375 research outputs found
A survey on tidal analysis and forecasting methods for Tsunami detection
Accurate analysis and forecasting of tidal level are very important tasks for human activities in oceanic and coastal areas. They can be crucial in catastrophic situations like occurrences of Tsunamis in order to provide a rapid alerting to the human population involved and to save lives. Conventional tidal forecasting methods are based on harmonic analysis using the least squares method to determine harmonic parameters. However, a large number of parameters and long-term measured data are required for precise tidal level predictions with harmonic analysis. Furthermore, traditional harmonic methods rely on models based on the analysis of astronomical components and they can be inadequate when the contribution of non-astronomical components, such as the weather, is significant. Other alternative approaches have been developed in the literature in order to deal with these situations and provide predictions with the desired accuracy, with respect also to the length of the available tidal record. These methods include standard high or band pass filtering techniques, although the relatively deterministic character and large amplitude of tidal signals make special techniques, like artificial neural networks and wavelets transform analysis methods, more effective. This paper is intended to provide the communities of both researchers and practitioners with a broadly applicable, up to date coverage of tidal analysis and forecasting methodologies that have proven to be successful in a variety of circumstances, and that hold particular promise for success in the future. Classical and novel methods are reviewed in a systematic and consistent way, outlining their main concepts and components, similarities and differences, advantages and disadvantages
A local feature engineering strategy to improve network anomaly detection
The dramatic increase in devices and services that has characterized modern societies in recent decades, boosted by the exponential growth of ever faster network connections and the predominant use of wireless connection technologies, has materialized a very crucial challenge in terms of security. The anomaly-based intrusion detection systems, which for a long time have represented some of the most efficient solutions to detect intrusion attempts on a network, have to face this new and more complicated scenario. Well-known problems, such as the difficulty of distinguishing legitimate activities from illegitimate ones due to their similar characteristics and their high degree of heterogeneity, today have become even more complex, considering the increase in the network activity. After providing an extensive overview of the scenario under consideration, this work proposes a Local Feature Engineering (LFE) strategy aimed to face such problems through the adoption of a data preprocessing strategy that reduces the number of possible network event patterns, increasing at the same time their characterization. Unlike the canonical feature engineering approaches, which take into account the entire dataset, it operates locally in the feature space of each single event. The experiments conducted on real-world data showed that this strategy, which is based on the introduction of new features and the discretization of their values, improves the performance of the canonical state-of-the-art solutions
A Unified Surface Geometric Framework for Feature-Aware Denoising, Hole Filling and Context-Aware Completion
Technologies for 3D data acquisition and 3D printing have enormously developed in the past few years, and, consequently, the demand for 3D virtual twins of the original scanned objects has increased. In this context, feature-aware denoising, hole filling and context-aware completion are three essential (but far from trivial) tasks. In this work, they are integrated within a geometric framework and realized through a unified variational model aiming at recovering triangulated surfaces from scanned, damaged and possibly incomplete noisy observations. The underlying non-convex optimization problem incorporates two regularisation terms: a discrete approximation of the Willmore energy forcing local sphericity and suited for the recovery of rounded features, and an approximation of the l(0) pseudo-norm penalty favouring sparsity in the normal variation. The proposed numerical method solving the model is parameterization-free, avoids expensive implicit volumebased computations and based on the efficient use of the Alternating Direction Method of Multipliers. Experiments show how the proposed framework can provide a robust and elegant solution suited for accurate restorations even in the presence of severe random noise and large damaged areas
Leveraging augmentation techniques for tasks with unbalancedness within the financial domain: a two-level ensemble approach
Modern financial markets produce massive datasets that need to be analysed using new modelling techniques like those from (deep) Machine Learning and Artificial Intelligence. The common goal of these techniques is to forecast the behaviour of the market, which can be translated into various classification tasks, such as, for instance, predicting the likelihood of companies’ bankruptcy or in fraud detection systems. However, it is often the case that real-world financial data are unbalanced, meaning that the classes’ distribution is not equally represented in such datasets. This gives the main issue since any Machine Learning model is trained according to the majority class mainly, leading to inaccurate predictions. In this paper, we explore different data augmentation techniques to deal with very unbalanced financial data. We consider a number of publicly available datasets, then apply state-of-the-art augmentation strategies to them, and finally evaluate the results for several Machine Learning models trained on the sampled data. The performance of the various approaches is evaluated according to their accuracy, micro, and macro F1 score, and finally by analyzing the precision and recall over the minority class. We show that a consistent and accurate improvement is achieved when data augmentation is employed. The obtained classification results look promising and indicate the efficiency of augmentation strategies on financial tasks. On the basis of these results, we present an approach focused on classification tasks within the financial domain that takes a dataset as input, identifies what kind of augmentation technique to use, and then applies an ensemble of all the augmentation techniques of the identified type to the input dataset along with an ensemble of different methods to tackle the underlying classification
Statistical arbitrage powered by Explainable Artificial Intelligence
Machine learning techniques have recently become the norm for detecting patterns in financial markets. However, relying solely on machine learning algorithms for decision-making can have negative consequences, especially in a critical domain such as the financial one. On the other hand, it is well-known that transforming data into actionable insights can pose a challenge even for seasoned practitioners, particularly in the financial world. Given these compelling reasons, this work proposes a machine learning approach powered by eXplainable Artificial Intelligence techniques integrated into a statistical arbitrage trading pipeline. Specifically, we propose three methods to discard irrelevant features for the prediction task. We evaluate the approaches on historical data of component stocks of the S&P500 index and aim at improving not only the prediction performance at the stock level but also overall at the stock set level. Our analysis shows that our trading strategies that include such feature selection methods improve the portfolio performances by providing predictive signals whose information content suffices and is less noisy than the one embedded in the whole feature set. By performing an in-depth risk-return analysis, we show that the proposed trading strategies powered by explainable AI outperform highly competitive trading strategies considered as baselines
Executive functions and attention processes in adolescents and young adults with intellectual disability
(1) Background: We made a comprehensive evaluation of executive functions (EFs) and attention processes in a group of adolescents and young adults with mild intellectual disability (ID). (2) Methods: 27 adolescents and young adults (14 females and 13 males) with ID, aged between 15.1 and 23 years (M = 17.4; SD = 2.04), were compared to a control group free of cognitive problems and individually matched for gender and age. (3) Results: As for EFs, individuals with ID were severely impaired on all subtests of the Behavioral Assessment of Dysexecutive Syndrome (BADS) battery. However, we also found appreciable individual differences, with eight individuals (approximately 30%) scoring within normal limits. On the attention tests, individuals with ID were not generally slower but presented specific deficits only on some attention tests (i.e., Choice Reaction Times, Color Naming and Color–Word Interference, and Shifting of Attention for Verbal and for Visual Targets). The role of a global factor (i.e., cognitive speed) was modest in contributing to the group differences; i.e., when present, group differences were selectively associated with specific task manipulations, not global differences in cognitive speed. (4) Conclusions: The study confirmed large group differences in EFs; deficits in attentional processing were more specific and occurred primarily in tasks taxing the selective dimension of attention, with performance on intensive tasks almost entirely spared
Popularity prediction of instagram posts
Predicting the popularity of posts on social networks has taken on significant importance in recent years, and several social media management tools now offer solutions to improve and optimize the quality of published content and to enhance the attractiveness of companies and organizations. Scientific research has recently moved in this direction, with the aim of exploiting advanced techniques such as machine learning, deep learning, natural language processing, etc., to support such tools. In light of the above, in this work we aim to address the challenge of predicting the popularity of a future post on Instagram, by defining the problem as a classification task and by proposing an original approach based on Gradient Boosting and feature engineering, which led us to promising experimental results. The proposed approach exploits big data technologies for scalability and efficiency, and it is general enough to be applied to other social media as well
A transformers-based approach for fine and coarse-grained classification and generation of MIDI songs and soundtracks
Music is an extremely subjective art form whose commodification via the recording industry in the 20th century has led to an increasingly subdivided set of genre labels that attempt to organize musical styles into definite categories. Music psychology has been studying the processes through which music is perceived, created, responded to, and incorporated into everyday life, and, modern artificial intelligence technology can be exploited in such a direction. Music classification and generation are emerging fields that gained much attention recently, especially with the latest discoveries within deep learning technologies. Self attention networks have in fact brought huge benefits for several tasks of classification and generation in different domains where data of different types were used (text, images, videos, sounds). In this article, we want to analyze the effectiveness of Transformers for both classification and generation tasks and study the performances of classification at different granularity and of generation using different human and automatic metrics. The input data consist of MIDI sounds that we have considered from different datasets: sounds from 397 Nintendo Entertainment System video games, classical pieces, and rock songs from different composers and bands. We have performed classification tasks within each dataset to identify the types or composers of each sample (fine-grained) and classification at a higher level. In the latter, we combined the three datasets together with the goal of identifying for each sample just NES, rock, or classical (coarse-grained) pieces. The proposed transformers-based approach outperformed competitors based on deep learning and machine learning approaches. Finally, the generation task has been carried out on each dataset and the resulting samples have been evaluated using human and automatic metrics (the local alignment)
A holistic auto-configurable ensemble machine learning strategy for financial trading
Financial markets forecasting represents a challenging task for a series of reasons, such as the irregularity, high fluctuation, noise of the involved data, and the peculiar high unpredictability of the financial domain. Moreover, literature does not offer a proper methodology to systematically identify intrinsic and hyper-parameters, input features, and base algorithms of a forecasting strategy in order to automatically adapt itself to the chosen market. To tackle these issues, this paper introduces a fully automated optimized ensemble approach, where an optimized feature selection process has been combined with an automatic ensemble machine learning strategy, created by a set of classifiers with intrinsic and hyper-parameters learned in each marked under consideration. A series of experiments performed on different real-world futures markets demonstrate the effectiveness of such an approach with regard to both to the Buy and Hold baseline strategy and to several canonical state-of-the-art solutions
CulturAI: Semantic Enrichment of Cultural Data Leveraging Artificial Intelligence
In this paper, we propose an innovative tool able to enrich cultural and creative spots (gems, hereinafter) extracted from the European Commission Cultural Gems portal, by suggesting relevant keywords (tags) and YouTube videos (represented with proper thumbnails). On the one hand, the system queries the YouTube search portal, selects the videos most related to the given gem, and extracts a set of meaningful thumbnails for each video. On the other hand, each tag is selected by identifying semantically related popular search queries (i.e., trends). In particular, trends are retrieved by querying the Google Trends platform. A further novelty is that our system suggests contents in a dynamic way. Indeed, as for both YouTube and Google Trends platforms the results of a given query include the most popular videos/trends, such that a gem may constantly be updated with trendy content by periodically running the tool. The system has been tested on a set of gems and evaluated with the support of human annotators. The results highlighted the effectiveness of our proposal
- …