an incorrect indicator sequence to that event, causing TEDDI to miss the

event when it eventually occurs. Some possible pitfalls include:

Excluding or misordering important indicators in a sequence. Omitting indica-

tors is not as big a problem as it might seem, since the event should still match

the indicators that are included in the graph (provided the time windows are

long enough). For example, if an eventE is made up of the indicator sequence

ABC, the event will still match the sequencesAB, AC, or BC if one of the

indicators is left out of the graph.

Misordering indicators, however, is a bigger problem, as this will cause TEDDI

to miss the event completely: While looking forAB will still catch the sequence

ABC, looking forACB will not.

Adding extraneous indicators to a sequence.An operator may over-think the

process and add unnecessary indicators to a sequence.

Choosing an improper response set for an event.Even if an operator defines a

suitable sequence for an event, they may still select an incorrect set of responses

to apply.

87

One possibility for mitigating this problem is to add an early-response mechanism

that allows grid defenders to apply a subset of the event’s responses when we see the

initial portion of the event sequence. This is part of the motivation behind the “pre-

event” portion of our Response Suggestion Engine, which we discuss in Section 7.2.

Another issue with our signature structure is that multiplesequences may need to

be defined if the exact sequence for an event is ill-defined (for example, “A, then

either B or C, and then D”). This may force an operator to define several sequences

to capture all of the potential possibilities, increasing the chances that they will make

one of the sequence mistakes mentioned earlier.

All of these issues underscore the importance of building anaccurate, comprehensive

factor graph containing the events a grid defender is worried about.

The challenge of avoiding the above pitfalls while buildinga factor graph, combined

with the fact that a unique program must be generated for every TIP, TDP, and TEP a

network requires, suggests that building a TEDDI system, and in particular putting together

a proper factor graph, may be a challenge for grid defenders,and that constructing a tool

that helps automate this process would be very useful. For example, we could suggest an

early response if the beginning indicators of a long sequence are present, or try to fill in

gaps in response sequences for events that appear. To address these concerns, we designed

the TEDDI Generation Tool, which we discuss in detail in the next chapter.

88

Chapter 7

The TEDDI Generation Tool

In this chapter, we describe theTEDDI Generation Tool, a program that takes information

about the network, the devices, and the events we want to detect, and outputs the necessary

custom programs to deploy TEDDI on any arbitrary network.

The tool itself is written in a combination of PHP, C, and MySQL, and encompasses

over 10,000 lines of code in total. The tool has two major components: A TEDDI website

that collects the data from the user and translates it into intermediate files representing

TIPs, TDP, TEPs, and the full factor graph; and a code generation program that turns the

intermediate files into the C files that then be compiled and deployed on their destination

hosts.

To show how the generation tool works, consider the following example: A grid de-

fender is deploying a set of edge devices around the utility’s service area, and is looking to

build a TEDDI system to protect them. Upon accessing the TEDDI website, the defender

goes through the following process:

1. The user enters the events, indicators, and monitors thatwill make up TEDDI’s factor

graph. For example, if our operator is concerned about someone breaking into an

edge device cabinet and plugging a malicious USB drive into the edge device (as

89

described in Chapter 3), they could define the following items:

• Event: “Malicious USB Drive.”

• Monitors: A cover switch, a photosensor, and a USB drive cap(to keep the

port covered). We also include a link to query an external database for an extra

indicator, which we explain below.

• Indicators: “Open Door,” “Presence of Light,” “USB Cap Removed,” and “USB

Accessed.” However, if firmware updates or other patches canbe provided

via USB, a fourth indicator “Unscheduled Activity” can be added to interface

with a utility’s incident database and see whether the device is scheduled to be

serviced. This fourth indicator will also be marked as accessible only by the

TDP.

2. Next, the user links the monitors and sensors, and then defines the indicator se-

quences that make up the events:

• The Open Door indicator is linked to the cover switch, the Presence of Light

indicator is linked to the photosensor, USB Accessed links to the drive cap, and

Planned Maintenance is joined to our external database. Since the cover switch

and drive cap are binary sensors that are either Open or Closed, their thresholds

are simply set to Open, while the photosensor threshold is set to ensure it is

above the amount of light emitted by the device’s own LEDs. The database

threshold is set depending on the query that is made—for example, if we just

ask if an incident ticket is currently open for this device, the threshold can be

set as binary (there is a ticket, there is no ticket).

• The indicator sequence order for the Malicious USB Drive event is defined

as “Open Door, then Presence of Light, then USB Cap Removed, then USB

Accessed, and finally Unscheduled Activity.” The time window between the

90

first two indicators is set relatively short (i.e. a few seconds), as either ambient

light will immediately strike the the device, or the attacker will have a light

source of their own that they will shine on the device. The time window between

light and the USB device will only be slightly longer, on the order of a few

minutes, as we assume the attacker will not want to wait around once they

have the cabinet open and will thus proceed quickly with their attack. (For the

external database, the TEDDI-defined time window is ignoredin favor of the

window defined by the incident ticket, i.e. “A technician will be at this box

between 10 AM and noon on April 21st.”)

3. Now, the user enters the responses available to the system, and links them to the

events. For our USB event, the utility may want to send an alert back to their control

center (which they label as a Weak response), begin monitoring traffic for suspicious

behavior (a Moderate response), and disable the port to keepthe attacker off their

device (which could be labeled as either Moderate or Strong).

4. Next, the user defines the topology of their SCADA network, and decide where the

TIPs, TDPs, and TEPs should be placed. In our example, the operator uses the

Network Topology Uploader (see Section 7.3) to quickly inform TEDDI of their

network layout and tell TEDDI that their USB-vulnerable device (and every other

device like it) requires a TIP for protection. The TDP Placement Tool (Section 7.4)

is then called upon to place TDPs, and determine which TDP should be linked to our

device.

5. Finally, the user enters the IP/port information for all of the devices on which TIPs,

TDPs, and TEPs will live. Once done, the generation tool spits out the TIP code then

can then be compiled and deployed on the edge devices.

The generation tool includes four important components that assist the user in con-

structing their TEDDI system: the Factor Graph Domain-Specific Language, the Response

91

Suggestion Engine, the Network Topology Uploader, and the TDP Placement Tool. We

now describe each of these components in detail.

7.1 Factor Graph Domain-Specific Language (FGDSL)

To accomplish our goal of capturing an operator’s intuitionabout the events they want to

detect, the generation tool provides adomain-specific language (DSL)[124] based on our

factor graph, which we callFGDSL(factor graph domain-specific language). DSLs have

been used to simplify and streamline a diverse set of tasks, ranging from generating video

card drivers [130] to creating and verifying cache coherence protocols [24] to streamlining

software production for the Estonian customs system [41]. FGDSL provides similar ben-

efits by letting operators define components and component relationships at a high level,

and then automatically translating them down into C code.

FGDSL consists of four basic data structures: Events, indicators, monitors, and re-

sponses. The structures are formally defined in Figure 7.1.

On top of the basic structures, we define three important relations:

• A one-to-oneindicator/monitorrelation, which links indicators to the monitors that

look for them.1 The threshold for this relation is defined here as well.

• An ordered, one-to-manyevent/indicatorrelation, which links events to the indicator

sequences that define them. This is also where the allowed time windows between

indicators are defined.

• And ordered, one-to-manyevent/responserelation, which links events to their re-

spective response sequences.

1We define indicator/monitor relations as one-to-one to simplify our monitor-reading code, but could
expand our prototype to link a monitor to several indicatorsif desired.

92

Event
{

char[50] name
int rank

}

(a)

Indicator
{

char[50] name
bool startSetting
int level

}

(b)

Monitor
{

char[50] name
char[100] location
float initValue

}

(c)

Response
{

char[25] name
int class
int strength
bool isRepeatable
char[150] script

}

(d)

Figure 7.1: The definitions of (a) events, (b) indicators, (c) monitors,and (d) responses in
FGDSL.

Mental

Model
FGDSL

Factor

Graph
Logical

Predicates
Code

Figure 7.2: A diagram of the model-to-code conversion process in TEDDI.Note that the
user only needs to complete the first transition to FGDSL; everything else is managed by
the TEDDI Generation Tool.

With these primitives, a grid defender can easily translatetheir mental model of an event

directly into FGDSL. From here, our generation tool can build a factor graph, define the

logical predicates that make up the factor functions of the graph, and eventually generate the

low-level C code that looks for the events. The conversion process is shown in Figure 7.2,

and described in more detail in Section 9.4.

7.2 Response Suggestion Engine

The assigning of responses to events is a manual process, andcan be a little tedious even

with the Generation Tool. Therefore, we included the Response Suggestion Engine to help

93

users determine response strategies for events with long orsimilar indicator sequences.

After the user completes a first pass of linking responses to events, the engine does the

following:

Pre-Event Suggestions:The suggestion engine has two sequence length thresholdsa

and b, which by default are set to four and six, respectively. (These numbers are

based on our assumption that indicator sequences will generally contain fewer than

ten indicators, but could be tuned at a later point if necessary.)

If e’s indicator sequencei falls in the rangea < |i| < b, ande’s response sequence

begins with one or more weak responses, the system suggests defining a new “pre-

event”e∗ in the factor graph, allowing the user to take some pre-emptive steps for a

larger event that may be coming.e∗ is given the following attributes:

• e∗ will be ranked behind all of the other events, to make sure we do not overlook

a full event in favor of a pre-event.

• The indicator sequence fore∗ will be set as the first half ofe’s sequence (which

is two by default).

• The response set fore∗ will be the weak responses that begine’s response set,

and they will be ordered the same as ine. For example, ifABC is the ordered

set of responses we take fore, A is classified as a weak response, andB is

classified as a moderate response, the response set/order for e∗ will just beA.

If |i| < b, the system suggests defining two pre-eventse∗ ande∗∗ in the factor graph.

e∗ is defined exactly as described above, bute∗∗ is constructed as follows:

• e∗∗ will be ranked behind all other events, but ahead ofe∗.

• The indicator sequence fore∗∗ will be set as the firstfour indicators ine’s se-

quence.

94

• The response set fore∗∗ will be the weakand moderateresponses that begin

e’s response set, and they will be ordered the same as ine. For example if we

consider the same response sequenceABC from above, the response set/order

for e∗∗ will be AB (and potentiallyABC, if C is not a strong response).

For example, suppose we are considering the Schweitzer Scenario from Section 3.4

as one of five events in our factor graph, and we have determined that our response will

be to alert the control center (a weak response) and then sever the edge device’s network

connection (a strong response). When we examine the problem,we wind up extracting four

indicators:Shaking, cover open, light present, andnetwork disconnected(see Section 8.2

for more details on this breakdown). This sequence would cause TEDDI to suggest the

following pre-evente∗:

• We sete∗’s rank to six, to ensure that we consider all of the full events before we start

looking for pre-events.

• e∗’s indicator sequence will consist of the first two indicators from the Schweitzer

Scenario—in this case,shakingandcover open.

• e∗’s response sequence will just include alerting the controlcenter, as the other re-

sponse (severing the network) is considered too strong for apre-event.

Pre-events assist grid defenders in two ways:

• They reduce TEDDI’s reaction time to an event by letting TEDDI take pre-emptive

steps towards mitigating an event before the event actuallyoccurs.

• They help guard against incorrect event sequences by only considering the start of

the sequence. For example, if a defender setse’s indicator sequence asABCD, but

e’s true sequence isABCE, TEDDI will suggest a pre-eventAB that will still be

detected even if the full sequence is not.

95

Response Suggestions:If two events have response sequences that begin the same way,

the suggestion engine will offer to combine the sequences such that the same re-

sponses are used for both events. More formally, if eventse1 and e2 have corre-

sponding response sequencesr1 andr2, and there exists a response sequences such

that length(s) ≥ 2 andr1 = sr′ andr2 = sr′′, TEDDI will set both response se-

quences tost, wheret = (r′∪ r′′). (In merging the response sequences, however, the

tool does not attempt to order the added responses; this taskis left to the user once

the merging is complete.)

Combining responses for similar events help guard against response omissions—for

example, if we consider the Maintenance Mode Attack from chapter 3, if the defender

chooses to log the benign event but not the malicious one, TEDDI will ask about adding

the log response to the latter event. However, the grid defender needs to carefully review

these suggestions before accepting them, as the responses for one event may not be suitable

for the other given the difference in event severity.

7.3 Network Topology Uploader

Unlike factor graphs, we assume that grid defenders alreadyhave a diagram of their net-

work topology on hand. Rather than forcing defenders to enterthe details of their network

manually into TEDDI, we want to let them upload their existing topology to the system,

and allow TEDDI to use the provided information to fill in the details automatically. This

goal led us to construct our network topology uploader.

Network topologies can be expressed in a number of differentways—for example, one

industry representative we spoke with stored their topology records in an Excel spread-

sheet. TEDDI’s topology uploader, however, is based upon Weaver et al.’s Cyber-Physical

Topology Language (CPTL) [149]. CPTL takes a SCADA network, complete with infor-

96

mation about the various devices and the links between them,and depicts it as a high-level

graph, where vertices represent devices and edges represent the network links between

them. From there, CPTL defines a set of primitives that combines both cyber and physical

information sources to describe the network in question (for example, high-level documen-

tation or low-level IP information), as well as a set of operations that can be run on these

primitives. CPTL stores graph data and attributes in a JSON-like syntax, which can be seen

in Figure 7.3.

CPTL was originally designed as a way to streamline NERC CIP audits,2 which are

estimated to “consume 30 man-days of work per day per audit” [149]. To assist grid de-

fenders in preparing for and demonstrating NERC CIP compliance, the authors define a

set of “vertex and edge attributes” [149] that augment the graph with domain-specific in-

formation (device classifications, IP information, etc.),as well as a pair of operations to

support network expansion and contraction. These operation help grid defenders visualize

their networks by allowing them to quickly view informationat the desired level of granu-

larity, thereby making it easy to evaluate the vulnerability and configuration status of their

devices.

For TEDDI, we lean on CPTL’s vertex and edge attributes to determine the structure of

the given network. More specifically, we look for specific information within the JSON-

based storage files that give us clues as to where TIP and TDPs should be placed:

• CPTL’s rdfs:typevertex attribute tells TEDDI what sort of device this node is, and

whether or not it needs to be protected. Types such as “Generator,” “Meter,” or “Re-

closer Control” indicate that we should place a TIP on or with these devices, while

types such as “Node” or “Meter Controller” indicate potential TDP locations. In Fig-

ure 7.3, for example, thesyard:Generator attribute dictates thatGenerator1

2NERC stands for “North American Electric Reliability Corporation,” and their Critical Infrastructure
Protection (CIP) standards are mandatory rules regarding cybersecurity controls, documentation, and report-
ing/recovery processes needed by covered utilities [84]. Failure to adhere to these standards can lead to stiff
penalties, such as fines as high as $1 million per day that the standard was not followed [149].

97

{
"nodes":
[

{"name":"substation-yard:Generator1",
"rdfs:type":"syard:Generator" },
{"name":"substation-yard:Node1",
"rdfs:type":"syard:Node" }

],
"links":
[

{"source":"substation-yard:Generator1",
"target":"substation-yard:Node1",
"relation":"syard:hasLine" }

]
}

Figure 7.3: An example of a network topology file used by CPTL [149] and TEDDI.
TEDDI uses therdfs:type field of nodes to decide where TIPs and TDPs should be
placed, and uses therelation field of links to see which nodes are directly connected.

will require a TIP for protection, while thesyard:Node attribute of Node1 signals

that we should consider hosting a TDP on this device.

• CPTL’s relation edge attribute—more specifically, thehasLinerelation value—tells

TEDDI which devices are directly connected. (In Figure 7.3,thehasLine shows

there is a communication path betweenGenerator1 and Node1.) We can de-

duce the general topology of the network through this relation, and it is also vitally

important to the TDP Placement Tool (Sec. 7.4).

The CPTL syntax also offer the potential for expanding the topology uploader and

further reducing the burden on TEDDI’s users. For example, the “CPTL enterprise names-

pace... incorporates more detailed information about devices on a network via vertex at-

tributes such as IP address” [149], which could allow users to avoid manually entering IP

information for TIPs, TDPs, and TEPs.

Once a SCADA network is uploaded, placing TIPs and TEPs is a straightforward pro-

cess: Every device in the network that we want to protect requires a TIP to be installed with

98

it, and TEPs default to the locations of the TIPs (edge TEPs) and TDPs (central TEPs).

Placing TDPs is a trickier process, but a process that is mademuch easier by our TDP

Placement Tool.

7.4 TDP Placement Tool

The TDP Placement Tool assists a grid defender in placing tamper decision points within

their network. Any non-TIP device in the SCADA network is a potential location for a

decision point, but we want tominimizeboth the number of TDPs we have to place in the

network and the distances between TDPs and their TIPs, in order to simplify the installation

process for the utility.

Thankfully, our question generalizes to a well-studied problem within computer sci-

ence: thesimple plant location problem (SPLP)[52]. In the general form of this problem

(known as thefixed cost median problem (FCMP)), we wish to find the optimal locations

to build service centers such that we minimize our total costs, which consist of i) the cost

of building these centers, and ii) the cost of servicing other locations in the area from the

centers they build. The SPLP represents the discrete mediancase of the FCMP, which seeks

to solve the following problem: Given the set of locationsL we want to serve, the set of

potential plant locationsP , dlp is the cost of serving locationl ∈ L from locationp ∈ P ,

andfp is the cost of placing a facility atp, find the optimal subsetS ∈ P that minimizes

the costZ(S). Defined formally by Hochbaum [52] (note that we have changeda few of

the variable names from his equation):

min
S⊂P

Z(S), whereZ(S) =
∑

l∈L

min
p∈S

dlp +
∑

p∈S

fp (7.1)

In our case, our setL is the set of TIPs in the networks, whereasP denotes the potential

TDP locations,dlp is the number of hops betweenl andp in the graph (for now, we weight

99

all links equally and do not consider how they translate intoactual distance), andfp is 1 for

all p ∈ P . With these definitions, solving the simple plant location problem will provide a

solution that serves all of our TIPs with the fewest number ofTDPs.

Unfortunately, finding an optimal solution to the SPLP is noteasy, as we can reduce a

known NP-complete problem (Set-Cover) to the SPLP, thus showing that the SPLP is also

NP-complete [52]. However, we use a greedy Set-Cover algorithm to produce an initial

TDP set that approximates the optimal solution [30].3

We define our Set-Cover algorithm as follows:

• We start with the formal definition of the problem: “An instance(X,F) of the set-

covering problem consists of a finite setX and familyF of subsets, such that every

element inX belongs to at least one subset ofF ...The problem is to find a minimum-

sized subsetC ⊆ F whose members cover all ofX” [30].

• We defineX as the set of TIP-protected nodes in our graph that areadjacentto a

potential TDP node. (We deal with TIP nodes that are only adjacent to other TIP

nodes in a separate step after we run our algorithm.)

• For each potential TDP nodet in our graph, we define a setft that contains all of the

nodes inX that are adjacent tot.

When the greedy Set-Cover algorithm is run with these definitions, it will choose the

node adjacent to the most TIPs in every round. Therefore, oursolution setC will contain the

nodes on which we should install TDPs, and tell us which TIPs each TDP should service.

With this approach, we obtain a near-optimal solution for both the number and position of

our decision points.

While any node that is not a TIP is considered a potential TDP landing spot, in practice

there may be nodes that are not suitable for hosting decisionpoints. This issue can be
3Specifically, the set produces by Greedy Set-Cover isH(d) time larger than the optimal, whereH(d) is

thedth harmonic number [30].

100

solved in one of two ways: either the Network Topology Uploader can be tweaked to

account for non-TIP, non-TDP nodes, or the user can adjust the TDP layout after-the-fact

by re-assigning TIPs to other decision points. (The former method is preferable, as the

latter forces defenders to manually tweak their TIPs every time they create or update a

TEDDI system.)

While greedy Set-Cover will satisfy most of our needs, a minor problem remains: If a

TIP is not immediately adjacent to a potential TDP node, it will get left out of our algorithm

and not get connected to a TDP. To address this issue, once we have a TDP set from greedy

Set-Cover, we run a simple breadth-first search (BFS) from eachTIP node that was not

included in the algorithm, and connect it to the first TDP it finds.

In terms of the its runtime, the algorithm breaks down as follows for a network featuring

the setD of TDP-eligible devices, the setA of TIP-protected devices that are adjacent to

nodes inD, the setN of TIP-protected devices that arenot adjacent to nodes inD, and the

setK of network links:

1. Our initial splitting of the nodes into TIP and TDP groups runs inΘ(D + A + N)

time.

2. Constructing the subsets for our Set-Cover algorithm requiresO(D(D + A)) time.

3. Identifying and setting aside the excluded nodes takesO(K(A+N)) time.4

4. Our Set-Cover implementation gives us a runtime ofO(AD(1 + A)) time.5 This

differs from Cormen et al.’s runtime ofO(|A| ∗ |D| ∗ min(|A|, |D|)) [30] due to a

slight difference in implementation.

5. Our BFS implementation matches Cormen et al. more closely, and gives us an equiv-

alent runtime ofΘ(N) ∗O(D + A+N +K) [30].

4This could also be written asO((A+N)(D + A+N)) time, i.e. “we might have to check every node
as a potential neighbor” versus “we might have to traverse every network link to find the neighbors.”

5This could also be written asO(D2(1 + A)), as the number of outermost loop iterations are upper
bounded by both the number of sets (i.e., the number of TDPs) and the number of TIP nodes inA.

101

The resulting combination runs in quadratic time, but the term that ends up dominating

the equation will depend on the relative sizes ofD, N , A, andK. (Our performance

evaluation, on the other hand, depicts a linear relationship between system performance and

the overall number of network nodes; we discuss the potential reasons why in Section 9.3.)

Finally, we note that the BFS term’s impact could be minimizedby expanding the

definition of sets within Set-Cover to include nodes some number h of hops away from a

TDP-eligible node, but how this might affect the runtime of greedy Set-Cover is unclear.

7.5 Generation Tool Limitations

The TEDDI Generation Tool helps improve the usability of thesystem by simplifying the

process of creating a TEDDI system, but updating an existingTEDDI system (for example,

adding a new event to a factor graph) can be a bit of a hassle because the system has to be

re-generated and re-deployed to all of the devices in the system. For example, while TIPs

will automatically reconnect to a TDP that is taken down and updated, a TIP that disappears

for too long will eventually be considered “lost” by the TDP,and the TIP will no longer

be able to send messages or alerts to TEDDI. These sorts of issues, however, could be

addressed by making the system a bit more modular (for example, a TIP could read in a

factor graph file upon startup) such that a TIP or TDP would nothave to be stopped to be

updated.

102

Chapter 8

TEDDI in Action

In this chapter, we demonstrate the effectiveness of TEDDI by revisiting the tamper scenar-

ios from Chapter 3, and show how TEDDI addresses the issues raised by the grid defender’s

dilemma.

8.1 Scenario 1: Device Credential Heist

Our first scenario breaks down nicely into a sequence of indicators: First the attackeropens

(o) the device case, uses alight source(l) to locate the protected memory chip, and then

attempts to pierce the pottedmesh(m) andprobe(p) the chip underneath to extract the se-

cret key. In addition to the device’s mesh, then, we need a cover seal/switch, photosensor,

and a special probe sensor [151] in our monitor set. (While these would most likely in-

stalled specially for our purposes, manufacturers are starting to include monitors is in their

products, such as the SEL 3622 [112].)

The time windows for this scenario are set as follows:

• The window betweeno andl can be fairly short (sixty seconds or less), since ambient

light will be let in as soon as the device opens, and the attacker will use an external

103

light source (for example, a flashlight) if there is not enough ambient light.1

• Thel-m window can be set to be a bit longer (perhaps several hours), as we expect an

attacker to be more cautious as he or she tries to penetrate the mesh’s potting material

without tripping the mesh sensors.

• Finally, them-p window can be somewhere in between the prior two (roughly sixty

minutes), as the attacker may need some time to place the probes while continuing

to avoid the sensor mesh.

(We note here that it can be difficult to validate the exact time windows needed without

empirical evidence, and thus grid defenders may want to err on the side of longer windows

to ensure that slower attackers are still detected by TEDDI.)

Most of these indicators are binary values (cover open/closed, sensor mesh hit/not hit,

probe present/absent), but the photosensor threshold willneed to be calibrated to pick up

the sharp increase in light that occurs once the device is opened.

For our response sequence, we take the following steps:

• We log the event, both on the device and in the control center.

• We limit the traffic this device is allowed to send through selective revocation of its

keys. For example, if the edge device in question is a smart meter, it may still be

allowed to communicate with its upstream data aggregator, but not directly back to

the utility’s control center.

• We attempt to destroy the keys revoked in the previous step,to keep the attacker from

using them in the first place.

1Attackers striking at midnight who are either equipped withnight vision goggles or who know the device
well enough that they do not require a light source will require a different indicator sequence.

104

p?

Ec

m?
.

? o?

Figure 8.1: A diagram of the factor graph sequence used to represent the Device Credential
Heist scenario.

Once the indicators and response sequence is defined, the user’s work is finished;

TEDDI easily turns the sequence data into a simple factor graph sequence chain for our

tamper eventEc (which is shown in Figure 8.1) using the indicatorso, l, m, andp.

Next, TEDDI produces a logical representation for our credential heist:

• The eventEc is defined by the indicator sequenceolmp, whereo represents the open-

ing of the device,l represents the presence of light,m represents the the piercing of

the sensor mesh, andp represents device probing.

• We defineI as the set ofk time periods{I1, . . . , Ik} when the indicatori was present.

(In our case,k = 5, as we only save and consider the last five periods an indicator is

present.) Each periodIj in I has the following attributes:

– s(Ij): The start time ofIj.

– e(Ij): The end time ofIj.

In addition, we useX ′ to represent a single time period within the setX, and define

w(x, y) as the time window for two adjacent indicatorsx andy.

• We say thatEc occurs if all of the indicators that make upEc appear in the proper

order and within the appropriate time windows.

The final predicate is arranged as follows:

105

∃ P ′ ∈ P ∧

∃ M ′ ∈ M ∧ (s(M ′) ≤ s(P ′) ≤ (e(M ′) + w(m, p))) ∧

∃ L′ ∈ L ∧ (s(L′) ≤ s(M ′) ≤ (e(L′) + w(l,m))) ∧

∃ O′ ∈ O ∧ (s(O′) ≤ s(L′) ≤ (e(O′) + w(o, l))) ⇒ Ec

(8.1)

In other words, if there exists time periodsP ′ ∈ P , M ′ ∈ M , L′ ∈ L, andO′ ∈ O such

that they occur in the proper order and within the proper timewindows, then we say that

the eventEc is occurring.

Finally, TEDDI translates the graph and its factor functioninto C code that will be

included in the various TIPs and TDPs.

8.2 Scenario 2: The Schweitzer Scenario

The attack scenario that originally inspired TEDDI lines upnicely with the data required by

FGDSL. Both the event and the indicators (and the indicator sequence) can be are described

straightforwardly: We first look forshaking(s), i.e. significant movement generated by the

attacker’s rough treatment of the lock, followed by anopening(o) of the cabinet door,

followed by a light source(l) reaching the device, and concluded by adisconnecting(d)

of the device’s network cable. Likewise, the necessary monitors follow nicely from the

indicators that make up the event.

While the timing windows are not explicitly set within the narrative, we assume that

an attacker would go through this attack in quick successionand not wait for long periods

between each step, as either they would be concerned about being noticed and reported,

or they are confident that they will not be noticed (for example, they are disguised as a

technician) and will not want to delay their gratification. Therefore, we can set the timing

windows to be relatively short, on the order of a minute or two.

106

d? ? o? s?

Es

Figure 8.2: A diagram of the factor graph sequence used to represent the Schweitzer Sce-
nario.

Both the response sequence and the monitor thresholds can nowbe set at the discretion

of the operator. If the potential consequences are deemed severe enough, the operator can

choose to isolate the compromised box from the rest of the network until someone can be

dispatched to fix it. Thresholds can be set relatively low or high (or better yet, measured

experimentally) to strike the proper balance between falsepositive and negatives.

Finally, we must address an important point: Disconnectingthe network of the edge

device could cause a problem if the TIP lives directly on the device. Therefore, we must

place the TIP on a separate device inside the cabinet of the recloser control, and route the

edge device’s network connection through this separate device. (In fact, Schweitzer antici-

pated this scenario and placed its sensors in the SEL-3622 Security Gateway [112], which

lives with the edge device and provides authenticated access to the SCADA network.)

From here, the user’s work is finished, and TEDDI can easily turn the sequence data

into a simple factor graph sequence chain (shown in Figure 8.2) using the indicatorss, o, l,

andd.

Next, TEDDI produces a logical representation of the Schweitzer Scenario eventEs:

• The eventEs is defined by the indicator sequencesold, wheres, o, l, andd represents

shaking, opening, light detection, and a network disconnect, respectively.

• We say thatEs occurs if all of the indicators that make upEs appear in the proper

order and within the appropriate time windows—that is, if there exists time periods

D′ ∈ D, L′ ∈ L, O′ ∈ O, andS ′ ∈ S such that they occur in the proper order and

107

within the proper time windows, then we say that the eventEs is occurring.

Using the definitions ofI, s(Ij), e(Ij), andw(x, y) from our previous case study, we

now build the logical predicates for our events:

∃ D′ ∈ D ∧

∃ L′ ∈ L ∧ (s(L′) ≤ s(D′) ≤ (e(L′) + w(l, d))) ∧

∃ O′ ∈ O ∧ (s(O′) ≤ s(L′) ≤ (e(O′) + w(o, l))) ∧

∃ S ′ ∈ S ∧ (s(S ′) ≤ s(O′) ≤ (e(S ′) + w(s, o))) ⇒ Es

(8.2)

Finally, TEDDI translates the graph and its factor functioninto the C code that will

be included in the various TIPs and TDPs. Thus, the event sequence derived from our

conversations with SEL maps nicely into our factor graph sequences, and TEDDI can easily

and accurately adapt this sequence into its code.

8.3 Summary: Scenarios 1-2

The above two scenarios address the following points of the grid defender’s dilemma:

Current protection systems have either no response or a single response.For example,

when faced with a similar scenario, the IBM 4758 will “erase its secrets and shut

itself down” [119] the moment it detects a tamper attempt. However, if the device

was part of a smart grid edge device, such a shutdown could impact the availability

of the grid. TEDDI, in contrast, is not locked into a responsethat is overkill for many

situations, and in these cases, we can tailor our response tomitigate the attack while

minimizing our impact on grid operations.

Current protection systems are reactionary.TEDDI’s sensor setup gives it up an advan-

tage over many other protection systems (especially those in the intrusion detection

108

sphere) by responding to attacks earlier in their “kill chains” [54]. In the above sce-

narios, the moment a probe is placed or the device is disconnected, TEDDI detects

the event and springs into action, and quickly goes through its factor graph (see Sec-

tion 9.3), makes a decision and begins executing its response before the attacker gets

a change to plug in their own device or use the device’s key. Incontrast, other sys-

tems (for example, PAC [141]) must wait until the attacker accesses the network and

starts sending anomalous traffic before it can act. This quick reaction gives TEDDI

a huge advantage over its competition, as it buys the defender precious time in the

event of an active attack.

Current protection systems require a lot of manual configuration. Many protection

schemes impose an extra configuration burden by requiring grid operators to define

complex data structures or collect large datasets to make their systems run properly.

TEDDI, in contrast, needs only the information defined above: Events, Indicators,

Monitors, Responses,2 and how they are all linked together. This simpler setup allows

grid defenders to collect the necessary information about an event straight from its

description, and the TEDDI Generation Tool translates the defender’s high-level view

of the event into a workable protection system, making the construction of a TEDDI

system for any arbitrary SCADA network a simple and straightforward process. (We

dive into this topic in more detail in Section 9.4.)

8.4 Scenario 3: Maintenance Mode Attack

For this attack, we can break down the sequence like so: The attackeropens(o) the de-

vice case andremoves(rem) the tamper seal, adds and connects their malicious hardware

addition to the device, and thenreplaces(rep) the tamper seal with a convincing replica.

2Ideally, responses have already been defined as part of the utility’s incident response protocols, and can
be easily worked into the TEPs.

109

However, because a legitimate technician would perform thesame tasks, when servicing

the device, we need an additional external indicator to indicate if the service isscheduled

(s). (One interesting note: We exclude the light indicator because the meters that were

tampered this way were covered by a transparent front [33], and so the indicator would not

be useful to include in our sequences.)

We set the time windows for the sequence denoting the malicious eventEm as follows:

• We setw(o, rem) to be about three minutes, to accommodate the time needed to

completely remove the tamper seal. (We want to err on the sideof longer time win-

dows if possible, as we can capture attackers who are quickerthan expected, but not

those who are slower (see Section 6.7).

• We setw(rem, rep) to be around 4-6 hours, as attaching and wiring the extra device

to the meter may take some time.

The benign caseEb would feature the same time windows, but with one extra addition:

• The time window betweenw(rep, s) is defined by the schedule of the incident ticket,

since the service must take place within the time set by the schedule. (This may

cause issues if a legitimate service call takes longer than expected—for example, the

technician runs into unexpected delays while either traveling to or fixing the device—

but the schedule can be adjusted in these cases.

Every indicator is binary in this instance, so thresholds can be set to 1 for all of them.

Our responses for the events can be set as follows:

Malicious Addition: Here, we want to disable maintenance mode on the device, and

perhaps schedule a technician to inspect the device in person.

Scheduled Maintenance:This event is not considered suspicious, so we just log that the

service was completed.

110

o?s? rep? rem?

o?rep? rem?

Eb

Em

/ 0 / 0 / 0 / 0

Figure 8.3: A diagram of the factor graph sequence used to represent the Maintenance
Attack, as well as its benign counterpart.

Given the indicators, time windows, and responses, TEDDI generates a pair of factor

graph sequences (Figure 8.3) to cover bothEm andEb.

TEDDI then constructs our logical predicates as follows:

• The benign maintenance eventEb is defined by the sequenceo, rem, rep, s,3 whereo

represents the opening of the cabinet,rem represents the removal of the tamper seal,

rep represents the replacement of this seal, ands represents the case where device

service was scheduled for the current time. Likewise, the malicious USB eventEm

is defined by the sequenceo, rem, rep.

• If there exists time periodsS ′ ∈ S, Rep′ ∈ Rep, Rem′ ∈ Rem, andO′ ∈ O such

that they occur in the proper order and within the proper timewindows, then we

say that the eventEb is occurring. IfEb is not occurring, however, and there exists

time periodsRep′ ∈ Rep, Rem′ ∈ Rem, andO′ ∈ O such that they occur in the

proper order and within the proper time windows, then we declare that the eventEm

is occurring.

From here, TEDDI generates the necessary logical predicates:

3We use commas here to clearly show the indicators involved.

111

∃ S ′ ∈ S ∧

∃ Rep′ ∈ Rep ∧ (s(Rep′) ≤ s(S ′) ≤ (e(Rep′) + w(rep, s))) ∧

∃ Rem′ ∈ Rem ∧ (s(Rem′) ≤ s(Rep′) ≤ (e(Rem′) + w(rem, rep))) ∧

∃ O′ ∈ O ∧ (s(O′) ≤ s(Rem′) ≤ (e(O′) + w(o, rem))) ⇒ Eb

(8.3)

∃ Rep′ ∈ Rep ∧

∃ Rem′ ∈ Rem ∧ (s(Rem′) ≤ s(Rep′) ≤ (e(rem′) + w(Rem, rep))) ∧

∃ O′ ∈ O ∧ (s(O′) ≤ s(Rem′) ≤ (e(O′) + w(o, rem))) ⇒ Em

(8.4)

Finally, TEDDI takes the above sequences and turns them intocode for its TIPs and

TDPs.

8.5 Scenario 4: Malicious USB Attack

We previously described this attack in Chapter 7, so we only summarize and formalize the

attack here:

Indicator Sequence:Both an attacker and a legitimate technician start byopening(o) the

cabinet door, lettinglight (l) reach the device,removing(r) a USB plug, and plugging

in a USB device(u). The key difference again lies with the explicit authorization

of the utility, and we can therefore differentiate the two scenarios with an external

indicator saying whether or not the update isscheduled(s). Due to the similarities

between the sequences, we want to rank the benign event higher than the malicious

one, as ranking the malicious event first means we would declare the event malicious

before getting a chance to checks.

112

While some of the early indicators may seem redundant, they help to identify exactly

how the event took place (allowing us to tailor our response towards a specific action)

and guard against false positives. If the sequence consisted of justu ands, for exam-

ple, a grid defender would not only be left in the dark as to howthe attacker accessed

the device, but if the USB device started reporting bad data,the grid defender would

have no way to distinguish that from an active attack. The early indicators allow

defenders to tell when things don’t look quite right (such aswhen a USB device is

detected despite the device’s cabinet having never being opened), and let them know

exactly how an attacker got to the device and allowing them toset up their response

sequence accordingly.

The monitor thresholds are simple to set in this scenario, asthey are all binary (Is

the USB port uncovered? Is this device scheduled to be updated?) aside from the

light sensor, which can be measured to ensure a sudden increase in ambient light will

trigger the indicator.

Time Windows: As far as the timing windows are concerned, we assume that a legitimate

technician is probably under some amount of time pressure, and won’t want to spend-

ing more time updating the device than is necessary, so we canset that sequence’s

time window to 3-4 minutes at absolute most. For the attacker, we assume that they

will want to mimic the appearance of a legitimate user as closely as possible, and

thus we can use the window settings from the benign case for the malicious case as

well.

Responses:For the Malicious USB Attack, we want to log the attempted attack, block

and disable the USB port that was used, and monitor the trafficfrom the device to

make sure it does not do anything suspicious. In the benign case, however, we just

want to log that the service was performed, and tell our external database to remove

it from the schedule.

113

l? o?s? u? r?

? o?u? r?

Eb

Em

1 2 1 2 1 2 1 2 1 2

Figure 8.4: A diagram of the factor graph sequence used to represent the Malicious USB
Attack and its benign twin.

Graph Sequence:Figure 8.4 shows our factor graph sequences for our malicious USB

eventEm and the benign USB updateEb.

Logical Sequence:The benign USB eventEb is defined by the indicator sequenceolrus,

while the malicious USB eventEm is defined by the indicator sequenceolru. Much

like that Maintenance Mode Attack, if there exists time periodsS ′ ∈ S, U ′ ∈ U ,

R′ ∈ R, L′ ∈ L, andO′ ∈ O such that they occur in the proper order and within the

proper time windows, then we say that the eventEb is occurring. Otherwise, if there

exists time periodsU ′ ∈ U , R′ ∈ R, L′ ∈ L, andO′ ∈ O such that they occur in the

proper order and within the proper time windows, then we declare that the eventEm

is occurring.

TEDDI arranges our predicates forEb andEm like so:

114

∃ S ′ ∈ S ∧

∃ U ′ ∈ U ∧ (s(U ′) ≤ s(S ′) ≤ (e(U ′) + w(u, s))) ∧

∃ R′ ∈ R ∧ (s(R′) ≤ s(U ′) ≤ (e(R′) + w(r, u))) ∧

∃ L′ ∈ L ∧ (s(L′) ≤ s(R′) ≤ (e(L′) + w(l, r))) ∧

∃ O′ ∈ O ∧ (s(O′) ≤ s(L′) ≤ (e(O′) + w(o, l))) ⇒ Eb

(8.5)

∃ U ′ ∈ U ∧

∃ R′ ∈ R ∧ (s(R′) ≤ s(U ′) ≤ (e(R′) + w(r, u))) ∧

∃ L′ ∈ L ∧ (s(L′) ≤ s(R′) ≤ (e(L′) + w(l, r))) ∧

∃ O′ ∈ O ∧ (s(O′) ≤ s(L′) ≤ (e(O′) + w(o, l))) ⇒ Em

(8.6)

From here, the predicates are encoded in our TIPs and TDPs.

8.6 Summary: Scenarios 3-4

Our breakdown of the prior two scenarios addresses the following points of the grid de-

fender’s dilemma:

Current protection systems lack the power and/or context todifferentiate between

important tamper events. TEDDI overcomes this hurdle because its distributed

setup improves our information-gathering capabilities over a single-device tamper

system, and allows us to capture the presence of distributedand context-dependent

events.

In these scenarios, for example, the two events are very similar, and only differenti-

ated by an external event. Most tamper protections systems do not have the capability

to gather the necessary contextual information to differentiate these two events, and

thus must choose arbitrarily how to treat these events when they occur. TEDDI, on

115

the other hand, is able to gather the necessary context (in these cases, querying an

incident database to learn about scheduled service), allowing it to make a proper

decision for the situation.

Current protection systems treat any sort of tampering as malicious. Other protec-

tion systems are unable to tailor their response based on whether an event is benign

or malicious, and would have to treat both the same way. TEDDI, however, has the

power to enact the proper response to either case (here, we can choose from infor-

mation alerts or more active responses like network filtering), and the defender does

not have to risk ignoring an attacker or unnecessarily reducing grid availability.

Current protection systems have either no response or a single response. Either a

system can only detect when an event is happening (and thus gives an attacker a

window to act before a grid defender can respond), or they have a single response to

handle any sort of tampering (meaning the defenders risks overreacting to a benign

event). TEDDI, as discussed in the previous point, gives a grid defender the flexibility

to craft enough responses to handle events in whatever manner is needed.

8.7 Scenario 5: Taum Sauk Dam Overflow

For our fifth case study, we examine the structural failure atthe Taum Sauk hydroelec-

tric facility. While TEDDI may not be able to stop this incident using the facility’s 2006

monitoring setup,4 the breakdown of the failure suggests that we can cover the accident

using a three-step indicator sequence that includes a regional indicator as its closing step.

We start by making a slight change to the facility’s pre-failure transducer setup, where the

three transducers are enclosed inside a single protective pipe [62]. Instead, wedistribute

transducers around the reservoir to gain a wider view of whatthe water level may be. We

4Admittedly, we have the benefit of hindsight when approaching this event. Had the event not occurred in
the first place, we may not have had such a clear idea of how to sense it.

116

then construct our event sequence as follows:

• Our monitors include the existing transducers (now in new locations) and a sensor

placed on the cables holding the transducer pipes into place(to tell us whether the

pipe is secured or free). Each transducer setup is assigned aTIP.

• Our local indicators include “Cable Loose” and “Normal Water Level.” We also have

a regional indicator “High Water Level,” for detecting if the majority of sensors see

the water level as too high.

• Our exact sequence for our eventEw is as follows: “Cable Loose” (c), then “Nor-

mal Water Level” (n), and then our regional “High Water Level” (h). This let us

capture the event where the transducer pipe has come loose, and a transducer has

moved enough to give us falsely-normal readings when the water level is actually

dangerously high.5

The thresholds for this scenario are easier to set than in theprevious case studies:

Whether a cable has come loose is a binary event, and the properreservoir water level has

already been determined. (These levels were set just short of 1600 feet when the disaster

occurred, but the resulting study found that these levels were too high to allow for potential

mistakes [62], so they have probably been lowered since then.) The response to this event

is similarly straightforward: Stop pumping water to the upper reservoir immediately, and

alert facility staff that one of the sensors requires maintenance.

For our time windows, we start by setting our window between the loose cable and the

local water level reading to be very long (on the order of months, if not years), as it may

take a long time for the transducers to rise to an unsafe levelone it breaks loose. On the

other hand, the window between the normal local and abnormalregional readings will be

very short (a few seconds), as the local level will not stop reporting erroneous water levels

5Note that this is not actually a case of monitor failure; rather, the monitor’s readings are wrong because
of incorrect assumptions—i.e., the sensor has been moved without its knowledge.

117

h? n? c?

E

Figure 8.5: A diagram of the factor graph sequence used to represent the Taum Sauk Dam
Overflow.

once it starts (and thus the normal local and abnormal regional readings will be present

simultaneously).

Our factor graph sequence for this event is shown in Figure 8.5.

Our logical equation breaks down like this: The eventEw is defined by the indicator

sequencecnh, and state thatEw occurs when there exists time periodsH ′ ∈ H, N ′ ∈ N ,

andC ′ ∈ C such that they occur in the proper order and within the propertime windows.

∃ H ′ ∈ H ∧

∃ N ′ ∈ N ∧ (s(N ′) ≤ s(H ′) ≤ (e(N ′) + w(n, h))) ∧

∃ C ′ ∈ C ∧ (s(C ′) ≤ s(N ′) ≤ (e(C ′) + w(c, n))) ⇒ Ew

(8.7)

This scenario highlights how TEDDI handles the following points of the grid defender’s

dilemma:

Current protection systems lack the power and/or context todifferentiate between

important tamper events. Once again, we see that a regional event, which a number

of tamper protection systems do not have the ability to detect, plays an important role

in identifying an event. TEDDI’s distributed setup gives itthe upper hand over prior

work by allowing the user to collect the contextual information they need.

Current protection systems treat any sort of tampering as malicious. The overfill-

ing of the Taum Sauk upper reservoir was a mechanical failure, not an attack, and

responding to it as if an active adversary were in the system (for example, isolating

118

the facility from the grid) could reduce the availability ofthis system longer than

needed. TEDDI, on the other hand, allows the grid defender todefine and handle

non-malicious events (unlike many other protection systems), and the problem can

be pinpointed and fixed with minimal downtime.

8.8 Other Tamper Scenarios

For the sake of completeness, we offer a brief summary of how TEDDI handles the re-

maining scenarios from Chapter 3, including the indicators,graph sequences, and logical

equations that are involved.

8.8.1 Simple User Data Heist

Indicator Sequence:An attacker must firstopen(o) the case of the device, letlight (l)

into the device as they locate the memory chip with the data they want, and then

placeprobes(pr) onto the chip to collect the data when it appears.

Monitors: We will need a cover switch or seal to detect when the device isopened, a

photosensor to catch the light that reaches the device’s circuitry, and a probe sensor,

such as a piezo-electric sheet [151], to alert when a probe has been placed on the

device.

Time Windows: The windows for this sequence will be relatively short: We expect the

light to stream in soon after the case is cracked open, and while the probes make take

some time to place, the attacker will be motivated to finish the attack quickly, as they

do not need to be present as the probes wait for the desired information. Therefore,

we choose to set the open-light window at sixty seconds, and the light-probe window

at ten minutes.

119

Responses:For our response, we choose to log the event, flag the device for maintenance,

and hold off on having the device report its data back to the control center (or perhaps

only report a subset of this data until the device is confirmedto be safe).

Graph Sequence:The graph sequence for our eventEsh is as follows:

pr? ? o?

Esh

Logical Sequence:

∃ Pr′ ∈ Pr ∧

∃ L′ ∈ L ∧ (s(L′) ≤ s(Pr′) ≤ (e(L′) + w(l, pr))) ∧

∃ O′ ∈ O ∧ (s(O′) ≤ s(L′) ≤ (e(O′) + w(o, l))) ⇒ Esh

(8.8)

8.8.2 Complex User Data Heist

Indicator Sequence:An attacker must first applyX-rays(x) to imprint the desired data,

open(o) the device to access the memory chip, letlight (l) into the device as they

locate the appropriate chip, and thenremove(r) the chip to harvest the data.

Monitors: Here, we need a radiation sensor to detect when an attacker bombards the

device with X-rays, a cover seal and photosensor to know whenthe device itself has

been breached, and finally a seal on the memory chip itself that alerts our system

when it is breached or removed.

Time Windows: Imprinting data via X-rays may take some time, so we set the time

window between the radiation ending and the device being opened to be six hours.

Light will stream in quickly after the device is opened, so this time window is set to

sixty seconds. Finally, accessing the memory chip may proveto be a difficult task

120

(depending on the strength of the seal used to secure it), so we set the window at four

hours to avoid missing a slower attacker.

Responses:This is a highly invasive attack, and it warrants a severe response. Because

the sensitive data is imprinted into the chip by the attack, our best course of action

is to physically destroy the chip containing the memory. (Weingart suggests using

thermite to incinerate the chip [151], but grid defenders would have to ensure that the

reaction is contained enough to not cause collateral damage.)

Graph Sequence:The graph sequence for our eventEch is as follows:

r?

Ech

?
3

o?

Logical Sequence:

∃ R′ ∈ R ∧

∃ L′ ∈ L ∧ (s(L′) ≤ s(R′) ≤ (e(L′) + w(l, r))) ∧

∃ O′ ∈ O ∧ (s(O′) ≤ s(L′) ≤ (e(O′) + w(o, l))) ∧

∃ X ′ ∈ X ∧ (s(X ′) ≤ s(O′) ≤ (e(X ′) + w(x, o))) ⇒ Ech

(8.9)

8.8.3 Pin-In-The-Meter Attack

The Pin-In-The-Meter attack [132] can be modeled as follows:

Indicator Sequence:To execute this attack, an attacker must first drill through the edge

device’s exterior (causing the box toshake(s)), and then inserting a pin to cause the

wheel inside the meter to stopspinning(sp).

Monitors: We can use an accelerometer to detect when the box is being drilled, and a

motion sensor to determine if the meter wheel is spinning.

121

Time Windows: We assume that the attacker will be motivated to stop his or her meter

as quickly as possible, as this attack is financially-motivated and the longer the meter

is disabled, the more money the attacker saves. We thereforeset the time window

between the shaking and the meter wheel stopping at two minutes.

Responses:At the very least, we want to note this event and send out a technician to

investigate it. Cutting off network traffic (and potentiallyelectric service) to the de-

vice is also a possibility, as the availability impact wouldbe limited to the customers

using that meter.

Graph Sequence:The sequence for our eventEpm would appear like this:

sp? s?

Epm

Logical Sequence:

∃ Sp′ ∈ Sp ∧

∃ S ′ ∈ S ∧ (s(S ′) ≤ s(Sp′) ≤ (e(S ′) + w(s, sp))) ⇒ Epm

(8.10)

8.8.4 Return-To-Debug Attack

Indicator Sequence: Here, the attacker mustopen(o) the device, allowinglight (l) to

reach the inner circuitry, and thenreconnect(rec) the debug pins on the circuit board

via the ion beam.

Monitors: A cover switch/seal and photosensor are required, as well asa monitor on the

debug pins to detect if and they are activated.

Time Windows: The open-light window will be small (about sixty seconds), while the

light-debug window is set to thirty minutes to give the attacker time to properly re-

122

connect the pins.

Responses:While an attacker may just be stealing data and not changing the behavior

of the device, we still want to verify the device’s behavior until a technician can

inspect it. Therefore, we choose to monitor the device’s traffic, and potentially revoke

certificates that let the device talk to higher-value targets on the network.

Graph Sequence:We define the graph sequence for our eventErd as follows:

rec? ? o?START

Erd

Logical Sequence:

∃ Rec′ ∈ Rec ∧

∃ L′ ∈ L ∧ (s(L′) ≤ s(Rec′) ≤ (e(L′) + w(l, rec))) ∧

∃ O′ ∈ O ∧ (s(O′) ≤ s(L′) ≤ (e(O′) + w(o, l))) ⇒ Erd

(8.11)

8.8.5 The Sensor Subversion Scenario

Indicator Sequence: Here, the attackershakes(s) the box with its drilling, avoids the

cover switch, letslight (l) into the box, anddisconnects(d) the edge device.

Monitors: For this sequence, we need an accelerometer, photosensor, and network cable

monitor to detect this sequence. (We assume we have a cover switch as well, if for

no other reason than for the attacker to target it.)

Time Windows: The shake-light time window will be much longer than in the Schweitzer

Scenario (i.e. 3-4 hours, if not longer), as the attacker will have to apply the glue to

the cover switch by aiming through a small hole, and then waitfor the glue to set

and disable the switch. Once the attacker opens the box, however, they will move

123

quickly to plug in their own device, and thus the light-disconnect window will be

short (perhaps five minutes at most).

Responses:Much like in the Schweitzer Scenario, the traffic coming fromthe edge de-

vice’s access point will be either filtered or dropped, and the certificate used by the

edge device for authentication may also be revoked.

Graph Sequence:We define the graph sequence for our eventE3s as follows:

d? ? s?START

E3s

∃ D′ ∈ D ∧

∃ L′ ∈ L ∧ (s(L′) ≤ s(D′) ≤ (e(L′) + w(l, d))) ∧

∃ S ′ ∈ S ∧ (s(S ′) ≤ s(L′) ≤ (e(S ′) + w(s, l))) ⇒ E3s

(8.12)

8.8.6 Earthquake

Indicator Sequence:Here, we look forlocal shaking(ls) at the edge device level, and

then check to see ifregional shaking(rs) is present (i.e., many devices are shaking).

(For this event, we define “shaking” as any acceleration values that rate a four (IV)

or above on the Mercalli scale [137].)

Monitors: We only need an accelerometer here, as both the local and regional indicators

in our sequence are based on its readings.

Time Windows: The shaking at all of the devices should occur at roughly the same time,

so the time window betweenLS andRS will be very small (five to ten seconds).

Responses:For this event, we want to alert the utility to its presence, and perhaps initiate

a disaster response protocol to prepare for potential service losses.

124

Graph Sequence:We construct our graph sequence for the eventEeq as follows:

rs? s?START

Eeq

Logical Sequence:

∃ RS ′ ∈ RS ∧

∃ LS ′ ∈ LS ∧ (s(LS ′) ≤ s(RS) ≤ (e(LS ′) + w(ls, rs))) ⇒ Eeq

(8.13)

8.9 Overall Summary

The above scenarios demonstrate how TEDDI (nearly) solves the grid defender’s dilemma:

• TEDDI can gather the necessary context information neededto differentiate between

important tamper events.

• TEDDI does not force us to treat any tampering as malicious.

• TEDDI provides a flexible response strategy to allow operators to deal with events

with exactly the right amount of severity.

• TEDDI can intervene earlier in the kill chain [54] of an attack than many other pro-

tection systems.

• TEDDI reduces the amount of manual configuration needed to define a protection

system for any arbitrary SCADA system.

However, there is one final point in the dilemma that we need toconsider: Does TEDDI

adhere to the strict performance constraints of the power grid? We address this question,

as well as take a closer look at the amount of effort required to configure and use TEDDI,

in the next chapter.

125

Chapter 9

Evaluation

In this chapter, we evaluate TEDDI’s performance in three areas: speed, accuracy, and

configuration resource requirements. In each case, we find that TEDDI has equal or better

performance than existing tamper solutions, all while adhering to the strict constraints of

the power grid.

9.1 A Word on System Comparison

In looking through the prior work on this subject, a concerning trend emerges: The speed

and performance evaluations of these systems are not alwaysrigorous, and are sometimes

non-existent (and in the case of usability analyses,alwaysnon-existent). Table 9.1 offers a

sampling of prior evaluations.

While we cannot definitively say why evaluations in this area are so spare, we can offer

some theories:

• Some of these systems are proposals (for example, EBTA [146]and CAPMS [138]),

and do not have a proof-of-concept implementation to evaluate.

• In our discussions with industry representatives, we found that they were loathe to

126

Table 9.1: A sampling of some of the evaluation results from prior protection solutions.

System Accuracy Performance

RRE [161] None Calculates optimal response actions for
900-node tree in under 45 secs; generates
model for 330K nodes in under 24 ms

EBTA [146] None None
PAC [141] Detected 1 of 1 attacks None
SCADA-Hawk [123] Detected 1 of 1 attacks None
Amilyzer [14] Detected 4 of 4 attacks No hard numbers, but scaled to 32K nodes

in real meter deployment
PQS [105] Detected 1 of 1 attacks When facing a DOS, takes 30 secs to

switch to ‘Questionable,’ and 19 secs to
then switch to ‘Compromised’

SCPSE [162] Detected 3 of 3 attacks Took about .08 secs per state to locate
bad data; upper bound of about 11.7 secs
for finding bad data in each state; generates
an attack graph template for 3500 nodes in
roughly 1200 ms

Edwards [39] 89.75% accuracy against None
three intruder platforms

Kenaza et al. [64] Roughly 76% accuracy None
against six attacks after
16 test iterations

Boggs et al. [17] 0.03% FP rate; true Average of 4,579.85 minutes
positive rate unknown between similar alerts from separatesites
(no ground truth)

Neves and Araujo [85] No attacks considered Cost classified as free/cheap
Collberg et al. [29] Blocked 8 of 8 attacks Code breakdown adds 5-20% overhead;

latency cost dominated by compilation
(≈ 1 sec per function)

ADSDB [8] Defeated 4 of 5 attacks Only production costs considered
GCK [43] Defeated 3 of 3 attacks Overhead ranged from 90–969µs
TLP [131] Resisted 4 of 4 attacks Added 1 sec to bzip runtime

in slowest configuration
IBM 4758 [120] Defeated 7 of 7 attacks Immediate secret zeroization
Dragone [37] Detected 1 of 1 attacks None
Megalingam et al. [78] Detected 1 of 1 attacks Tamper detection speed not tested
Desai [36] Defeated 2 of 2 attacks Speed not evaluated, but hardware

overhead≤ 10% for each technique
Patagonix [72] Defeated 9 of 9 rootkits Averages≤ 160µs to identify code;

imposed up to 30% overhead on apps
SRID [145] Detected 23 of 24 attacks and None

49 of 56 attack origins
Autoscopy Detected 15 of 15 rootkits [100] Imposed less than5% overhead [99]
Roosta et al. [106] Defeats 6 of 6 attacks None
Düssel et al. [38] Detected 8 of 8 attacks; Throughput up to 429.1 Mbps

≤ .1 avg FP rate on 13 others
CAPMS [138] None None
BRIDS [81] 26 attacks considered None

across 3 devices; at least 92%
detection accuracy per device

127

discuss specific examples of attacks on their systems, and consequently real examples

of attacks are very hard to come by. This may explain the limited number of attacks

used for evaluation in prior work.

• Performance evaluations are often considered secondary to accuracy results, since a

fast system that does a poor job of detecting attacks is of no use to anyone. This

attitude, however, is counterproductive in a power grid setting, where performance is

just as important (and perhaps more important) than accuracy.

Overall, prior work in this space does not provide a great basis to use for compari-

son with TEDDI. Therefore, our evaluations will instead be geared towards answering the

following questions:

1. Can we achieve a correct event decision rate of 90% or better?We derive this

rate from the accuracy rate of BRIDS [81] and the false-positive rate of D̈ussel et

al. [38].

2. Can we process our factor graphs and come up with an event decision in under

400 µs? This number comes from IEEE Standard 1646-2004 [56], where several

types of substation communication have an upper bound of 8 mson delivery time, and

from Autoscopy Jr. [99], where we state that we want to incur less than 5% overhead

(400µs is 5% of 8 ms). (Unlike our indicator windows, factor graph processing time

may get in the way of an edge device’s primary function, whichis why we want to

keep this time as short as possible.)

In addition, we wish to examine the amount of effort requiredto configure our system,

an attribute that is not considered by any of the prior work inthis space. To accomplish this

task, we examine a sample case study to see how easy it is to translate a problem within

the narrative into a workable protection system using TEDDI, as opposed to using other

similar protection solutions. More specifically, we attempt to answer the question“Given

128

a small set of events, can a grid defender create a TEDDI system that detects these

events with less time/resources than if we used another system?”

With our three questions in hand, we now evaluate TEDDI to seehow well we can

answer them.

9.2 Detection Accuracy

Because of our distributed setup, we need to evaluate TEDDI’saccuracy at both the TIP

and the TDP levels.

9.2.1 TIP Event Detection

We set up our TIP testing as follows:

• We configured a single TIP to read from ten different monitors, with each moni-

tor containing either a zero or one. All of the monitors were simulated using text

files, mimicking Linux’s habit of representing external devices as files in the/dev

directory.

• The TIP was given a ten-function-node1 factor graph, where each node in the graph

represented a unique indicator. In alignment with the monitors, each indicator had a

threshold of one, and were said to be present if the corresponding monitor contained

that value.

• The graph itself contained four events: Three local eventsdefined by three-indicator

sequences that could be definitively identified by the TIP, and a fourth event defined

by a single regional indicator. The time windows for the local sequences ranged from

1While factor graphs have both function and variable nodes, recall that variable nodes are mostly place-
holders in our system, and thus do not incur any computational cost.

129

seven to sixty seconds. The regional event was the lowest-priority event of the four,

and while it was primarily targeted at our TDP testing, it wasstill important to know

if the TIP would recognize the possibility of a larger event and properly defer to the

TDP.

• The TIP test consisted of one hundred rounds, each of which lasted ten seconds. In

each round, for each monitor, we randomly select a value (either 0 or 1) correspond-

ing to whether or not the given indicator will be present or absent in this round. Our

data generation model can be considered a zero-order approximation, in which both 0

or 1 are equally likely to be selected [94]. We choose this model rather than a larger-

order approximation because we do not have any ground truth data on how often

these indicators appear in real environments, and thus cannot make any assumptions

about how likely an indicator is to appear.

We obtain our random data by drawing a byte from/dev/urandom , dividing by

two, and placing the remainder into the proper monitor file, and we repeat this process

for all of the system’s monitors. These files were then read atthree-second intervals

by the TIP, meaning that the files could be read three or four times in a single round.

This meant that the TIP’s event decisions could change even when the monitor data

did not, as indicators that are not currently present may eventually fall out of the

prescribed windows.

For example, consider the indicator sequenceAB, where the allowed time window

betweenA andB is 5 seconds. If a round change causesA to flip from present

to absent andB to flip from absent to present, the first two the TIP reads the data

(assuming the TIP had been reading the data prior to the change, and reads the data

immediately after it changes), the event will be consideredpresent becauseA was

last seen 3 seconds ago. The next time the data is read, however, the event will be

considered absent becauseA’s last sighting would now be six seconds ago.)

130

• The data from each round and decision were manually verifiedafter the tests to deter-

mine what the correct event decision should be, and see how well the TIP performed.

Over the course of the one hundred rounds, the TIP made a totalof 332 event decisions.

Of these, 329 of the decisions matched our manual analysis, giving us an accuracy rate

(99.1%) that far exceeds our 90% goal. Our incorrect decisions were concentrated in a

single round, meaning that we achieved 100% accuracy in ninety-nine of our one hundred

rounds.

While these numbers are more than satisfactory, they beg the question: What happened

in that one round (Round 71, to be specific) that threw off our decision engine? It turns out

that this round exposes a limitation in our TIP prototype, one whose solution could create

a significant performance issue.

The Curious Case of Round 71

First, for the sake of clarity, we label our events and sequences as follows:

• Our highest-priority event is labeledEvent 1, and is defined by the indicator sequence

ABC.

• Our second-highest priority event,Event 2, and is defined by the indicator sequence

DEF .

• Our third-highest priority event,Event 3, and is defined by the indicator sequence

GHI.

• Finally, our regional eventEvent Rhas the the lowest priority, and is defined by the

regional indicatorJ . If none of the other events are present, the TIP must therefore

send an alert to the TDP and let it decide ifR is present.

131

At the start of Round 71, the TIP looked to see if the final indicator of any of these

sequences were currently present. IndicatorsC andI were absent for this round, which left

events 2 andR as the only possible decisions.

IndicatorF was present in Round 71, butD andE were not, leading TEDDI to consult

its history counters. The maximum-allowed time window forF andE was twenty-five

seconds, and the history counters showed that two prior instances ofE fell within this

window: one at Round 70 (3-12 seconds before 71) and one at Round68 (24 seconds).

The error arose in TEDDI’s selection of the instance ofE to use for event detection. Our

prototype was constructed to select themost recentinstance of an indicator when looking

for event sequences, which meant that TEDDI selected theE from Round 70 to continue

its search from. However, the most recent occurrence ofD happened in Round 67, and

the maximum time window allowed betweenD andE was only ten seconds. This led

TEDDI to conclude that Event 2 was not present, and it asked its TDP to look for EventR.

However, had TEDDI continued searching using theE instance from Round 68, it would

have found thatD fell within the proper time window, and made the correct decision that

Event 2 was present.

The simple solution to this problem is to have TEDDI look for events usingevery

viable indicator instance, rather than picking just one. However, this sort of setup leads

to a potentially exponential increase in the number of indicator instances to check: After

checking the last indicator in a sequence, our last-five history counter setup means that

there could be five instances to check for the next indicator,which could mean checking

twenty-five instances of the indicator beyond that, one hundred twenty-five beyond that,

and so on. While both our sequence chains and time windows wererelatively short for our

accuracy tests, having longer sequences and larger time windows increase the chances of

seeing the full exponential case.

132

Given the potential for such a solution to lead to performance issues in an industry that

is particularly sensitive to them, we decided that are most-recent-viable-indicator setup

was preferable to checking every viable indicator. However, the latter option could be

made more palatable by reducing the number of history counters we maintain (for example,

cutting down from five to two or three). Taking another approach with our algorithm may

also help mitigate this problem (for example, treating our graph as a state machine and

moving through it in real-time as indicators appear and disappear), but they would require

substantial changes to our data fusion structure.

The Danger of Too Few Time Periods

To test our theory about longer time window increasing our chances of seeing failures like

Round 71 above, we re-ran our accuracy tests with some small changes:

• The indicators and overall structure of our factor graph were not changed, but we

lengthened the time windows between indicators. For this test, they ranged from ten

to one hundred eighty seconds.

• We altered our round length to match our TDPs tests (see Section 9.2.2). Each round

now lasts three seconds, giving the TIP an entirely new dataset every time it checks

its monitors. We also increased the number of rounds from 100to 200 to see how

our TIP held up under long periods of rapidly-changing data.

Our TIP proved to be remarkably resilient to our changes: Despite the higher number of

rounds, longer time windows, and increased data variability, the TIP made the correct event

decision in 199 of 200 rounds (99.5%). Interestingly enough, our one incorrect decision

(once again involving Event 2 and itsDEF event sequence) came about for an unexpected

reason:

133

• At the time of our incorrect decision in Round 62, ourF indicator had been present

since Round 56. The first available time period forE that met our sequence criteria

(i.e., it started before Round 56, but within the sixty-second window allowed between

E andF) was also fairly long, stretching from Rounds 46 to 55.

• IndicatorD had been present in Round 43, which fell well within the available time

window (in this case, 30 seconds before Round 46). However, inbetween Rounds

44 and 62,D had appeared and disappeared five separate times, meaning that D’s

presence in Round 43 was no longer stored in our history counters by the time we

reached Round 62.

• Because of our history counter limitation, TEDDI missed thepresence of Event 2,

and instead reported the presence of the lower-priority Event 3. If TEDDI had kept

six time periods in its history counters instead of five, the system would have been

able to capture Event 2’s presence.

This result suggests that we shouldincreasethe number of time periods we collect, con-

tradicting the conclusions we drew in our first test! Ultimately, the optimal number of time

periods required for event detection will depend on the environment of the edge device

(for example, do we expect indicators to appear and disappear rapidly near an edge de-

vice?), which suggests that the number of time periods should be a configurable parameter

in future iterations of our prototype.

Overall, however, the TIP make 528 correct event decisions in 532 opportunities, giving

us a final accuracy rate of 99.2%, far above the 90% threshold we sought to beat.

9.2.2 TDP Regional State Calculation

Since we had already evaluated factor graph accuracy in our TIP tests, we decided to focus

on the regional state calculations of the TDP, as this feature is the primary difference be-

134

tween our full and limited graphs. We used the same monitors,indicators, and factor graph

as with the TIP tests, so the TDP’s decision on whether or not EventR was present was

completely dependent on its ability to accurately calculate the regional state across all of

its TIPs.

For this test, we connected four TIPs (via wired network connections) to a single TDP.

This time, the test rounds were only three seconds long, potentially making the data differ-

ent every time the TIPs read from the monitors. Only the localindicator tied to our regional

indicatorJ received random data. Every other indicator was absent, ensuring that the TIPs

would keep going back to the TDP for assistance.

We ran our TDP test for fifty rounds, during which the TDP made 200 decisions on the

regional state of the TDPs. Afterwards, the results were again manually verified to validate

the TDP’s decisions. We found that the TDP correctly calculated the regional state, and

therefore made the correct event decision, in all 200 instances.

An important things to note here is how TIP synchronization (or lack thereof) affects

our regional state calculations. Ideally, the TIPs all collect and send their data at roughly

the same time, so that when a coordinated regional event occurs (such as an earthquake), all

of the data arrives within the 100 millisecond waiting time of the alert, and each TIP sees

the proper regional state. Otherwise, if the alerts are received one at a time, a regional event

will not be reported until half of the TIPs have sent in their data. (Network latency can also

cause problems, as alerts that have to travel over slower or more-congested networks may

not arrive within our waiting time. However, such latency would have to be persistent and

widespread to affect our calculations.)

135

9.3 System Performance

Next, we investigate the performance impact of TEDDI at the TIP, TDP, and Generation

Tool levels.

Factor Graph Performance

For the factor graph performance tests, we used the following hardware:

TIP: We used the Raspberry Pi 2 Model B [98] for our SCADA edge devices. We based

this decision on a conversation with one of our industry contacts, who stated that they

use Pis for edge device prototype development.

TDP: We used a a Dell Precision 340 desktop computer [34] equippedwith a 2 GHz

Pentium 4 processor and 1 GB of RAM, and running version 12.04 of the Ubuntu

operating system. While this machine is less powerful than the substation computers

available today (for example, the SEL 3355 can have either a dual-core 2.5GHz or

quad-core 2.1GHz processor as a base [111]), given the prevalence of weaker legacy

devices in the grid, we decided that using an early-2000s-era machine was accept-

able.

In the TIP test, we placed a TIP on three different Pis, connected them all to a single

TDP (again via wired connections), and had each TIP go through ten rounds of decision

making to see how long it took to traverse their factor graphs. For the TDP tests, we just

had a single TIP go through 30 rounds of decision making.

We began by using the factor graph from Section 9.2.1 for our performance tests, which

meant that the full and limited factor graphs had the same number of nodes (the difference

being that the TDP had enough information to make a decision upon reaching the last

node, whereas the TIPs did not). From here, we increased boththe number of events and

136

Table 9.2: A table of the factor graph processing times for both TIPs andTDPs.

Graph Size TIP Performance TDP Performance

10 Nodes 111.083µs 53.338µs
26 Nodes 138.187µs 70.668µs
50 Nodes 161.461µs 94.514µs
99 Nodes 232.586µs 143.255µs

the lengths of the indicator sequences in the graph (while still ensuring the full and limited

graphs had the same number of nodes), to observe how well our algorithm scaled. In all

cases, the TIP monitors were instrumented such that both theTIPs and TDP would be

forced to go through every node in their factor graph to make adecision.

We conducted four separate tests, each with a different sizeof factor graph (10, 26, 50,

and 99 function nodes). We feel that these sizes accurately reflect the graphs for real-world

networks, as most sequences appear to be fairly short (in fact, the longest sequence we

built in Chapter 8 was five function nodes long), meaning that these graph sizes give grid

defenders plenty of room to define 20–30 tamper events that they may be concerned about.

The results for the average factor graph processing time across all of the TIPs can be

seen in Figure 9.1 and Table 9.2. The processing time was lessfor smaller graphs, and

appeared to increase linearly as the graph size increased. For ten function nodes, our TIP

processed the graph in 111.083µs, while the TDP processed the graph in 53.338µs. For 26

nodes, the TIP needed 138.187µs, while the TDP required 70.668µs. The 50-node graph

took 161.461µs to walk through on the TIP, and 94.514µs on the TDP. Lastly, the TIP

processed our largest graph (99 nodes) in 232.586µs, while the TDP needed just 143.255

µs. On the whole, both the TIPs and TDP performed well even whenprocessing the larger

graph, and kept processing times comfortably underneath our 400µs limit.

137

Figure 9.1: Factor graph processing times for both TIPs and TDPs. Note that even in the
99-node graph case, the times fall well within our 400µs limit.

138

TDP Placement Performance

While our TDP placement algorithm is run in an offline setting and therefore not subject to

the real-time performance demands of the power grid, it is still important that the algorithm

do its job within a reasonable amount of time. To verify that this is the case, we tested our

algorithm against a number of different network topologiesto see how well it performed.

We used three distinct topology types in our test runs:

Linear: The network nodes are arranged more or less in a single line. We chose to test

this topology because we received an example of a real substation network that was

arranged in this fashion.

Mesh: The network nodes are arranged in a grid pattern, and each node is connected

to its immediate neighbors. We took this topology choice from Ward [148], who

cited “conversations with industry contacts” [148] for choosing this topology for his

simulation.

Star: The network nodes are arranged in several tree-like structures, with a single central

node serving as the root for each tree. This topology also came from Ward [148] for

the same reasons as the mesh network.

We ran our tests using the Firefox Web Browser on two differentmachines: The Ubuntu

desktop machine used in Section 9.3, and a MacBook Pro runningOSX version 10.10 with

a 2.4 GHz processor and 4 GB of RAM.2 Each topology was tested at five different sizes,

and the time for each size/type combination was averaged over ten runs. The results of our

testing are shown in Figure 9.2 and Table 9.3.

Linear and mesh networks exhibited no difference in their placement times, with the

largest of the networks (a 128-node linear network) requiring only .583 seconds to deter-

2The browser versions for the original tests were not recorded; however, a re-run of selected topologies
using browser version 45.0.1 on both Ubuntu and OSX generated similar times, and we saw no significant
difference between times across machines in either the original or subsequent tests.

139

mine where TDPs should live. Star networks, on the other hand, took a bit more time to

process—for example, a 120-node star network needed .749 seconds for TDP placement

despite having eight fewer nodes than the linear network mentioned previously. The reason

for this difference may lay with the number of TIP nodes in thenetwork, as our star net-

works tend to have a higher percentage of TIP nodes than the other topologies. (Intuitively

this makes sense, given that “leaf” nodes in a star network not only tend to make up the

largest group of nodes in the graph, but are also the places weexpect edge devices, and

therefore TIPs, to live.) TIP nodes require more processingin our TDP placement code

(for example, we need to figure out which TDP set to place them in, and then check the

entire set to see if any were excluded), and thus having more of them will slow down our

algorithm. As evidence, we note that our 84-node star network, which had 75 TIP nodes,

and our 128-node linear network, which had 72 TIPs, have verysimilar processing times

(.581 and .583 seconds, respectively).

One important point to note: Our test networks are a bit smallcompared to real-world

SCADA networks, which may explain the linear relationship wefound between network

size (specifically, the total number of network nodes) and the placement tool’s performance

(despite our expected quadratic relationship). To test ouralgorithm on a larger network, we

built a model based on the energy management (EM) network here at Dartmouth, which

was based on the information gathered from conversations with Dartmouth network op-

erators and features 441 nodes (400 of which are TIP nodes) arranged in a star topology.

Despite its size, however, the TDP Placement Tool was still able to calculate the optimal

TDP locations for the network in 2.811 seconds, which was only slightly higher than our

star-topology trendline predicted (2.752 seconds).

As a final test, we tripled the size of our EM example (1323 nodes) and ran it through

our placement tool. This larger network’s average TDP placement time (8.790 seconds)

is higher than our trendline predicted (8.221 seconds), butis small enough to suggest that

a linear model with a steeper slope is still a better fit than a quadratic model. (Indeed, if

140

Figure 9.2: TDP placement tool processing times for networks of different shapes and
sizes. (Note that our real-life examples are excluded.) As showcased by the trendlines, the
star topologies took longer to process than the other networks.

the larger data points are included in our trendline calculations, the star trendline equation

shifts slightly toy = 0.0066x− .0201.) Further testing may be needed to pinpoint the best

growth model, but regardless of whether this trend is a linear or a slow-growing quadratic

relationship, the generated times do not suggest that the tool will become noticeably slow

for reasonably-sized SCADA networks.

While these numbers fall a bit short of the model generation times mentioned in Ta-

ble 9.1, they are not onerous, and are perfectly reasonable for a one-time, offline step.

Future testing on larger networks, however, may be needed.

141

Table 9.3: TDP placement processing times, including a large real-life example based on
the energy management network at Dartmouth.

Network Type Network Size Average TDP
(# Nodes) Placement Performance

Linear 16 0.104 s
32 0.173 s
48 0.231 s
96 0.414 s
128 0.583 s

Mesh 20 0.125 s
42 0.206 s
56 0.256 s
81 0.376 s
121 0.517 s

Star 19 0.139 s
40 0.252 s
60 0.387 s
84 0.581 s
120 0.749 s

EM Example 441 2.811 s
(star)

1323 8.790 s

142

9.4 Usability Analysis

While we would like to provide a measurement of TEDDI’s usability using evaluation

criteria used by existing methods, tamper and intrusion protection systems often ignore

this issue; in fact,none of the related work in this area considers it in their evaluations.

However, some of the prior work in domain-specific languagesgives us a blueprint for our

own evaluation—namely, they use simple case studies to observe the improvements their

languages provide over prior work ([24, 130]).

Along those lines, we now consider a case study describing a tamper incident involving

edge devices in critical infrastructure, and see what time and/or data is required to construct

a TEDDI system to detect that event, versus building a similar protection system from

selected prior work. (While we found that industry members are loathe to discuss specific

tamper events that had affected their organizations, this fact does not impact our analysis.)

In addition to TEDDI, we examine the following five systems, which we believe are the

works within the SCADA protection space that are most similarto TEDDI:

• the Response and Recovery Engine (RRE) [161],

• the SCADA-Hawk system [123],

• Process Query Systems [105],

• the Probabilistic Alert Correlation system [141], and

• the Security-Oriented Cyber-Physical State Estimation system [162].

For this study, we determine the amount of information required to set up a working

protection system against the given event, and see how TEDDIfares in comparison to the

field. We begin by defining an example scenario with the following components:

143

• Edge Devices: The operator wants to protect a set of recloser controls mounted

within metal cabinets attached to utility poles.

• Events: The tamper events we are concerned about are:

1. The Schweitzer Scenario (Section 8.2),

2. A Malicious Firmware Attack (Section 8.5),

3. A Benign Firmware Update (Section 8.5),

4. An earthquake (Section 8.8), and

5. A (benign) local shake event (for example, shaking causedby a passing truck).

• Responses:We also have the following response possibilities:

1. Send a response back to the control center alerting them ofthe event.

2. Selectively filter network traffic coming from the device.

3. Passively monitor network traffic coming from the device.

4. Completely sever the network connection of the edge device.

5. Revoke the device’s credentials to send traffic on the SCADA network.

6. Delete any secret data (such as cryptographic keys) from the device.

7. Disable the external USB ports on the device.

(Note that taking no response is also an option.)

TEDDI: This scenario lines up nicely with the data required by FGDSL. We previously

defined the indicators and the sequences for events 1–4 in Section 8, and the shaking

events can be quickly defined as just local shaking.

Since we already require an accelerometer and a shaking indicator for the Schweitzer

scenario, the local shake event adds nothing extra to eitherour monitor set or our re-

sponse set (since we will take no action in response). Thresholds can be set relatively

144

low or high (or better yet, measured experimentally) to strike the proper balance

between false positive and negatives.

Now, we must rank the events to make sure that we always capture the most important

ones. We note that similar events need to be ranked such that TEDDI looks for the

more specific event first, which means that the benign firmwareupdate should be

checked before the malicious one, and the earthquake shouldbe checked before the

local shake. With this is mind, we rank the events like so:

1. The Schweitzer Scenario (Es).

2. The Benign Firmware Update (Eb).

3. The Malicious Firmware Attack (Em).

4. An Earthquake (Eq).

5. A Local Shake Event (El).

Once the events are defined and ranked, TEDDI can turn the datainto a suitable factor

graph, which is shown in Figure 9.3. (Note that the indicatorand event variable are

different than in Chapter 8; consult the figure key for more information.)

RRE: Much of the information required by the RRE is the same as TEDDI:indicators,

responses, assets to protect, etc [161]. However, there is one major difference: The

complete attack response trees (ARTs) used by the RRE have to bebuilt ahead of

time (as opposed to TEDDI, which needs the individual sequences but can combine

them automatically using its generation tool). For a simpleevent set, this is not a big

problem, but as the events become longer and more complex, a problem emerges:

• The RRE focuses on the overall security properties that the system wants to

maintain, anda separate tree must be maintained for each of these properties.

(The authors suggest using three to cover the classic confidentiality, integrity,

145

START

D? U?

R?U?L?

O? R? L?

O?L?

O?

Es

Eb

Em

Eq

El

Key

D

L

O

X

U

S(R)

S(L)

Network

Disconnect

Light

Cover

Open

S(L)?

Shaking

(Local)

Shaking

(Regional)

Scheduled

Service

(eXternal)

USB Cover

Removed

USB Device

Plugged In

Path If

Present

Path If

Absent

R

Figure 9.3: The full factor graph that TEDDI generates for the example inSection 9.4.
Note that the limited factor graph would combineEb andEm, as well asEq andEl, because
it would not be able to resolve external or global indicatorsand the events are otherwise
identical.

146

and availability attributes, but in this case we would recommend slightly smaller

goals such as “Edge device compromised” or “Edge device bypassed.”) These

graphs, depending on the goals defined, could each wind up being as big as our

full factor graph. TEDDI, in contrast, requires only a single graph be configured

to cover the entire system.

• The RRE lacks an FGDSL-like system for simplifying the tree-building pro-

cess; in fact, the authors explicitly state that the “ART model in RRE’s global

server needs to be designed manually” [161]. This means thatthe operator

must go through the long and time-consuming process of hand-crafting their

own ARTs, and do it without the help of a tool like our generation tool.

• Finally, the presence of regional indicators means that tamper logic will have

to be split across the local and global detection engines, anadded hassle to

operators who are already manually defining their own ARTs. TEDDI, on the

other hand, relieves operators of this burden by building its own full and limited

factor graphs.

Additionally, the RRE makes use of a Bayesian classifier to guardagainst the chance

that an alert was sent in error, or the chance that an alert wasnot sent even though the

something bad actually occurred. While this feature may helpreduce potential false

positives and negatives, the classifier uses probabilitiesthat are “calculated based on

historical information about the system” [161], further increasing the amount of data

needed to allow the RRE to run.

Admittedly, RRE does offer some small advantages over TEDDI—for example, its

ability to assign responses to each individual step within the tree eliminates the need

for defining pre-events. On the whole, however, the drawbacks listed above make the

RRE a bit more cumbersome to use than TEDDI.

SCADA-Hawk: As an anomaly-based protection system, SCADA-Hawk’s biggest issue

147

is that it models “normal” behavior when verifying system actions [123]. These

models can be provided in two ways:

• The operator can manually define a sequence of events that feeds into SCADA-

Hawk as an example of normal behavior. This, however, requires the operator

to determine every possible normal behavior that can happenin the system,

and manually construct an example for each behavior to give to the system.

Defining such behaviors can be a tricky process, as it requires that the grid

defender have complete knowledge of the tasks performed by every device in

the network, and any behavior that is not defined may generatea false posi-

tive, potentially leading to increased costs and decreasedsystem availability.

In general, signature-based systems looking for bad behavior (such as TEDDI)

have lower false positive rates than anomaly-based systemsthat verify normal

behavior [68].

• The system can be placed into a learning mode, to record “snapshots” of nor-

mal behavior sequences. While this option is less time-consuming for the grid

defender than the prior one, it means the operator has to delay deployment un-

til SCADA-Hawk has seen enough system behavior before it can actually start

protecting the network. The length of this learning period is at best arbitrary,

as not allocating enough time to this task may mean legitimate but infrequent

behaviors are missed, and will later appear as false positives.

In short, operators who attempt to deploy SCADA-Hawk are forced to spend a long

period of time either training SCADA-Hawk or manually defining the system’s ex-

pected behavior, all with the risk of high false positive rates if either method does not

do enough to cover the system’s behavior space. With TEDDI, on the other hand, a

defender can select the events they are concerned about and get the system up and

running more quickly, and usually with fewer false positives.

148

PQS: On the surface, PQS [105] has many of the same usability benefits as TEDDI:

• The process models can be constructed using a number of different methods,

such as “state machines, formal language descriptions, Hidden Markov Models,

kinematic descriptions, or a set of rules” [105]. The systemeven has a special

markup language that these models are compiled into for submission to the

system.

• The process models can be quickly constructed using the data found within

a narrative. In the case of the Schweitzer scenario, the indicator sequence can

quickly be parsed out and translated into one of the PQS-friendly models above.

• Increasing the amount/complexity of sequences does not significantly increase

the complexity of the PQS model. Each event can be easily described in its own

model.

The issue with PQS, however, is similar to that of the RRE: It does not provide any

guidance as to how its models should be built—instead, it blindly uses the provided

models without providing any feedback as to their quality. TEDDI, in comparison,

goes a step farther by working with the user to build its sequences and using its

Response Suggestion Engine to help the user refine their models. By building a

modelwith TEDDI as opposed tofor PQS, the user finishes with a more-functional

model for their system.

PAC: The biggest issue with PAC [141] is that it relies on information that are not present

in our given set of events. More specifically:

“ [PAC uses]probabilistic methods for sensor correlation...Sensor cou-

pling in this fashion is easily expressed in Bayes formalisms; specifically,

the coupling is achieved by dynamically modifying priors inthe TCP ses-

sion monitor” [141].

149

PAC also requires that users define alert similarities for specific scenarios and min-

imum values that similarity scores must reach before being reported, but these are

analogous to the indicator sequences and monitor thresholds required by TEDDI.

This setup means that PAC requires some knowledge of the prior distribution regard-

ing how sensors relate to one another, data that cannot be obtained just from our set

of events. Much like SCADA-Hawk, this distribution data needs to be collected and

analyzed beforehand, increasing the time and effort neededto put PAC into place.

SCPSE: SCPSE holds an initial configuration advantage over the RRE, as the attack

graph templates (AGTs) used by SCPSE are generated automatically from the access

control rules of the network [162]. However, the drawback from our PAC analysis

also applies: To predict the attacker’s path through the network “a posterior probabil-

ity distribution over the AGT’s state space is calculated according to the false positive

and negative rates of the triggered and non-triggered IDS alerts, respectively” [162].

Again, such information is far beyond what the narrative canprovide, and also far

beyond what TEDDI requires to operate.

9.5 Summary

All together, our evaluation demonstrates that TEDDI answers all of our questions regard-

ing its speed, accuracy, and configuration requirements, and performs comparably or better

than current state-of-the-art protection solutions:

• We can process our factor graph fast enough to satisfy the constraints of the power

grid. In our tests, TEDDI processed even our largest factor graph (99 function nodes)

well within our 400µs limit.

• Our event detection accuracy rates compare favorably to other protection systems.

In our tests, TEDDI made the correct event decision (given 4 possible options) with

150

99.2% accuracy at the TIP level, and accurately computed theglobal state and made

the proper event decision 100% of the time at the TDP level.

• Our TEDDI Generation Tool gives us a distinct usability edge over comparable sys-

tems, which either need more resources or more time than TEDDI to put together a

protection plan.

These results suggest that TEDDI can operate effectively even under the constraints of

the power grid, and can be configured to do so with considerably less hassle than other

systems.

151

Chapter 10

Conclusions

In this thesis, we examined the need for securing edge devices installed in power grid

SCADA networks, and highlighted the consequences of failingto secure them adequately.

We introduced thegrid defender’s dilemma, a collection of conflicting interests that hin-

der grid defenders’ efforts to secure the grid by making protection systems designed for

standard IT networks infeasible to apply. We proposed a distributed, sensor-based method

of tamper protection as an alternative, and introduced our TEDDI system as a prototype

of such a method. We outlined the architecture of TEDDI, and described how its tamper

information points, decision points, and enforcement points work together to make deci-

sions and respond to the events it sees. We showed how TEDDI’simproved data-gathering

capabilities, flexible response strategy, and use of factorgraphs [42] for data fusion allow it

to work around all of the stumbling blocks that hinder prior work, and allow it to solve the

grid defender’s dilemma. We also proposed and developed theTEDDI Generation Tool, a

program that lets a grid operator easily define and configure TEDDI for their own unique

network, and outlined features such as FGDSL, the Response Suggestion Engine, the Net-

work Topology Uploader, and the TDP Placement Tool, all of which enhance the program’s

usability. Finally, we evaluated TEDDI’s performance and detection rate and analyzed its

usability, and demonstrated that the program is faster, more accurate, and required less

152

effort to use than prior work.

In the future, we would like to relax some of the assumptions TEDDI makes about the

network, as TEDDI’s success is heavily reliant on the underlying network and sensors:

• TEDDI assumes that a TIP will always be able to reach its TDP,but what could it do

if the connection were severed? Could it integrate itself into another TDP’s dataset,

or perhaps even work with other isolated TIPs to determine the regional state of the

system? A fair amount of work already exists in the distributed-decision-making field

(for example, Reidt, Srivatsa, and Balfe’s distributed key-revocation proposal [103]),

and some of these ideas could potentially be worked into TEDDI.

• TEDDI assumes that a monitor will always provide accurate readings, but what might

happen if a sensor fails or is compromised? Bad data detectionhas been studied

extensively in the fields of power system state estimation (for example, Niemira et

al.’s analysis of how both real and reactive power measurements are affected by bad

data injections [87]) and general sensor validation (such as Zhu et al.’s scheme for

validating data from individual sensors operating within asensor network [160]),

and incorporating this work into TEDDI may make the system more resilient against

crafty attackers.

• TEDDI assumes that attackers must compromise an edge device to reach a SCADA

network, but what if an attacker ignores the device entirelyand taps directly into the

SCADA network, or reaches the network via a device’s wirelessaccess point? Han-

dling this issue would likely require expanding TEDDI’s monitoring scope to include

network-specific indicators and look for malicious packets, much like Bro [21] and

Snort [121].

Additionally, including software or power-specific indicators in TEDDI’s detection

scheme would also be a useful nest step. Many protection systems, including TEDDI,

limit themselves to looking at specific type of indicators, such as software signals

153

or physical sensors. By incorporating both types of data intoa detection system,

however, we could further improve our event detection capabilities by using one

dataset to help confirm decisions based on the other, furthering our goal of accurate

event detection.

Finally, we would like to get TEDDI into the hands of as many power professionals as

possible, and evaluate TEDDI’s speed, accuracy, and usability within a realistic power grid

setting. While the industry professionals we demonstrated TEDDI for gave us very positive

feedback, and we performed our own analyses that showed how TEDDI bested prior work

in this front, we were not able to have grid defenders use TEDDI directly within their own

grid environments. Feedback from such hands-on tests wouldbe immensely valuable, and

would help us refine and enhance TEDDI’s features and make thesystem even more useful

for grid defenders.

We hope that TEDDI inspires others to take a harder look at howto secure SCADA

networks operating in the power grid. These networks have fundamentally different goals

and challenges than traditional IT networks, and simply taking a system that is designed

for a “normal” network and sticking it into the power grid maycause more harm than

good. However, we can applysomeexisting solutions to the grid defender’s dilemma, and

properly applying just the right ideas can strike a workablebalance between securing grid

networks and respecting their availability needs. With TEDDI, we show that striking such

a balance is possible, and take the first step towards finally securing some of our nation’s

most critical infrastructure.

154

Bibliography

[1] ABB. Why use reclosers?, 2016.http://www.abb.com/product/ap/

db0003db004279/B0B2C0094A20CB88C1257A0E004C685A.aspx .

[2] Ali Abbasi, Jos Wetzels, Wouter Bokslag, Emmanuele Zambon, and Sandro Etalle.

On emulation-based network intrusion detection systems. In Research in Attacks,

Intrusions, and Defenses (RAID) Symposium, 2014.

[3] Marshall Abrams and Joe Weiss. Malicious control systemcyber security at-

tack case study - Maroochy water services, Australia, 2008.http://csrc.

nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-

Services-Case-Study_report.pdf .

[4] Sheldon B. Akers. Binary decision diagrams.IEEE Transactions on Computers,

C-27(6), June 1978.

[5] AlertLogic ActiveWatch Premier. http://www.alertlogic.com/

products-services/activewatch/activewatch-premier/ .

[6] Muhammad Qasim Ali and Ehab Al-Shaer. Configuration-based IDS for advanced

metering infrastructure. InThe 20th ACM Conference on Computer and Communi-

cations Security (ACM CCS), 2013.

[7] Bernhard Amann, Robin Sommer, Aashish Sharma, and Seth Hall. A lone wolf

no more: Supporting network intrusion detection with real-time intelligence. In

155

http://www.abb.com/product/ap/db0003db004279/B0B2C0094A20CB88C1257A0E004C685A.aspx
http://www.abb.com/product/ap/db0003db004279/B0B2C0094A20CB88C1257A0E004C685A.aspx
http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf
http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf
http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf
http://www.alertlogic.com/products-services/activewatch/activewatch-premier/
http://www.alertlogic.com/products-services/activewatch/activewatch-premier/

The 15th International Symposium on Resarch in Attacks, Intrusions, and Defenses,

2012.

[8] Bertrand Anckaert, Bjorn De Sutter, and Koen De Bosschere. Software piracy pre-

vention through diversity. InProceedings of the 4th ACM Workshop on Digital

Rights Management, 2004.

[9] Atmel Corporation. Atmel Trusted Platform Module, 2015.http://www.

atmel.com/products/security-ics/embedded/default.aspx .

[10] Ahmed M. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Butler, Guruprasad

Ganesh, Jia Ma, and Wenbo Shen. Hypervision across worlds: Real-time kernel

protection from the ARM TrustZone secure world. InThe 21st ACM Conference on

Computer and Communications Security (ACM CCS), 2014.

[11] Hajar Benmoussa, Anas Abou El Kalam, and Abdallah Ait Ouahman. Distributed

intrusion detection system based on anticipation and prediction approach. InThe

12th International Conference on Security and Cryptography (SECRYPT), 2015.

[12] Alberto Berizzi. The Italian 2003 blackout. InThe IEEE Power Engineering Society

General Meeting, 2004.

[13] Robin Berthier and William H. Sanders. Specification-based intrusion detection for

advanced metering infrastructures. InProceedings of the 17th Pacific Rim Interna-

tional Symposium on Dependable Computing (PRDC), 2011.

[14] Robin Berthier and William H. Sanders. Monitoring advanced metering infrastruc-

tures with Amilyzer. InCybersecurity of SCADA and Industrial Control Systems,

2013.

156

http://www.atmel.com/products/security-ics/embedded/default.aspx
http://www.atmel.com/products/security-ics/embedded/default.aspx

[15] Robin Berthier and William H. Sanders. Monitoring advanced metering infrastruc-

tures with Amilyzer. InProceedings of the Cybersecurity of SCADA and Industrial

Control Systems, 2013.

[16] Swarup Bhunia, Miron Abramovici, Dakshi Agarwal, Paul Bradley, Michael S.

Hsiao, Jim Plusquellic, and Mohammad Tehranipoor. Protection against hardware

trojan attacks: Towards a comprehensive solution.IEEE Design & Test, 30(3):6–17,

2013.

[17] Nathaniel Boggs, Sharath Hiremagalore, Angelos Stavrou, and Salvatore J. Stolfo.

Cross-domain collaborative anomaly detection: So far yet soclose. InThe 14th

International Symposium on Recent Advances in Intrusion Detection (RAID), 2011.

[18] Atul Bohara, Uttam Thakore, and William H. Sanders. Intrusion detection in enter-

prise systems by combining and clustering diverse monitor data. InSymposium and

Bootcamp on the Science of Security, 2016.

[19] Leonid Bolotnyy and Gabriel Robins. Physically unclonable function-based security

and privacy in RFID systems. InThe Fifth Annual IEEE International Conference

on Pervasive Computing and Communications, 2007.

[20] Marshall Brain. How power grids work, 2004.http://www.science.smith.

edu/ ˜ jcardell/Courses/EGR220/ElecPwr_HSW.html .

[21] The Bro network security monitor.https://www.bro.org/ .

[22] Helena Cain. What is a roman signet ring? eHow.com.http://www.ehow.

com/about_6615340_roman-signet-ring_.html .

[23] Phuong Cao, Eric Badger, Zbigniew Kalbarczyk, Ravishankar Iyer, and Adam Slag-

ell. Preemptive intrusion detection: Theoretical framework and real-world measure-

ments. InSymposium and Bootcamp on the Science of Security, 2015.

157

http://www.science.smith.edu/~jcardell/Courses/EGR220/ElecPwr_HSW.html
http://www.science.smith.edu/~jcardell/Courses/EGR220/ElecPwr_HSW.html
https://www.bro.org/
http://www.ehow.com/about_6615340_roman-signet-ring_.html
http://www.ehow.com/about_6615340_roman-signet-ring_.html

[24] Satish Chandra, Bradley Richards, and James R. Larus. Teapot: A domain-specific

language for writing cache coherence protocols.IEEE Transactions On Software

Engineering, 25(3), May/June 1999.

[25] Hoi Chang and Mikhail J. Atallah. Protecting software codes by guards. Technical

Report 2001-49, The Center for Education and Research in Information Assurance

and Security, Purdue University, 2001.

[26] Senthilkumar G. Cheetancheri, John Mark Agosta, DenverH. Dash, Karl N. Levitt,

Jeff Rowe, and Eve M. Schooler. A distributed host-based wormdetection system.

In The 2006 SIGCOMM Workshop on Large-Scale Attack Defense (LSAD), 2006.

[27] Steven Cheung, Bruno Dutretre, Martin Fong, Ulf Lindqvist, Keith Skinner, and

Alfonso Valdes. Using model-based intrusion detection forSCADA networks. In

Proceedings of the SCADA Security Scientific Symposium. Springer, 2007.

[28] Richard Clayton and Mike Bond. Experience using a low-costFPGA design to crack

DES keys. InWorkshop on Cryptographic Hardware and Embedded Systems, 2002.

[29] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra. Distributed ap-

plication tamper detection via continuous software updates. InThe Annual Computer

Security Applications Conference (ACSAC), 2012.

[30] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction To Algorithms. The MIT Press, 3rd edition, 2009.

[31] Jason Crampton. XACML and role-based access control. Lecture from the DIMACS

Workshop on Security of Web Services and E-Commerce, 2005.

[32] Jordi Cucurull, Mikael Asplund, and Simin Nadjm-Tehrani. Anomaly detection

and mitigation for disaster area networks. InThe 13th International Symposium on

Recent Advances in Intrusion Detection (RAID), 2010.

158

[33] Rubens Alexandre de Faria, Keiko V. Ono Fonseca, BertoldoSchneider Jr., and

Sing Kiong Nguang. Collusion and fraud detection on electronic energy meters:

A use case of forensics investigation procedures. InIEEE Security and Privacy

Workshops (SPW), 2014.

[34] Dell Precision 340.http://www.dell.com/support/home/us/en/19/

product-support/product/precision-340/configuration .

[35] Soma Shekara Sreenadh Reddy Depuru, Lingfeng Wang, Vijay Devabhaktuni, and

Nikhil Gudi. Smart meters for power grid–challenges, issues, advantages and status.

In Power Systems Conference and Exposition (PSCE), 2011.

[36] Avinash Desai. Anti-counterfeit and anti-tamper implementation using hardware

obfuscation. Master’s thesis, Virginia Polytechnic Institute and State University,

August 2013.

[37] Silvio Dragone. Physical security protection based onnon-deterministic configu-

ration of integrated microelectronic security features. In The First International

Cryptographic Module Conference, September 2013.

[38] Patrick D̈ussel, Christian Gehl, Pavel Laskov, Jens-Uwe Bußer, ChristofStörmann,

and Jan K̈astner. Cyber-critical infrastructure protection using real-time payload-

based anomaly detection. In Erich Rome and Robin Bloomfield, editors, Critical

Information Infrastructures Security, volume 6027 ofLecture Notes In Computer

Science, pages 85–97. Springer Berlin Heidelberg, 2010.

[39] Nathan J. Edwards. Hardware intrusion detection for supply-chain threats to critical

infrastructure embedded systems. Master’s thesis, University of Illinois at Urbana-

Champaign, 2012.

[40] Nicolas Falliere, Liam O. Murchu, and Eric Chien.W32.Stuxnet Dossier. Symantec

Corporation, February 2011.https://www.symantec.com/content/en/

159

http://www.dell.com/support/home/us/en/19/product-support/product/precision-340/configuration
http://www.dell.com/support/home/us/en/19/product-support/product/precision-340/configuration
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

us/enterprise/media/security_response/whitepapers/w32_

stuxnet_dossier.pdf .

[41] Margus Freudenthal. Domain specific languages in a customs information system.

IEEE Software, PP(99), 2009.

[42] Brendan Frey. Extending factor graphs so as to unify directed and undirected graphi-

cal models. InProceedings of the Nineteenth Conference on Uncertainty in Artificial

Intelligence, 2003.

[43] J. T. Giffin, M. Christodorescu, and L. Kruger. Strengthening software self-

checksumming via self-modifying code. InThe 21st Annual Computer Security

Applications Conference, 2005.

[44] Global Energy Partners.OG&E Smart Study Together Impact Results, February

2012. C. Williamson and J. Shishido, Principal Investgators.

[45] Niv Goldenburg and Avishai Wool. Accurate modeling of Modbus/TCP for intru-

sion detection in SCADA systems.International Journal of Critical Infrastructure

Protection, 6(2):63–75, 2013.

[46] Leonard L. Grigsby, editor.Electric Power Generation, Transmission, and Distribu-

tion. CRC Press, 2007.

[47] David Grochocki, Jun Ho Huh, Robin Berthier, Rakesh Bobba, William H. Sanders,

Alvaro A. Cárdenas, and Jorjeta G. Jetcheva. AMI threats, intrusion detection re-

quirements and deployment recommendations. InProceedings of the 3rd IEEE In-

ternational Conference on Smart Grid Communications, 2012.

[48] Adam Hahn and Manimaran Govindarasu. Model-based intrusion detection for the

smart grid (MINDS). InProceedings of the Eighth Annual Cyber Security and In-

formation Intelligence Research Workshop (CSIIRW), 2013.

160

https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

[49] Sinclair Hansen. An intrusion detection system for supervisory control and data

acquisition systems. Master’s thesis, Queensland University of Technology, March

2008.

[50] John Harrison.Blackout of 1996. The Northwest Power and Conservation Council,

October 2008.https://www.nwcouncil.org/history/Blackout .

[51] Hewlett-Packard. HP trusted platform module, 2013.http://h18004.www1.

hp.com/products/servers/proliantstorage/module.html .

[52] Dorit S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical

Programming, 22(1):148–162, December 1982.

[53] HowStuffWorks. What are amps, watts, volts and ohms?: Electrical efficiency, 2000.

http://science.howstuffworks.com/environmental/energy/

question5011.htm .

[54] Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. Intelligence-driven

computer network defense informed by analysis of adversarycampaigns and intru-

sion kill chains. InThe 6th International Conference on Information-Warfare &

Security, 2011.

[55] IBM. IBM 4765 PCIe Data Sheet, 2011. http://www-03.ibm.com/

security/cryptocards/pciecc/pdf/PCIe_Spec_Sheet.pdf .

[56] IEEE. IEEE standard communication delivery time performance require-

ments for electric power substation automation. IEEE Standard 1646-

2004, 2005.http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&

arnumber=1405811 .

161

https://www.nwcouncil.org/history/Blackout
http://h18004.www1.hp.com/products/servers/proliantstorage/module.html
http://h18004.www1.hp.com/products/servers/proliantstorage/module.html
http://science.howstuffworks.com/environmental/energy/question5011.htm
http://science.howstuffworks.com/environmental/energy/question5011.htm
http://www-03.ibm.com/security/cryptocards/pciecc/pdf/PCIe_Spec_Sheet.pdf
http://www-03.ibm.com/security/cryptocards/pciecc/pdf/PCIe_Spec_Sheet.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1405811
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1405811

[57] Vadim Indelman, Stephen Williams, Michael Kaess, and Frank Dellaert. Information

fusion in navigation systems via factor graph based incremental smoothing.Robotics

and Autonomous Systems, 61(8):721–738, 2013.

[58] Intel Corporation. Intel trusted platform module (TPM-AXXTPME3/AXXTPME5)

hardware user’s guide, 2011.http://download.intel.com/support/

motherboards/server/sb/g21682004_tpm_hwug1.pdf .

[59] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection through

VMM-based “out-of-the-box” semantic view reconstruction. In Proceedings of the

14th ACM Conference on Computer and Communications Security, 2007.

[60] Yier Jin and Yiorgos Makris. Hardware trojan detectionusing path delay fingerprint.

In IEEE International Workshop on Hardware-Oriented Securityand Trust, 2008.

[61] Paria Jokar, Hasen Nicanfar, and Victor C.M. Leung. Specification-based intrusion

detection for home area networks in smart grids. InIEEE International Conference

on Smart Grid Communications (SmartGridComm), 2011.

[62] Alfred C. Herndon Jr., Joseph L. Ehasz, and Kermit Paul.Taum Sauk

Upper Dam Breach. Federal Energy Regulatory Commission, May 2006.

FERC No. P-2277.http://www.ferc.gov/industries/hydropower/

safety/projects/taum-sauk/ipoc-rpt/full-rpt.pdf .

[63] George G. Karady. Concept of energy transmission and distribution. In Leonard L.

Grigsby, editor,Electric Power Generation, Transmission, and Distribution, Electric

Power Engineering Handbook, pages 8–1—8–12. CRC Press, second edition, 2007.

[64] Tayeb Kenaza, Abdenour Labed, Yacine Boulahia, and Mohcen Sebehi. Adaptive

SVDD-based learning for false alarm reduction in intrusiondetection. InThe 12th

International Conference on Security and Cryptography (SECRYPT), 2015.

162

http://download.intel.com/support/motherboards/server/sb/g21682004_tpm_hwug1.pdf
http://download.intel.com/support/motherboards/server/sb/g21682004_tpm_hwug1.pdf
http://www.ferc.gov/industries/hydropower/safety/projects/taum-sauk/ipoc-rpt/full-rpt.pdf
http://www.ferc.gov/industries/hydropower/safety/projects/taum-sauk/ipoc-rpt/full-rpt.pdf

[65] Stephen Kent.Protecting Externally Supplied Software in Small Computers. PhD

thesis, Massachusetts Institute of Technology, September1980.

[66] Ross Kindermann and James Laurie Snell.Markov Random Fields and their Appli-

cations. American Mathematical Society, 1980.

[67] H. Krawczyk, M. Bellare, and R. Canetti.HMAC: Keyed-Hashing for Message

Authentication (RFC 2104). Internet Engineering Task Force, February 1997.

https://tools.ietf.org/html/rfc2104 .

[68] Manish Kumar, M. Hanumanthappa, and T. V. Suresh Kumar.Intrusion detection

system - false positive alert reduction technique.ACEEE International Journal on

Network Security, 2(3):37–40, July 2011.

[69] Aron Laszka, Waseem Abbas, S. Shankar Sastry, YevgeniyVorobeychik, and Xeno-

fon Koutsoukos. Optimal thresholds for intrusion detection systems. InSymposium

and Bootcamp on the Science of Security, 2016.

[70] Robert M. Lee, Michael J. Assante, and Tim Conway.Analysis of the Cyber Attack

on the Ukranian Power Grid. Joint work between SANS ICS and the Electricity

Information Sharing and Analysis Center, March 2016.

[71] Hui Lin, Homa Alemzadeh, Daniel Chen, Zbigniew Kalbarczyk, and Ravishankar K.

Iyer. Safety-critical cyber-physical attacks: Analysis,detection, and mitigation. In

Symposium and Bootcamp on the Science of Security, 2016.

[72] Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie. Hypervisor support for iden-

tifying covertly executing binaries. InProceedings of the 17th USENIX Security

Symposium, 2008.

163

https://tools.ietf.org/html/rfc2104

[73] Hans-Andrea Loeliger, Justin Dauwels, Junli Hu, Sascha Korl, Li Ping, and Frank R.

Kschischang. The factor graph approach to model-based signal processing.Proceed-

ings of the IEEE, 95(6):1295–1322, 2007.

[74] Steve Lusk, Alex Amirnovin, and Tim Collins. Cyber-intrusion auto-response

and policy management system (CAPMS). Presentation at the Cybersecurity

for Energy Delivery Systems Peer Review, August 2014.https://www.

controlsystemsroadmap.net/ieRoadmap%20Documents/ViaSat-

CAPMS-CEDS_Peer_Review_2014.pdf .

[75] Abhranil Maiti and Patrick Schaumont. Improving the quality of a physical unclon-

able function using configurable ring oscillators. InInternational Conference on

Field Programmable Logic and Applications, 2009.

[76] Ananth Mavinakayanahalli, Prasanna Panchamukhi, JimKeniston, Anil Keshava-

murthy, and Masami Hiramatsu. Probing the guts of Kprobes. In Proceedings of the

Ottawa Linux Symposium (OLS), 2006.

[77] McAfee cloud-based security for SMBs.http://www.mcafee.com/us/

resources/data-sheets/ds-cloud-based-security-for-smbs.

pdf .

[78] Rajesh Kannan Megalingam, Ashok Krishnan, Bharath Kalathiparambil Ranjan, and

Amar Kelu Nair. Advanced digital smart meter for dynamic billing, tamper detec-

tion, and consumer awareness. InProceedings of the 3rd International Conference

on Electronics Computer Technology, 2011.

[79] Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam. Revisiting traffic anomaly

detection using software defined networking. InThe 14th International Symposium

on Recent Advances in Intrusion Detection (RAID), 2011.

164

https://www.controlsystemsroadmap.net/ieRoadmap%20Documents/ViaSat-CAPMS-CEDS_Peer_Review_2014.pdf
https://www.controlsystemsroadmap.net/ieRoadmap%20Documents/ViaSat-CAPMS-CEDS_Peer_Review_2014.pdf
https://www.controlsystemsroadmap.net/ieRoadmap%20Documents/ViaSat-CAPMS-CEDS_Peer_Review_2014.pdf
http://www.mcafee.com/us/resources/data-sheets/ds-cloud-based-security-for-smbs.pdf
http://www.mcafee.com/us/resources/data-sheets/ds-cloud-based-security-for-smbs.pdf
http://www.mcafee.com/us/resources/data-sheets/ds-cloud-based-security-for-smbs.pdf

[80] Ameren Missouri. Taum sauk energy center, 2016.https://www.

ameren.com/missouri/environment/hydroelectric/taum-

sauk-information .

[81] Robert Mitchell and Ing-Ray Chen. Behavior-rule based intrusion detection sys-

tems for safety critical smart grid applications.IEEE Transactions on Smart Grid,

4(3):1254–1263, September 2013.

[82] Motorola. ACE 3600 specifications sheet, 2009. http://www.

motorolasolutions.com/web/Business/Products/SCADA

%20Products/ACE3600/_Documents/Static%20Files/ACE3600

%20Specifications%20Sheet.pdf .

[83] National Institute of Standards and Technology. Validated FIPS 140-1 and fips 140-

2 cryptographic modules, 2016.http://csrc.nist.gov/groups/STM/

cmvp/documents/140-1/140val-all.htm .

[84] North American Electric Reliability Corporation (NERC). CIP compliance, 2016.

http://www.nerc.com/pa/CI/Comp/Pages/default.aspx .

[85] Samuel Neves and Filipe Araujo. Binary code obfuscationthrough C++ template

metaprogramming. InINForum Simṕosio de Inforḿatica, 2012.

[86] NextEra Energy Resources. Solar - how solar plants work,2016. http://www.

nexteraenergyresources.com/what/solar_works.shtml .

[87] William Niemira, Rakesh B. Bobba, Peter Sauer, and WilliamH. Sanders. Mali-

cious data detection in state estimation leveraging systemlosses & estimation of

perturbed parameters. InIEEE International Conference on Smart Grid Communi-

cations (SmartGridComm), 2013.

165

https://www.ameren.com/missouri/environment/hydroelectric/taum-sauk-information
https://www.ameren.com/missouri/environment/hydroelectric/taum-sauk-information
https://www.ameren.com/missouri/environment/hydroelectric/taum-sauk-information
http://www.motorolasolutions.com/web/Business/Products/SCADA%20Products/ACE3600/_Documents/Static%20Files/ACE3600%20Specifications%20Sheet.pdf
http://www.motorolasolutions.com/web/Business/Products/SCADA%20Products/ACE3600/_Documents/Static%20Files/ACE3600%20Specifications%20Sheet.pdf
http://www.motorolasolutions.com/web/Business/Products/SCADA%20Products/ACE3600/_Documents/Static%20Files/ACE3600%20Specifications%20Sheet.pdf
http://www.motorolasolutions.com/web/Business/Products/SCADA%20Products/ACE3600/_Documents/Static%20Files/ACE3600%20Specifications%20Sheet.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
http://www.nerc.com/pa/CI/Comp/Pages/default.aspx
http://www.nexteraenergyresources.com/what/solar_works.shtml
http://www.nexteraenergyresources.com/what/solar_works.shtml

[88] Ben Niewenhuis, R. D. (Shawn) Blanton, Mudit Bhargava, and Ken Mai. SCAN-

PUF: A low overhead physically unclonable function from scan chain power-up

states. InIEEE International Test Conference (ITC), 2013.

[89] OASIS cover pages: Extensible access control markup language (XACML), 2009.

http://xml.coverpages.org/xacml.html .

[90] Hamed Okhravi, James Riordan, and Kevin Carter. Quantitative evaluation of dy-

namic platform techniques as a defense mechanism. InResearch in Attacks, Intru-

sions, and Defenses (RAID) Symposium, 2014.

[91] Organization for the Advancement of Structured Information Standards. eX-

tensible Access Control Markup Language (XACML) Version 3.0, Jan-

uary 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-

core-spec-os-en.pdf .

[92] Andrea Peterson.Are squirrels a bigger threat to the power grid than hackers?

Washington Post, January 2016.https://www.washingtonpost.com/

news/the-switch/wp/2016/01/12/are-squirrels-a-bigger-

threat-to-the-power-grid-than-hackers/ .

[93] Nick L. Petroni, Jr. and Michael Hicks. Automated detection of persistent kernel

control-flow attacks. InProceedings of the 14th ACM Conference on Computer and

Communications Security, 2007.

[94] John R. Pierce.An Introduction to Information Theory: Symbols, Signals and Noise.

Dover Publications, Inc., 2nd, revised edition, 1980.

[95] Miodrag Potkonjak, Ani Nahapetian, Michael Nelson, and Tammara Massey. Hard-

ware trojan horse detection using gate-level characterization. In 46th ACM/IEEE

Design Automation Conference, 2009.

166

http://xml.coverpages.org/xacml.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://www.washingtonpost.com/news/the-switch/wp/2016/01/12/are-squirrels-a-bigger-threat-to-the-power-grid-than-hackers/
https://www.washingtonpost.com/news/the-switch/wp/2016/01/12/are-squirrels-a-bigger-threat-to-the-power-grid-than-hackers/
https://www.washingtonpost.com/news/the-switch/wp/2016/01/12/are-squirrels-a-bigger-threat-to-the-power-grid-than-hackers/

[96] Thomas H. Ptacek and Timothy N. Newsham.Insertion, Evasion, and Denial of Ser-

vice: Eluding Network Intrusion Detection. Secure Networks, Inc., January 1998.

http://insecure.org/stf/secnet_ids/secnet_ids.html .

[97] Ashwin Ramaswamy. Autoscopy: Detecting pattern-searching rootkits via control

flow tracing. Master’s thesis, Dartmouth College, May 2009.

[98] Raspberry Pi 2 Model B.https://www.raspberrypi.org/products/

raspberry-pi-2-model-b/ .

[99] Jason Reeves. Autoscopy Jr.: Intrusion detection for embedded control systems.

Master’s thesis, Dartmouth College, September 2011. Revisedversion of August

2011 thesis submission.

[100] Jason Reeves, Ashwin Ramaswamy, Michael Locasto, Sergey Bratus, and Sean W.

Smith. Intrusion detection for resource-constrained embedded control systems in the

power grid.International Journal of Critical Infrastructure Protection, 5(2):74–83,

2012.

[101] Jason Reeves and Sean W. Smith. Tamper event detection on distributed devices in

critical infrastructure. InThe Second International Cryptographic Module Confer-

ence (ICMC), 2014.

[102] Jason Reeves and Sean W. Smith. Solving the grid defender’s dilemma: Tamper pro-

tection for distributed cyber-physical systems. InThe 12th International Conference

on Security and Cryptography (SECRYPT), 2015.

[103] Steffen Reidt, Mudhakar Srivatsa, and Shane Balfe. The fable of the bees: Incen-

tivizing robust revocation decision making in ad hoc networks. In The 16th ACM

Conference on Computer and Communications Security (ACM CCS), 2009.

167

http://insecure.org/stf/secnet_ids/secnet_ids.html
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

[104] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of kernel

rootkits with VMM-based memory shadowing. InThe 11th International Sympo-

sium on Recent Advances in Intrusion Detection, 2008.

[105] Christopher Roblee, Vincent Berk, and George Cybenko. Large-scale autonomic

server monitoring using process query systems. InIEEE International Conference

on Autonomic Computing, 2005.

[106] Tanya Roosta, Dennis K. Nilsson, Ulf Lindqvist, and Alfonso Valdes. An intrusion

detection system for wireless process control systems. InThe 5th IEEE International

Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2008.

[107] Ulrich Rührmair and Marten van Dijk. PUFs in security protocols: Attack models

and security evaluations. InIEEE Symposium on Security and Privacy, 2013.

[108] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. A novel tech-

nique for improving hardware trojan detection and reducingtrojan activation time.

IEEE Transactions on Very Large Scale Integration Systems, 20(1):112–125, Jan-

uary 2012.

[109] Josh Schellenberg. Evaluating the total cost of outages. Presentation to the Distri-

bution Reliability Working Group at the IEEE Power & Energy Society General

Meeting, July 2012. http://grouper.ieee.org/groups/td/dist/

sd/doc/2012-07-04-Evaluating-the-Total-Cost-of-Outages.

pdf .

[110] Schweitzer Engineering Laboratories. SEL-651R-2 Recloser Control Data Sheet,

2013. https://www.selinc.com/WorkArea/DownloadAsset.aspx?

id=100135 .

168

http://grouper.ieee.org/groups/td/dist/sd/doc/2012-07-04-Evaluating-the-Total-Cost-of-Outages.pdf
http://grouper.ieee.org/groups/td/dist/sd/doc/2012-07-04-Evaluating-the-Total-Cost-of-Outages.pdf
http://grouper.ieee.org/groups/td/dist/sd/doc/2012-07-04-Evaluating-the-Total-Cost-of-Outages.pdf
https://www.selinc.com/WorkArea/DownloadAsset.aspx?id=100135
https://www.selinc.com/WorkArea/DownloadAsset.aspx?id=100135

[111] SEL-3355 computer data sheet. https://cdn.selinc.com/assets/

Literature/Product%20Literature/Data%20Sheets/3355_DS_

20160105.pdf .

[112] SEL-3622 security gateway data sheet. https://cdn.selinc.com/

assets/Literature/Product%20Literature/Data%20Sheets/

3622_DS_20151230.pdf .

[113] SEL-651R advanced recloser control.https://www.selinc.com/SEL-

651R/ .

[114] Sumit Siddharth. Evading NIDS, revisited. Symantec Corporation, Novem-

ber 2010.http://www.symantec.com/connect/articles/evading-

nids-revisited .

[115] Michael Sipser.Introduction to the Theory of Computation. Thomson Course Tech-

nology, 2nd edition, 2007.

[116] Rebecca Smith. U.S. risks national blackout from small-scale attack. Wall

Street Journal, March 2014.http://online.wsj.com/news/articles/

SB10001424052702304020104579433670284061220 .

[117] Sean Smith and John Marchesini.The Craft of System Security. Addison-Wesley

Professional, 2007.

[118] Sean W. Smith.Trusted Computing Platforms: Design and Applications. Springer,

2005.

[119] Sean W. Smith, Elaine Palmer, and Steve Weingart. Using a high-performance,

programmable secure coprocessor. InSecond International Conference on Financial

Cryptography, 1998.

169

https://cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/3355_DS_20160105.pdf
https://cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/3355_DS_20160105.pdf
https://cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/3355_DS_20160105.pdf
https://cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/3622_DS_20151230.pdf
https://cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/3622_DS_20151230.pdf
https://cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/3622_DS_20151230.pdf
https://www.selinc.com/SEL-651R/
https://www.selinc.com/SEL-651R/
http://www.symantec.com/connect/articles/evading-nids-revisited
http://www.symantec.com/connect/articles/evading-nids-revisited
http://online.wsj.com/news/articles/SB10001424052702304020104579433670284061220
http://online.wsj.com/news/articles/SB10001424052702304020104579433670284061220

[120] Sean W. Smith and Steve Weingart. Building a high-performance, programmable

secure coprocessor.Computer Networks, 31(1999):831–860, 1999.

[121] Snort.http://www.snort.org/ .

[122] Rouslan V. Solomakhin. Predictive YASIR: High securitywith lower latency in

legacy SCADA. Master’s thesis, Dartmouth College, June 2010.

[123] William L. Sousan, Quiming Zhu, Robin Gandhi, and William Mahoney. Smart

grid tamper detection using learned event patterns. In Vijay Pappu, Marco Carvalho,

and Panos Pardalos, editors,Optimization and Security Challenges in Smart Power

Grids, Energy Systems, pages 99–115. Springer Berlin Heidelberg,2013.

[124] Diomidis Spinellis. Notable design patterns for domain-specific languages.Journal

of Systems and Software, 56(1):91–99, February 2001.

[125] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. AEGIS: A single-chip

secure processor.Information Security Technical Report, 10(2):63–73, 2005.

[126] TekTrakker Information Systems. Smart grid RFI: Addressing policy and lo-

gistical challenges. Comments on the DOE Request for Information of the

same name, 2010.http://energy.gov/sites/prod/files/oeprod/

DocumentsandMedia/TekTrakker_Comments.pdf .

[127] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. Unsupervised

anomaly-based malware detection using hardware features.In Research in Attacks,

Intrusions, and Defenses (RAID) Symposium, 2014.

[128] George Theodorakopoulos and John S. Baras. On trust models and trust evaluation

metrics for ad hoc networks.IEEE Journal on Selected Areas In Communications,

24(2):318–328, 2006.

170

http://www.snort.org/
http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/TekTrakker_Comments.pdf
http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/TekTrakker_Comments.pdf

[129] Tyler Thia. Signature-based detection, protection systems ineffective. ZDNet,

June 2011.http://www.zdnet.com/signature-based-detection-

protection-systems-ineffective-2062300935/ .

[130] Scott A. Thibault, Renaud Marlet, and Charles Consel. Domain-specific languages:

From design to implementation application to video device drivers generation.IEEE

Transactions On Software Engineering, 25(3), May/June 1999.

[131] Hing-Chung Tsang, Moon-Chuen Lee, and Chi-Man Pun. A robust anti-tamper

protection scheme. InSixth International Conference on Availability, Reliability

and Security (ARES), 2011.

[132] Katherine Tweed. Hack Your Meter While You Can. Greentech Media, April

2010. http://www.greentechmedia.com/articles/read/hack-

your-meter-while-you-can .

[133] J. Doug Tygar and Bennet Yee. Dyad: A system for using physically secure copro-

cessors. InTechnological Strategies for the Protection of Intellectual Property in the

Networked Multimedia Environment, 1994.

[134] United States.Federal Information Processing Standards Publication 140-1: Se-

curity Requirements for Cryptographic Modules. National Institute for Standards

and Technology, January 1994.http://csrc.nist.gov/publications/

fips/fips1401.htm .

[135] United States.Federal Information Processing Standards Publication 140-2: Secu-

rity Requirements for Cryptographic Modules. National Institute for Standards and

Technology, May 2001.http://csrc.nist.gov/publications/fips/

fips140-2/fips1402.pdf .

[136] United States. Federal Information Processing Standards Publication 140-3

(DRAFT): Security Requirements for Cryptographic Modules. National Institute

171

http://www.zdnet.com/signature-based-detection-protection-systems-ineffective-2062300935/
http://www.zdnet.com/signature-based-detection-protection-systems-ineffective-2062300935/
http://www.greentechmedia.com/articles/read/hack-your-meter-while-you-can
http://www.greentechmedia.com/articles/read/hack-your-meter-while-you-can
http://csrc.nist.gov/publications/fips/fips1401.htm
http://csrc.nist.gov/publications/fips/fips1401.htm
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

for Standards and Technology, 2007.http://csrc.nist.gov/groups/ST/

FIPS140_3/documents/FIPS_140-3%20Final_Draft_2007.pdf .

[137] United States. ShakeMap Scientific Background. United States Geological

Survey, March 2011. http://earthquake.usgs.gov/earthquakes/

shakemap/background.php .

[138] United States. Cyber-Intrusion Auto-Response Policy and Management

System (CAPMS). Department of Energy, May 2015. https://www.

controlsystemsroadmap.net/ieRoadmap%20Documents/CAPMS_

flyer.pdf .

[139] United States.What is the electric power grid and what are some challenges it faces?

United States Energy Information Administration, December 2015.http://www.

eia.gov/energy_in_brief/article/power_grid.cfm .

[140] UPX: The Ultimate Packer for eXecutables.http://upx.sourceforge.

net/ .

[141] Alfonso Valdes and Keith Skinner. Probabilistic alert correlation. InThe 4th Inter-

national Symposium on Recent Advances in Intrusion Detection (RAID), 2001.

[142] Joel Van Der Woude. Dependable cyber-physical systems through control flow mon-

itoring. Undergraduate senior thesis, University of Illinois at Urbana-Champaign,

May 2013.

[143] Elizabeth Von Meier.Electric Power Systems: A Conceptual Introduction. John

Wiley and Sons, Inc., 2006.

[144] Matthew L. Wald. For the smart grid, a ‘Synchrophasor’. NY-

Times.com. http://green.blogs.nytimes.com/2010/04/01/for-

the-smart-grid-a-synchophasor/ .

172

http://csrc.nist.gov/groups/ST/FIPS140_3/documents/FIPS_140-3%20Final_Draft_2007.pdf
http://csrc.nist.gov/groups/ST/FIPS140_3/documents/FIPS_140-3%20Final_Draft_2007.pdf
http://earthquake.usgs.gov/earthquakes/shakemap/background.php
http://earthquake.usgs.gov/earthquakes/shakemap/background.php
https://www.controlsystemsroadmap.net/ieRoadmap%20Documents/CAPMS_flyer.pdf
https://www.controlsystemsroadmap.net/ieRoadmap%20Documents/CAPMS_flyer.pdf
https://www.controlsystemsroadmap.net/ieRoadmap%20Documents/CAPMS_flyer.pdf
http://www.eia.gov/energy_in_brief/article/power_grid.cfm
http://www.eia.gov/energy_in_brief/article/power_grid.cfm
http://upx.sourceforge.net/
http://upx.sourceforge.net/
http://green.blogs.nytimes.com/2010/04/01/for-the-smart-grid-a-synchophasor/
http://green.blogs.nytimes.com/2010/04/01/for-the-smart-grid-a-synchophasor/

[145] Yong Wang, Zhaoyan Xu, Jialong Zhang, Lei Xu, Haopei Wang, and Guofei Gu.

SRID: State relation based intrusion detection for false data injection attacks in

SCADA. In Mirosław Kutyłowski and Jaideep Vaidya, editors,Computer Secu-

rity – ESORICS 2014, volume 8713 ofLecture Notes in Computer Science, pages

401–418. Springer International Publishing, 2014.

[146] Yujue Wang and Carl Hauser. An evidence-based Bayesian trust assessment frame-

work for critical-infrastructure decision processing. InThe Fifth Annual IFIP Work-

ing Group 11.10 International Conference on Critical Infrastructure Protection,

2011.

[147] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. Countering kernel rootkits

with lightweight hook protection. InProceedings of the 16th ACM Conference on

Computer and Communications Security, 2009.

[148] Tucker Ward. Grid cryptographic simulation: A simulator to evaluate the scalability

of the X.509 standard in the smart grid. Undergraduate senior thesis, Dartmouth

College, 2013.

[149] Gabriel Weaver, Carmen Cheh, Edmund Rogers, William H. Sanders, and Dennis

Gammel. Toward a cyber-physical topology language: Applications to NERC CIP

audit. InACM Workshop on Smart Energy Grid Security (SEGS), 2013.

[150] Webroot SecureAnywhere business endpoint protection. http://www.

webroot.com/us/en/business/products/endpoint/ .

[151] Steve Weingart. Physical security devices for computer subsystems: A survey of

attacks and defenses 2008 (updated from the CHES 2000 version), 2008. Originally

from Second International Workshop on Cryptographic Hardware andEmbedded

Systems, August 2000.

173

http://www.webroot.com/us/en/business/products/endpoint/
http://www.webroot.com/us/en/business/products/endpoint/

[152] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog,

A. Huynh, M. Carlson, J. Perry, and S. Waldbusser.Terminology for Policy-

Based Management (RFC 3198). Internet Engineering Task Force, November 2001.

http://www.ietf.org/rfc/rfc3198 .

[153] Steve White and Liam Comerford. ABYSS: A trusted architecture for software

protection. InIEEE Symposium on Security and Privacy, 1987.

[154] Steve White, Steve H. Weingart, William Arnold, and Elaine Palmer. Introduction

to the Citadel architecture: Security in physically exposedenvironments. Technical

Report RC16672, IBM T. J. Watson Research Center, 1991.

[155] WorldStandards.eu. Plug, socket & voltage by country, 2016. http://www.

worldstandards.eu/electricity/plug-voltage-by-country/ .

[156] Murty V. V. S. Yalla. A digital multifunction protection relay.IEEE Transactions on

Power Delivery, 7(1):193–201, 1992.

[157] Yi Yang, Kieran McLaughlin, Timothy Littler, Sakir Sezer, and Haifeng Wang. Rule-

based intrusion detection system for SCADA networks. InProceedings of the 2nd

IET International Conference in Renewable Power Generation (RPG), 2013.

[158] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. Securecore:

A multicore-based intrusion detection architecture for real-time embedded systems.

In Proceedings of the 19th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS), 2013.

[159] Jun Zhao, Qian He, and Linlin Yao. A distributed website anti-tamper system based

on filter driver and proxy. In David Jin and Sally Lin, editors, Advances in Mul-

timedia, Software Engineering and Computing Vol.1, volume 128 ofAdvances in

Intelligent and Soft Computing, pages 415–421. Springer Berlin Heidelberg, 2012.

174

http://www.ietf.org/rfc/rfc3198
http://www.worldstandards.eu/electricity/plug-voltage-by-country/
http://www.worldstandards.eu/electricity/plug-voltage-by-country/

[160] Sencun Zhu, Sanjeev Setia, Sushil Jajodia, and Peng Ning. An interleaved hop-by-

hop authentication scheme for filtering of injected false data in sensor networks. In

IEEE Symposium on Security and Privacy, 2004.

[161] Saman Zonouz, Himanshu Khurana, William H. Sanders, and Timothy Yardley.

RRE: A game-theoretic intrusion response and recovery engine. IEEE Transactions

on Parallel and Distributed Systems, 25(2):395–406, 2014.

[162] Saman Zonouz, Katherine Rogers, Robin Berthier, Rakesh Bobba, William H.

Sanders, and Thomas Overbye. SCPSE: Security-oriented cyber-physical state es-

timation for power grid critical infrastructures.IEEE Transactions on Smart Grid,

3(4):1790–1799, 2012.

175

	TEDDI: Tamper Event Detection on Distributed Cyber-Physical Systems
	Recommended Citation

	Introduction
	Edge Devices and the Power Grid
	The Grid Defender's Dilemma
	Our Proposal: TEDDI
	Contributions
	Thesis Outline

	Background
	The Power Grid: A High-Level Overview
	The Smart Grid: Intelligence at the Endpoints
	Data Fusion Algorithms
	Bayesian Networks (BNs)
	Markov Random Fields (MRFs)
	Binary Decision Diagrams/Branching Programs (BDDs)
	Custom Algorithms
	Factor Graphs

	XACML and the Power of Distributed Systems
	Network Intrusion Protection Systems (NIPS)
	Autoscopy Jr.

	A Taxonomy of Tampering
	Device Data Access
	Device Additions
	Device Modifications
	Device Replacements
	Non-Malicious Tampering
	Tamper Protections

	The Grid Defender's Dilemma
	What Is The Dilemma?
	Why Haven't We Solved The Dilemma?

	Related Work
	Tampering vs. Intruding
	Software Tamper Protections
	Hardware Tamper Protections
	Signature-Based Intrusion Protections
	Anomaly-Based Intrusion Protections
	Hybrid Intrusion Protections
	Other Protection Work
	Prior Work vs. The Grid Defender's Dilemma
	Factor Graphs and Security

	The TEDDI System
	Problem Assumptions and Attacker Model
	TEDDI Architecture Overview
	TEDDI Factor Graphs
	How TEDDI Looks For Sequences

	Tamper Information Points (TIPs)
	Tamper Decision Points (TDPs)
	Tamper Enforcement Points (TEPs)
	Limitations of TEDDI

	The TEDDI Generation Tool
	Factor Graph Domain-Specific Language (FGDSL)
	Response Suggestion Engine
	Network Topology Uploader
	TDP Placement Tool
	Generation Tool Limitations

	TEDDI in Action
	Scenario 1: Device Credential Heist
	Scenario 2: The Schweitzer Scenario
	Summary: Scenarios 1-2
	Scenario 3: Maintenance Mode Attack
	Scenario 4: Malicious USB Attack
	Summary: Scenarios 3-4
	Scenario 5: Taum Sauk Dam Overflow
	Other Tamper Scenarios
	Simple User Data Heist
	Complex User Data Heist
	Pin-In-The-Meter Attack
	Return-To-Debug Attack
	The Sensor Subversion Scenario
	Earthquake

	Overall Summary

	Evaluation
	A Word on System Comparison
	Detection Accuracy
	TIP Event Detection
	TDP Regional State Calculation

	System Performance
	Usability Analysis
	Summary

	Conclusions

