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A B S T R A C T

Machine learning techniques have recently become the norm for detecting patterns in financial markets.
However, relying solely on machine learning algorithms for decision-making can have negative consequences,
especially in a critical domain such as the financial one. On the other hand, it is well-known that transforming
data into actionable insights can pose a challenge even for seasoned practitioners, particularly in the
financial world. Given these compelling reasons, this work proposes a machine learning approach powered by
eXplainable Artificial Intelligence techniques integrated into a statistical arbitrage trading pipeline. Specifically,
we propose three methods to discard irrelevant features for the prediction task. We evaluate the approaches
on historical data of component stocks of the S&P500 index and aim at improving not only the prediction
performance at the stock level but also overall at the stock set level. Our analysis shows that our trading
strategies that include such feature selection methods improve the portfolio performances by providing
predictive signals whose information content suffices and is less noisy than the one embedded in the whole
feature set. By performing an in-depth risk-return analysis, we show that the proposed trading strategies
powered by explainable AI outperform highly competitive trading strategies considered as baselines.
1. Introduction

The quantitative trading strategy known as Pairs Trading1 has
become increasingly popular since the mid-1980s. The seminal paper
by Gatev et al. (2006) is one of the first comprehensive studies on the
profitability of a simple pairs trading strategy of U.S. stocks. This in-
vesting strategy identifies pairs of stocks whose prices have historically
moved together (i.e., they have high correlation) over a specific period.
Once having identified stocks that tended to behave in a ‘‘similar’’ way
in the past, traders short the outperforming stock (i.e., betting on a
value of a security to fall and profiting from that fall), and buy long the
under-performing one, assuming an equilibrium relationship between
the two securities (i.e., stocks) and a mean reversion occurring in price
spread. This happens on the consideration that if the future perfor-
mance resembles that of the past, then the relative deviation of price is
temporary, and market prices are likely to correct and finally converge
again, thereby generating profits. This concept of pairs trading can be
extended to groups of stocks and this strategy is often referred to as
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generalized pairs trading or statistical arbitrage (StatArb) (Avellaneda
& Lee, 2010; Khandani & Lo, 2011).

In Krauss (2017), the authors pointed out that although academic
research about this strategy is still at its early stages, if compared with
other quantitative trading strategies, StatArb is gaining momentum on
different research streams: distance based (Gatev et al., 2006), co-
integration based (Vidyamurthy, 2004), models based on stochastic
spread (Kaufman & Lang, 2015), and a bucket of further approaches,
that the authors label as ‘‘other approaches’’, that involve Machine
Learning (ML) technologies. StatArb is a natural application field for
ML as this variant of algorithmic trading involves a large number
of securities and substantial computational, trading, and information
technology infrastructures (Henrique et al., 2019; Lo, 2010).

In recent years, this trend of adopting ML has surged, due to
more accessible computing power. Furthermore, financial time-series
datasets have unique characteristics that make prediction tasks chal-
lenging, such as, e.g., their non-linear and non-stationary nature. In
this context, studies as Cheng et al. (2015) have shown that the
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use of classical statistical tools cannot reveal the entire spectrum of
information. For these reasons, ML has come to play an integral role
in many parts of the quantitative financial ecosystem.

Although employing ML techniques for decision making, and by
extension for StatArb, seems to be the best viable option, practitioners
require to understand how the employed ML models undertake their
decisions. Often referred to as ‘‘black boxes’’, ML models are developed
with a single goal of maximizing predictive performance (Barbaglia
et al., 2021). The European GDPR regulation (Goddard, 2017) states
that the existence of automated decision-making should carry mean-
ingful information about the logic involved, as well as the significance
and the envisaged consequences of such processing for the data subject.
Under the GDPR, users of a ML system are entitled to receive mean-
ingful information about the logic of the automated decision-making
process. To fill this gap, researchers have developed frameworks to ‘‘X-
ray’’ the ML models and increase their transparency (Molnar et al.,
2020), and the field of eXplainable Artificial Intelligence (XAI) has
surged. Under the umbrella of XAI, in the literature (Adadi & Berrada,
2018) we can find different perspectives and motivations: explanations
to justify, explanations to control, explanations to discover, and finally,
explanations to improve classification or regression tasks. We focus
our work on the latter. Specifically, we aim at defining a feature
selection framework tailored for financial forecasting that increases the
predictive performance of the employed ML models.

However, we must note that there are some undesirable, natural
and unavoidable limitations to XAI (Emmert-Streib et al., 2020). The
authors of the cited paper show what XAI methods can be instead than
presenting what they should be and have summarized their findings as
reported in the following three items:

• An AI system represents an instrument for data analysis and the
explainability of an even perfect AI system are limited by the
random sample of the used data.

• The more exhaustive an AI system becomes the more complex its
underlying mathematics is.

• The most powerful AI systems such as neural networks should
not be preferred by default. A careful analysis against alternatives
should be carried out and differences should be quantified.

his means that, although a XAI method provides a useful tool to
nalyze and choose the features of a given dataset, a certain degree
f uncertainty of any AI model may still be left when trying to uncover
he black-box underlying it.

As far as the feature selection process is concerned, it aims at
dentifying a representative subset of features from a larger cohort.
ne can either choose to manually select the features or to apply
n automated method. The challenge in the manual selection of the
eatures is that this process requires expert knowledge about the data
t hand. Besides, due to unclear dependencies within financial data,
dentifying significant information from irrelevant information is a
hallenging task that can be better tackled in an automated fashion.
his constitutes the goal of this paper.

In the context of machine learning, feature selection has high poten-
ials (Barbaglia et al., 2021). When handling high-dimensional input
ata, finding the most descriptive features might reduce model com-
lexity and accelerate computation, model training and prediction.
urthermore, it supports model interpretation and diagnosis (Zhao
t al., 2019), as understanding what the representative features mean
eads to gain a deeper insight of the problem at hand. Besides it
endentially helps tempering model over-fitting, which can significantly
inder the performance of the predictive models (de Prado, 2018).
owever, as also shown by Smolander et al. (2019), the use of feature

election should be balanced, in the sense that it needs ensuring that the
verall usage and set-up is simple, the needed computational resources
re little and the execution time is faster compared to other approaches
lone.
2

Feature selection methods can be roughly divided into three cate-
gories: wrapper methods, embedded methods, and filter methods (Ya-
mada et al., 2020). Wrapper methods evaluate subsets of features by
recomputing the model for each of them. Embedded methods learn the
model while simultaneously selecting the subset of relevant features.
Filter methods attempt to remove irrelevant features using a per-feature
relevance score. In this paper, a filter method based on permutation im-
portance score is studied and evaluated within an automated machine
learning platform. The advantage of the filter method is the quality of
being applicable to different machine learning models.

Combining these three dimensions, i.e., machine learning, explain-
able AI, and trading/statistical arbitrage, is the main objective of this
work. Although these points are discussed in the literature on an
individual basis, there is a lack of empirical work dealing with the use
of XAI techniques in a StatArb trading context.

The reader notices that our aim is not to provide a novel contribu-
tion to XAI research, nor to propose new techniques – or variations of
existing ones – in this field of research. Rather, we integrate machine
learning and XAI technologies to tackle the StatArb problem, leading
to a (proven) increased performance with respect to that obtained by
a baseline consisting of machine learning approaches alone. Therefore,
this work is more focused in improving the financial performance of
existing methods rather than to make the models (more) explainable or
to propose a new general XAI method. However, we would like to point
out that this goal is fully in agreement with the purpose and usefulness
of XAI, as these techniques are not limited – as said – to contribute
to the explanability of models, but are now widely used also for the
purpose (equally important) of improving the performance of existing
algorithms (Krishnan, 2020; Langer et al., 2021; Zhou & Chen, 2019).

Specifically, we focus on StatArb strategies developed by buying
the top and selling the bottom stocks according to a given sorting
criterion, i.e., ranked on the daily returns. To achieve this goal for a
large set of stocks, we train a ML model with different types of features,
i.e., lagged returns or series of technical indicators, and forecast the
next-day return. To improve the prediction performance, we propose a
framework to select the features that are most relevant for the return
prediction task. We build a ML model either for each stock, or a model
for each sector industry the stocks are grouped in. The rationale behind
this choice lies in the fact that, given the heterogeneous nature of the
stock data, in many cases the predictions made by a model may rely on
a different subset of features for different subgroups within the data (de
Prado, 2018). By performing feature selection at a more granular level,
instead of the entire stocks set, allow us to select the features that are
most relevant to that specific subgroup, rather than having to choose
the features globally. Selecting the features globally may perform well
on the average across all stocks, but may not be able to explain the
predictions for each stock or sector satisfactorily.

In summary, our contributions are:

1. we integrate machine learning and XAI technologies to tackle the
StatArb problem leading to increased performance with respect
to that obtained by machine learning approaches alone.

2. We employ a feature selection method based on permuting the
values of each feature in the out-of-bag sample to derive a fea-
ture importance score. In this setup, we propose three strategies
to select the best subset of features to remove for each stock,
with the goal of improving the overall predictive performance.
Our proposed approach is capable of selecting features without
prior knowledge of how a certain feature may contribute to the
prediction outcome.

3. We develop an automatic feature selection method as we aim
at determining a feature importance threshold such that we
can divide the features into two subsets: important features
that meaningfully contribute to the prediction task, and non

important features that do not.
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4. We carry out an empirical evaluation of the above on large
set of stocks, i.e., S&P500 index constituents, demonstrating
potential for cost reduction in terms of feature engineering and
data labeling efforts.

The remainder of this paper is organized as follows. Section 2
escribes relevant related works in the literature. Section 3 introduces
he problem we are tackling, along with the details of the proposed
eature section methods. In Section 4 we continue by describing the
etup considered for the trading back-test, while Section 5 presents the
omputational experiments we have carried out. Section 6 concludes
he paper and discusses further directions of research.

. Related work

The prediction of the stock market is one of the most challenging
asks in the realm of time series forecasting. In recent years, clear
vidence was built that ML techniques are capable of identifying (non-
inear) structures in financial market data, and such applications of
L and neural networks in finance have been presented and analyzed

n several works, such as Atsalakis and Valavanis (2009), Carta et al.
2019), Cavalcante et al. (2016), Henrique et al. (2019), Kumar et al.
2021), Thakkar and Chaudhari (2021). Although there are various
treams of research and applications, this section presents only a lim-
ted number of articles, highly correlated to this paper, that employ
AI techniques for financial forecasting, and even more in depth, XAI
pplied to StatArb.

Chronologically covering prior works on XAI techniques applied to
inancial forecasting, we start by mentioning the work by Lee (2009),
here the authors used a hybrid feature selection method (filter and
rapper) for a classification task on stock trends. To prove its per-

ormance, they applied the method on 17 different stocks obtaining
n enhanced prediction performance, i.e., 87.3% accuracy on aver-
ge. The proposed method was an hybrid, since it firstly used the
-Score to initially filter the features, and then it used a Supported
equential Forward Search, that is a technique created for Support
ector Machines to sequentially perform a forward search for the best

eatures to add to the final feature set. Moreover, in the mentioned
ork, the method selected 17 features, out of a total of 30 features,
s the best ones that significantly improved the overall classification
ccuracy. In Hafezi et al. (2015), the authors aimed at forecasting the
AX index closing price and devised a pipeline with four layers: data
reprocessing, feature selection, modeling, and finally a reporting and
cenario planning. The authors used cross-correlation as a feature selec-
ion technique, and out of 20 features, they chose 13 as appropriate for
redicting the stock price. Pimenta et al. (2018) introduced a feature
election approach based on trading rules generated from technical
ndicators and genetic programming. The authors defined the pipeline
s an automated investment system envisaged to identify the right
oments for executing buying and selling orders. The authors tested its
erformance by applying it to six shares on two study periods: February
013 to February 2015 and July 2015 to July 2016. They identified
hat the feature selection strategy had a positive impact in 5 out of 6
hares. Gunduz (2021) proposed to use Variational Autoencoders as an
nsupervised feature reduction mechanism, followed by a recursive fea-
ure elimination technique, to further decrease the number of features
n the input feature set. The selected features constituted the input for
hree different classifiers: Gradient Boosting, Support Vector Machines,
nd two variants of Long Short-Term Memory (LSTM) networks, with
nd without attention. The proposed ensembled approach was used
o forecast the hourly direction of eight different stocks of the Borsa
f Istanbul on a study period from 2011 to 2015. In Man and Chan
2020) the authors proposed an ‘‘instability index" strategy for feature
election based on the features ranks variance. Their investigation
ocused on identifying a convergence point for feature importance
tability. To this end, for the same time series, the authors trained
3

various Random Forests models having different configurations, and
computed the feature importance for each of these models to infer the
‘‘instability" index. Continuing in the realm of XAI techniques applied
to financial forecasting, Carta, Consoli, Piras et al. (2021) proposed
an approach to indicate any links between news and stock behavior.
To this end, the authors employed an explainable ML model based on
decision trees to discover keywords relevant to stock return trends.

When it comes to explainable methods applied to StatArb applica-
tions, we should necessarily mention the work in Krauss et al. (2017),
where the authors used an ensemble of classifiers composed of Random
Forest, Gradient Boosted Trees, and Deep Neural Networks to predict
stock return daily trends, for the stocks of the S&P500 index. In few
words, the approach computes the probability that one stock outper-
forms the cross-sectional median return of all stocks in the holding
period. The authors conducted daily trading first, by ranking the stocks
according to the forecasted probability, and then, by generating the
daily trading signals on the top-decile of stocks that were bought long,
and the flop-decile stocks that were sold short. To understand the key
features (lagged stock returns) of the long–short strategy, and how they
contributed to the trading strategy results, the authors presented the
features importance as given by Random Forest and Gradient Boosted
Trees (Molnar et al., 2020). Fischer and Krauss (2018) used an LSTM
network for the same prediction task. This enhanced approach outper-
formed memory-free classification methods such as Random Forests.
To explain the results of the StatArb strategy, the authors used the
coefficients of a Carhart regression (Carhart, 1997) applied to the
returns and first and second-order time-series statistics and, in doing
so, they untangled the dependence between the market regime, stock
behavior, and the results obtained by the long–short trading strategy.
Huck (2019) proposed the use of four predefined feature sets and
constructed the target similar to the previous works, i.e., by computing
the probability that stocks outperform their peers in the S&P100 or
S&P300 indexes. The author used various ML models such as Deep
Belief Networks, Elastic Net, and Random Forest. Concerning the XAI
techniques, the author also inferred the feature importance by assessing
the performance of the algorithmic trading strategy given the four
groups of features. Also, the author reported the feature importance
per feature sub-groups according to Random Forests and permutation
importance, and noted that increasing the number of features does not
translate into enhanced financial performance. Flori and Regoli (2021)
examined an approach of stocks clustering to complement investor
practices for the identification of pairs-trading opportunities among co-
integrated stocks. The authors proposed to predict the trend of price or
return gaps between each stock and its peers.

With respect to the works illustrated so far, in this paper we aim to
fill the gap of applying XAI techniques into the StatArb context (Carta,
Consoli, Podda et al., 2021). In contrast to some of the recent works,
such as Fischer and Krauss (2018), Huck (2019), Kraus and Feuerriegel
(2017), our work is focused on applying explainability methods that
are enhancing the predictions rather than finding the causes of stock
behavior and establishing causality claims. Furthermore, we propose
a solution for improving the prediction of daily returns by selecting
the most appropriate features either for single stocks or groups of
stocks (sectors). To this end, we employ different ML models and
different feature types (i.e., lagged returns and technical indicators),
nevertheless on a large set of stocks as the StatArb trading strategy
requires. Having said that, it is clear that our purpose aims to define
our approach such that (i) is not specifically designed for a type of ML
model (such as the work in Lee (2009)); (ii) captures the particularities
of the underlying trading domain (by using two levels of forecasting
and feature selection, i.e., sector or stock); (iii) and, at the same time,
is computationally tractable and applicable for a large set of stocks,
i.e., the S&P500 index.
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Fig. 1. Block diagram of the StatArb XAI trading strategy.
3. Methodology

3.1. Overview

StatArb is a contrarian trading strategy (Avellaneda & Lee, 2010)
as its source of profitability lies in the identification of short-term
anomalous stock behaviors, i.e., abnormally high returns or remark-
able low ones, and trading both the winners and losers stocks (Huck,
2019). In the following, we describe the application of ML models in
order to identify such deviant stocks. More specifically, we employ
the ML models based on financial information to generate predictions
of increasing/decreasing returns in the near future for each stock.
Moreover, our goal is to complement the StatArb trading strategy with
an automatic feature selection technique taken from the XAI literature
and, in doing so, verify whether it is possible to increase the predictive
performance of the underlying ML models, thereby generating even
better financial performances. Fig. 1 presents the block-scheme for
the proposed approach where typically a StatArb XAI trading strategy
comprises three main phases: the forecasting phase, ranking of the
stocks given a specific criterion, and, finally, issuing the trading signals
and performing the actual trading.

More specifically, in the forecasting phase, similarly to Carta, Consoli,
Podda et al. (2021), we aim at forecasting daily price returns. Addi-
tionally, we introduce a XAI mechanism related to a feature selection
algorithm for each stock. The forecasting phase is naturally preceded
by an ‘‘estimation’’, derived by learning the relationships between the
stocks and the input features. At a high level, we construct a feature
vector containing daily financial information that is fed into a ML
model, and obtain the predictions of the base regressor of the stock
returns. Next, feature importance scores are computed and, based on
them, features are divided into two categories: important features and
unimportant ones. The unimportant features are then discarded, and
a new model is trained. The new model receives as input only the
features that are considered to be important and makes consequent
predictions. The loss of the newly trained model is subtracted from the
loss of the base regressor. The loss difference is used to compute an
optimal feature score threshold, below which features are indeed set
as unimportant — our intuition is that, if removed, these features do
not worsen the overall prediction performance. The described process
constitutes the learning phase. In the trading phase for each stock, we
use the model trained with the optimal features set.

In the ranking phase, based on the forecasted price returns for each
stock, we rank the features in descending order. While doing so, we find
4

at the top of the ranking the stocks whose returns are expected to be
positive, therefore representing candidates for buy (long) operations,
whereas at the bottom of the ranking we find the stocks whose returns
are expected to be negative — for this reason they are candidates for
short operations.

In the last phase, i.e., the trading phase, we generate the appropriate
trading signals for the top 𝑘 and the flop 𝑘 stocks of the ranked set of
stocks.

Provided that financial data represent a particular type of time
series, we account for this as depicted in Fig. 1, and the data are
chronologically split into three chunks: training dataset, validation
dataset, and testing dataset. We use the training set for ML models
training, while the validation set serves for feature importance scoring,
optimal feature importance threshold computation, and the subsequent
optimal feature set selection. The test set, considered out of sample
data, is used for the StatArb XAI strategy performance analysis. Note
that the length of the bars indicating the three datasets (i.e., train,
validation, and test) does not correspond to the actual duration of these
time segments. Each bar is placed under the portion of the architecture
corresponding to the bar function.

In the following subsections we present the details of each block
forming the StatArb XAI trading strategy.

3.2. Data and input features

Let  = {(𝐱𝐭 , 𝑦𝑡)}𝑇𝑡=1 be a time-series dataset where 𝐱𝐭 ∈ R𝐷 denotes
the observation at time 𝑡 ∈ {1,… , 𝑇 }. 𝐷 represents the dimension of
the feature set. Thus, for a single feature, 𝑖, an observation at time 𝑡 is
indicated by 𝑥𝑡,𝑖. Our goal is to predict a target variable 𝑌 = {𝑦𝑡}𝑇𝑡=1 for
𝑦𝑡 ∈ R, based upon the multivariate predictive variable 𝑋 = {𝐱𝑡}𝑇𝑡=1 by
using a learning algorithm that outputs a model function 𝑓 (⋅).

For each stock, we construct our dataset  by collecting daily raw
financial information such as Open Price, High Price in the day, Close
Price, Low Price in the day, and Volume of stocks traded during the
day (i.e., OHCLV variables). Based on this information, we create two
different types of features:

Lagged returns (LR) — computed with respect to day 𝑡 and ex-
pressed as

𝐿𝑅𝑡−𝑗 =
𝑐𝑙𝑜𝑠𝑒𝑡−1 − 𝑜𝑝𝑒𝑛𝑡−𝑗 ,
𝑜𝑝𝑒𝑛𝑡−𝑗
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where 𝑗 ∈ {1, 2, 3, 4, 5, 21, 63, 126, 252} and denotes the length of the
time-window for which the return is computed.2 The feature vector 𝐱𝐭
is therefore composed of 9 lagged returns for each day 𝑡. Similar types
of input are used in previous works such as Carta et al. (2022), Huck
(2019), Kraus and Feuerriegel (2017) and the lagged returns are meant
to provide the ML algorithms with information within three different
time horizons: (i) the recent past, i.e., 𝑗 ∈ {1, 2, 3, 4, 5}, (ii) medium
past of the last trading month, last three trading months, respectively,
for 𝑗 ∈ {21, 63}, and finally (iii) returns corresponding to the last six

onths and one year (i.e., for 𝑗 ∈ {126, 252}).
Technical Indicators (TI) — represent statistical tools that in-

estors extensively use to make their investment decisions. They are
xtensively used within the academic literature to either generate
rading signals (Pimenta et al., 2018) or as input features for ML
odels (Kara et al., 2011; Patel et al., 2015a, 2015b). To construct

he feature vector 𝐱𝐭 , similarly to Carta, Consoli, Podda et al. (2021),
arta et al. (2020), we use the same set of nine technical indicators:
xponential Moving Average (EMA(10)), Williams %R, Stochastic Os-
illator (%K), Relative Strength Index (RSI), Rate of change (ROC),
ccumulation/distribution indicator (AccDO), Moving Average Conver-
ence Divergence (MACD), and two disparity measuring indicators,
espectively on the last 5 days and on the last 10 days (Disp(5),
isp(10)). To compute the feature vector of technical indicators for
day 𝑡, we use financial information over the past days to 𝑡 (each

indicator needs a different number of previous days to 𝑡, according to
heir formula).

Roughly, the indicators can be divided into four categories3:

• Trend followers — identify the main movements of stock prices
in recent past (EMA(10)).

• Divergence identifiers — identify possible regime switches, e.g.
the current trend ends and the prices that will start moving in
the opposite directions (AccDO, MACD).

• Momentum indicators — determine the momentum that a stock
has with respect to its upward or downward trajectory in the
market (ROC, RSI, Disp (5), and Disp (10)).

• Oscillators — follow the price variation of the stocks in order to
identify possible reverse points (%K and Williams %R). To note
that when stochastic oscillators are increasing, the asset prices are
likely to go up and vice-versa.

Target variable is a continuous variable given by the intra-day
rice return defined as:

𝑡 =
𝑐𝑙𝑜𝑠𝑒𝑡 − 𝑜𝑝𝑒𝑛𝑡

𝑜𝑝𝑒𝑛𝑡
.

3.3. Feature selection

With respect to Fig. 1, the second block of the forecasting phase
aims to assign feature importance scores with the goal of identifying
uninformative features for the prediction task, and proposes them for
removal. In the following paragraphs, we detail the methodology for
assigning the feature importance scores and the subsequent feature
removal strategies. Note that the feature selection importance score
computation, the optimal threshold computation, and the feature se-
lection process, are computed using the validation dataset only, thus
ensuring the absence of data-leakage.

2 For example, 𝑗 = 1 denotes the return in the previous day for each
bservation. At the opposite pole 𝑗 = 252 denotes the return in the past year,
rovided that there are 252 trading days in a year.

3 Information about technical indicators use and their interpretation has
een collected from https://www.investopedia.com/.
5

Feature importance score with permutation importance (PI)
The feature importance score indicates the amount each feature

contribute to the model prediction (Strumbelj & Kononenko, 2010).
The PI method (Breiman, 2001) provides such a score and quantifies
the impact on the predictive power of the estimator by replacing each
feature with noise. The motivation in choosing the PI approach is three-
fold: (i) it is model agnostic, i.e., it can be applied to any learning
model; (ii) it computes the feature importance on out-of-bag samples ,
which makes it possible to highlight which features contribute the most
to the generalization power of the inspected model (Strobl et al., 2008);
(iii) it has no tuning parameters and relies only on average values,
making it statistically very stable.

Generically, given the input variables 𝑋 and the corresponding
arget variable 𝑌 , let 𝑋𝜋,𝑖 be the results of randomly permuting the 𝑖th
eature of 𝑋. Let 𝐿(𝑌 , 𝑓 (𝑋)) be the loss for predicting the target variable

from the data 𝑋 using the model 𝑓 (⋅). Then, the feature importance
an be mathematically expressed as follows:

𝐼𝜋𝑖 = 𝐿(𝑌 , 𝑓 (𝑋𝜋,𝑖)) − 𝐿(𝑌 , 𝑓 (𝑋)),

𝐼𝑖 =
1
𝑁

∑

𝜋
𝑉 𝐼𝜋𝑖 ,

, (1)

where 𝑁 represents the number of permutations applied to each fea-
ure. Specifically, the importance of the feature 𝑖 is given by the
ncrease in loss due to replacing 𝑋∶,𝑖 with values randomly chosen from
he distribution of the same feature 𝑖. Regarding the computation of the
eature importance and of Eq. (1), there are variations of the equation
hat scale better the changes in loss due to permuting feature 𝑖 values
ith the loss of the base regressor, such as the following:

𝐼𝑖 =
1
𝑁

∑

𝜋

𝐿(𝑌 , 𝑓 (𝑋𝜋,𝑖)) − 𝐿(𝑌 , 𝑓 (𝑋))
𝐋(𝐘, 𝐟 (𝐗))

. (2)

The feature importance expressed as above can be interpreted as
the average change in prediction loss relative to the loss of the base
regressor.

In any of the variants (Eq. (1) or Eq. (2)), the feature importance
score will have either (i) positive, (ii) close to zero, or (iii) negative val-
ues. As a consequence, we can classify the features as follows. Important
features will have positive scores, as replacing the corresponding features
values with other random values, increases the loss with respect to the
original regressor. On the other hand, unimportant features will have
negative feature importance scores, as their replacement with noise-
like information improves the prediction performance, i.e., the loss
decreases with respect to the original predictions. In the middle, we
have the unimportant features whose feature importance score is close
o 0, thereby they do not significantly contribute to the prediction out-
ome. As a consequence, replacing them with noise does not introduce
substantial loss change. Out of these three categories of features, we

onsider as candidates for removal the last two categories, as long as
heir feature importance is lower than 0.

Feature removal strategies
Given the possible values of the feature importance score and the

implication on feature categorization, we propose three strategies to
remove the features:

1. PI best — identifies the features which have feature importance
lower than 0 and, at the same time, have the highest feature
importance among them. We remove those features if their
importance is lower than a certain threshold.

2. PI worst — identifies the features whose importance is lower
than 0, and, simultaneously have the lowest feature importance
among them. Similarly to PI best, if those features have their
importance score below a certain threshold, we remove them.

3. PI running — identifies the features with the importance lower
than a variable threshold, and proposes for removal the one(s)
with the highest feature importance score.

https://www.investopedia.com/
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Fig. 2. Illustration of the proposed feature selection strategies for three stocks: GOOGL, IBM, and INTC. Panel (a) shows, for each stock, the features and their importance. To
note that, for this example, we present only a limited number of features. In our working scenario, the feature importance panel would include all the features associated to a
stock. Moreover, the example illustrates the removal of only one feature, while the strategies allow for multiple features dropping. Panel (b) shows the selected features for each
method for an assumed threshold of −0.15.
The main difference between PI running and the other strategies is that
PI running uses the threshold to identify the best features to remove.
PI best and PI worst use, instead, the threshold to identify whether the
best features (i.e., the features with the highest importance below 0) or
the worst feature (i.e., the features with the lowest importance below
0) will be removed.

To better grasp the differences between the three proposed strate-
gies, we illustrate in Fig. 2 a simplified example. The figure presents
information for three stocks: Alphabet, Inc. (GOOGL), International
Business Machines (IBM), and Intel Corporation (INTC). The example
uses as features lagged returns (LR) whose indices correspond to the
window lag when computing the returns (see Section 3.2 for further
details on features). The left-hand side panel, i.e. (a) Feature impor-
tance, shows the stocks, the features, and their corresponding feature
importance score computed by Eq. (2). For each stock, the features are
sorted in descending order by their feature importance. For sake of
simplicity, we show for stocks GOOGL and INTC only the features with
negative feature importance. For completeness of the example, for the
IBM stock, we show the least important feature. Such a scenario can
happen if the stock has no features whose importance is lower than 0,
therefore all features contribute to the prediction outcome. The right-
hand side panel, i.e. (b) Selected features, shows the effect of the three
feature selection strategies that use a threshold equal to −0.15.

Starting with PI best, for the GOOGL stock, it does not select for
removal any feature, as the feature with the highest negative feature
importance is 𝐿𝑅2. However, its feature importance is not below the
threshold −0.15. For the IBM stock, for obvious reasons no features are
removed. In the case of the INTC stock, the feature with the highest
negative feature importance, and that also falls below the threshold
−0.15, is 𝐿𝑅5; thus, PI best will propose it for removal.

Switching to PI worst, in the case of GOOGL, the strategy will remove
𝐿𝑅3, since it has the lowest value and is also below the threshold. For
the INTC stock, the strategy will remove 𝐿𝑅126 for the same reasons.

Finally, for the PI running strategy, with respect to the GOOGL stock,
the strategy will remove 𝐿𝑅63, since it is the first feature whose impor-
tance value is below the threshold. For INTC, the strategy proposes to
remove 𝐿𝑅5, the same feature chosen using the PI best strategy.

Optimal feature importance threshold selection
For each of the proposed feature selection strategies, i.e., PI best,

PI worst, and PI running, we compute an optimal feature importance
threshold. For each feature selection method, model and stock, we
6

remove the indicated features according to the identified feature im-
portance threshold and retrain a new model. Then, for each threshold
value, we compute the mean loss difference between the base regressor
(without any feature removed) and the corresponding newly trained
model.

Under this premise, for each feature selection method, we com-
pute the optimal threshold as the one that maximizes the mean loss
difference above. The introduction of the optimal threshold enables
the proposed approach to learn in cross-section the features that can
be removed in order to increase the overall prediction performance,
i.e., also, to decrease the mean loss (across all the stocks). In other
words, in the case of PI best and PI worst, the optimal threshold controls
the sparsity of stocks and models that have features removed, whereas
in the case of PI running, it controls the highest score below which the
features can be considered unimportant, thus suitable candidates for
removal. Note that, as highlighted in Fig. 1, for the computation of the
optimal feature threshold we use the validation dataset only, in order
to avoid data-leakage.

3.4. Forecasting algorithms

In our forecasting process, we are considering three well-established
ML models, i.e., Random Forests, Light Gradient Boosting, and Support
Vector Machines. The first two are decision-tree-based models, and there-
fore they are intrinsically explainable (Breiman, 2001; Molnar et al.,
2020). Moreover, all types of models have been successfully used in
financial prediction tasks which are particularly challenging for reasons
that we are going to discuss in the paragraphs below.

3.4.1. Light gradient boosting
Light Gradient Boosting (LGB), first proposed by Ke et al. (2017),

has been widely applied in machine learning tasks, and it supports effi-
cient parallel training. LGB applies iteratively weak learners (decision
trees) to re-weighted versions of the training data (Hastie et al., 2009).
After each boosting iteration, the results of the prediction are evaluated
according to a decision function, and data samples are re-weighted in
order to focus only on examples with higher loss in previous steps.
By comparison to the traditional gradient boosting techniques, LGB
grows the tree vertically (i.e., leaf-wise tree-growth, until the maximum
depth is reached), whereas other alternative algorithms extend their
structures horizontally (i.e., level-wise tree-growth). This fact makes
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LGB quite effective in processing large-scale and high-dimensional data,
with the downside of being more prone to over-fitting. In their work,
authors of Carta, Consoli, Podda et al. (2021), Carta et al. (2020) use
LGB to predict daily price returns.

3.4.2. Random forests
Random Forests (RF) belongs to a category of ensemble learning

algorithms introduced in Breiman (2001). This learning method is the
extension of traditional decision trees techniques where random forests
are composed of many deep de-correlated decision trees. Such a de-
correlation is achieved by bagging and by random feature selection.
These two techniques make the RF algorithm quite robust to noise and
outliers. When using RF, the larger the size of the forest (the number of
trees), the better the convergence of the generalization error. However,
a higher number of trees, or a higher depth of each tree, induces
computations costs; therefore a trade-off must be made between the
number of trees in the forest and the improvement in learning after
each tree is added to the forest. In the academic literature, we can find
that RF has been extensively used in financial forecasting (Carta et al.,
2022; Patel et al., 2015b) and also in StatArb applications (Krauss et al.,
2017). Moreover, RF is an explainable model and is therefore used to
identify the most important features in trading strategies (see, e.g. Huck
(2019)).

3.4.3. Support vector regressors
Support vectors were proposed initially as supervised learning mod-

els in classification, and later revised for regression, with the name of
Support Vector Regressors (SVR), by Vapnik (1999). Given the dataset
 described in Section 3.2, the goal is to find a function that deviates
from actual data, 𝑦𝑡, by a value no greater than 𝜖 for each training point,
and, at the same time, being as flat as possible. SVR extends least-square
regression by considering an 𝜖-insensitive loss function. Furthermore,
to avoid over-fitting of the training data, the process of regularization
is often applied. SVR is trained by solving the following optimization
problem:

min
𝑤

𝑓 (𝑤;𝐶, 𝜖), where

𝑓 (𝑤;𝐶, 𝜖) = 1
2
‖𝑤‖

2 + 𝐶
𝑇

𝑇
∑

𝑡=1
max(0, |𝑦𝑡 − 𝑓 ((𝑥𝑡);𝑤)| − 𝜖),
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜖-insensitive loss function

(3)

and where 𝐶 > 0 is the regularization parameter, and 𝜖 > 0 is an
rror sensitivity parameter. The training finds the weights 𝑤 so that
he function 𝑓 minimizes empirical risk. The above concepts can also
e extended to the non-separable case (linear generalized SVR). In
ur study, we select the radial basis kernel function, which can be
ormalized as 𝑘(𝐱𝐭𝟏, 𝐱𝐭𝟐) = 𝑒𝑥𝑝(−𝛾‖𝐱𝐭𝟏−𝐱𝐭𝟐‖2). Here 𝐱𝐭𝟏 and 𝐱𝐭𝟐 represent

two feature vectors of the input space, 𝛾 is a free parameter, considered
as a design parameter of SVR, and ‖ ⋅‖2 is the squared Euclidean norm.
Lee et al. (2019) use SVR not only for price prediction purposes, but
also in conjunction with a feature selection algorithm.

4. Experimental setup

In this section, we describe the technical setup of the experiments
that we carried out. We follow along with the main components of
our trading strategy: data, model training, feature selection, ranking
process, and trading execution.

4.1. Data

We consider stocks composing the S&P500 index as a reference
dataset. The S&P500 constituents represent the leading 500 companies
in the U.S. stock market and, at the same time, a large-capitalization
segment. These characteristics make these companies highly attractive
to investors and, as a consequence, they are very challenging for
7

t

any trading strategy, as various works in the literature have pointed
out (Fischer & Krauss, 2018; Krauss et al., 2017).

We back-tested our trading strategy using the walk-forward vali-
dation approach, which represents a common practice in the related
literature (Carta, Consoli, Podda et al., 2021; Flori & Regoli, 2021).
The walk-forward validation consists of splitting the time interval into
overlapping training and validation periods, and non-overlapping test
(trading) periods, as shown in Fig. 3. The example depicts values for the
closing price of the AT&T stock over the whole study period, ranging
from January 2003 to January 2021. Each triplet (training, validation,
test) forms a walk. By sliding forward the triplet with the length of
the test period, we construct the out-of-sample contiguous period from
January 2007 to January 2021, i.e. a total of 14 years. Each walk
entails three years for ML models training, one year of validation used
for optimal threshold computation and feature selection, and one year
considered as out-of-sample.

The input features for the ML models represent a multivariate time-
series composed, as indicated in Section 3.2, either of the lagged
returns, the technical indicators, or both. For each stock and each walk,
we start by collecting raw financial data4 and compute the two types of
input features mentioned in Section 3.2, as well as the target variable
for the training and validation periods. Then, the features are rescaled
within the range [−1, 1] by applying a MinMaxScaler (Pedregosa et al.,
2011) fit on the training set.5 The MinMaxScaler scales and translates
each feature individually such that it is in the given range on the
training set, i.e., [−1, 1]. The rescaling is a necessary step as it increases
the convergence likelihood of the SVR model, as well as un-biased
learning in the case of decision trees based models such as RF and LGB.

Similarly to Carta, Consoli, Podda et al. (2021), we build machine
learning models containing data either for a single or multiple stocks
belonging to the same sector in the S&P500 index. Herein we refer to
this particular setup as the data level, also referred to as stock level, or
sector level. In Fig. 4 we show the distribution of the S&P500 stocks
into their corresponding sectors.

4.2. Model training

As mentioned throughout the paper and reflected in Figs. 1 and 3,
the ML models are trained using a 3 years time-span for each rolling
window. The hyperparameters of the models are listed in Table 1.

LGB, as stated in Section 3.4, is prone to over-fitting due to its
manner of constructing the decision trees. To control this behavior,
we defined the maximum depth levels of the tree, max_depth. Also,
considering that LGB constructs the decisions trees sequentially, a large
number implies high computation costs and also the possibility of
over-fitting, therefore we chose for n_estimators conservative values
lower than 250. Depending on the type of features and on the level
of the model, we also considered different num_leaves values, aiming
at achieving a balance between a conservative model and a good
generalization capability. The percentage of features considered when
doing a split is restricted by colsample_by_tree, which can be thought of
as a regularization parameter. The work in Hastie et al. (2009) suggests
in general to set a learning rate lower than 0.1; we therefore considered
values lower than 0.01 in order to account for a better generalization
over the dataset.

RF models are normally not subject to over-fitting when a large
number of estimators (decision trees) is used. Therefore, we set
n_estimators to high values up to 500. We limit the maximum number of
features in each split by imposing max_features equal to 1, and limit at
the same time the depth of the tree by setting either the min_samples_leaf
or max_depth parameters.

4 We use the publicly available data from Yahoo Finance, available at:
ttps://finance.yahoo.com/.

5 The transformation is learnt on the training set only in order to ensure
hat no data-leakage happens.

https://finance.yahoo.com/
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Fig. 3. Illustration of walk-forward procedure, considering a study period starting from January 2003 to January 2021. On the 𝑦-axis it is presented the development of the closing
price for the AT&T stock across time..
Table 1
Hyperparameters of the ML models.
Level Feature Type ML Model

Type
Hyperparameters

Stock

LR
LGB n_estimators=220, num_leaves=252, max_depth=7,

learning_rate=4e−2, reg_alpha=9e−4, bagging_fraction=0.65

RF n_estimators=500, min_samples_leaf=5, max_features=1

SVR C=10, tol=1e−5, epsilon=1e−5, gamma=9e−3

TI
LGB n_estimators=100, num_leaves=21, max_depth=7,

learning_rate=5e−2, colsample_bytree=9e−4,
bagging_fraction=0.65

RF n_estimators=500, min_samples_leaf=5, max_features=1

SVR C=10, tol=1e−5, epsilon=1e−5, gamma=9e−3

Sector

LR
LGB n_estimators=250, num_leaves=230, max_depth=12,

colsample_bytree=.9,learning_rate=5e−3,

RF n_estimators=300, max_samples=0.5, max_features=1

SVR C=2, tol=1e−5, epsilon=1e−5, gamma=’scale’

TI
LGB n_estimators=100, num_leaves=100, colsample_bytree=0.8,

max_depth=15, learning_rate=0.03, subsample=0.8

RF n_estimators=300, max_depth=40, max_features=1

SVR C=2, tol=1e−5, epsilon=0.25e−2, gamma=’scale’
SVR solves an optimization problem that involves two parameters:
the regularization parameter, 𝐶, and the error sensitivity parameter, 𝜖.
The 𝐶 parameter controls the trade-off between model complexity and
number of non-separable samples. A lower 𝐶 generally encourages a
larger margin, whereas higher 𝐶 values lead to a harder margin (Vap-
nik, 1999). Instead, the 𝜖 parameter controls the width of the 𝜖-
insensitive zone and is used to fit the training data. An excessively
high value leads to flat estimations, whereas a too small value is not
appropriate for large or noisy datasets. The work in Chalimourda et al.
(2004) suggests that the 𝛾 value of the kernel function should vary
together with 𝐶, and high values of 𝐶 normally require high values
of 𝛾 too. As this is highly dependent on the data variance, we set it
such that to be scaled accordingly with the data.

4.3. Feature selection

Next to model training, we compute, for each model and each
feature, the feature importance using PI over 𝑁 = 100 repeated
permutations. We have chosen this value experimentally in order to
8

achieve a good trade-off between computational running time and
reliable estimations of the feature importance. Then, for each of the
proposed feature selection strategies, i.e., PI best, PI worst, and PI
running, we perform a preliminary feature removal process by selecting
the threshold values in the range [0, −0.025] with a step of 0.0001.
For each model we remove the indicated features 𝐾 ∈ {1, 3, 5, 7} at a
time and retrain a new model. In our experiments we use a prespecified
number of features to remove, where 𝐾 < 𝑛𝑜 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (9 for TI, 9 for
LR and 18 for TI+LR), and leave the dynamic feature selection as a
future improvement of the proposed XAI methods. Finally, for each
feature selection method, we compute the optimal threshold as the one
that maximizes the mean loss difference between the base regressor
(without any feature removed) and the corresponding newly trained
model. In our experiments we consider two metrics to quantify the loss:
the canonical MSE and the mean return.6 When considering the MSE,

6 To distinguish between the MSE and mean return as an evaluation metric
of the XAI trading strategies and the loss metric for the feature selection, we
use the type-writer notation, i.e., MSE and the mean return.
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Fig. 4. Number of constituents of the S&P500 index into sectors.

the computation is straightforward and aligned with common practice.
The MSE metric consists of computing the squared residual between
the true observations (on the validation set) and the corresponding
estimated values provided by the machine learning model. Instead, in
the case of the mean return loss, we adopt the following approach.
Considering a stock and its return forecast at time 𝑡, we ‘‘trade’’ the
stock, i.e.: long, if its return forecast is positive, or short, if its forecast is
negative. Then, considering the actual stocks return, we can determine
the daily stocks return when investing according to the forecast. The
mean return is computed as the mean of the daily returns on the
entire validation period. In this manner, we want to validate whether
a financial metric, such as the mean return, can serve as a good
proxy of the ML model performance. Or, differently, we try to answer
the question whether the incorporation of a financial metric into the
feature selection process can improve the financial performance of our
overall XAI strategy.

4.4. Trading execution and portfolio construction

The back-testing experiments consist in running the signals (i.e.,
long and short) according to the ML models forecast and evaluating
the performance against historical data. As stated already throughout
the paper, StatArb consists of trading long and short the predicted 𝑘
winners and 𝑘 losers, respectively. We fix the number of pairs to be
traded to 𝑘 = 5, similarly to Carta, Consoli, Podda et al. (2021). The
trading session is set as intra-day, meaning that we are opening the
positions at the beginning of the trading day and close them at the end
of the day. In other words, we are rebalancing our portfolio daily.

4.5. Baselines

To assess the value added by the feature selection strategies, they
are benchmarked against two statistical arbitrage trading baselines:
the portfolio constructed using only the base regressors without hav-
ing any features removed (BaseRegressors), and the S&P500 buy-
and-hold strategy (Buy-and-hold (Li & Hoi, 2014)). The comparison
against the BaseRegressors is quite natural and straightforward, as
we aim to assess the performance improvements of the proposed XAI
9

StatArb methods over the BaseRegressors. Buy-and-hold is instead
a well-established quantitative strategy, and largely used as baselines
to evaluate the profitability of other investment approaches (Flori
& Regoli, 2021; Huck, 2019). The strategy buys in our application
in January 2007, and holds the S&P500 exchange-traded fund (SPY
security) during the whole back-testing period, i.e. until January 2021.
This passive strategy runs without any trading signals.

4.6. Implementation details

The approach proposed in this paper has been developed in Python,
by using the scikit-learn library (Pedregosa et al., 2011) and the
LightGBM python API (Microsoft/LightGBM, 2022). The experiments
have been executed on a desktop system with the following specifica-
tions: an Intel(R) Xeon(R) Gold 6136 CPU @ 3.00 GHz, 32 GBytes of
RAM, and 64-bit Operating System (Linux Ubuntu). The full code of the
solution, for reproducibility purposes, has been made publicly available
at: https://github.com/Artificial-Intelligence-Big-Data-Lab/xai_statarb.

5. Results

In the following section, we present the results obtained by our
proposed XAI StatArb strategy. We show the results from three per-
spectives: (i) goodness of fit of the ML models; (ii) returns generated
over the entire trading period; and, finally, (iii) risk evaluation.

In this sense, please observe that quantifying the explainability char-
acteristic of a statistical model is a completely unsettled territory to
date, and there is still a huge need for proper evaluation methodologies
in order to quantify the quality of the explanatory methods as well
as to devise suitable approaches able to assess and choose the most
appropriate XAI practices. As thoroughly motivated by Zhou et al.
(2021), the existing research has been attempting only recently to
formulate some approaches for explainability assessment. However,
there is no common agreement on the right metrics to use in order
to properly assess the quality of the explanation methods (Carvalho
et al., 2019). The main reason behind this unsolved problem is that
explainability is inherently a very subjective concept, hard to formalize,
and the perceived quality of an explanation is contextual and dependent
on users, the explanation itself, as well as the type of information that
users are interested in Carvalho et al. (2019), Rüping (2006). On the
other hand, explanation is also a domain-specific note, hence there
cannot be an all-purpose type of explanation (Rudin, 2019).

In light of this evidence, at present there is no clear, precise metric
available to estimate explainability (e.g. accuracy, MSE, etc.). More-
over, in the financial domain this results to be even more difficult as
a good accuracy/error value is not necessarily correlated to a good
financial performance, especially for long–short portfolios, such as ours.
Consider, for example, the case in which a large number of transactions
with a modest impact (which tend to be easier to predict) is correctly
matched, while a single transaction with a very high impact (which is
usually more difficult to predict) is missed: in such a case, which is
quite frequent in the financial sector – especially during long sideways
markets – the outcome would be a good statistical performance, but a
potentially very bad financial performance. This would inevitably affect
also the type of explainability metric used, if any. For all these reasons,
we believe that, for the purposes of our work as well as for the specific
domain considered, the use of financial metrics is the most scientifically
rigorous way, to date, to provide analysis of the performance of XAI
techniques used in the financial context.

Hence, hereby, the following evaluation results are quantified using
the following metrics:

(i) Mean squared error (MSE) — one of the most popular goodness of
fit measure for ML models for a continuous dependent variable,
such as in our case. The MSE is defined as:

𝑀𝑆𝐸(𝑓,𝑋, 𝑌 ) = 1
𝑇
∑

(𝑦𝑡 − 𝑦𝑡)2 =
1

𝑇
∑

𝑟2𝑡 ,
𝑇 𝑡 𝑇 𝑡

https://github.com/Artificial-Intelligence-Big-Data-Lab/xai_statarb
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where 𝑦𝑡 is the forecast of the model 𝑓 at time 𝑡 (see also
Section 3.2 for further details on notations), and 𝑟𝑡 is the residual
for the observation at time 𝑡. Thus, MSE can be seen as a sum of
squared residuals. As the measure weighs all differences equally,
large residuals have a large impact on MSE. Thus, the measure
is prone to outliers. For a ‘‘perfect" model, which predicts (fits)
all 𝑦𝑡 exactly, we would have 𝑀𝑆𝐸 = 0.

ii) Annual return — represents the return on an investment generated
over a year and calculated as a percentage of the initial amount
of investment. Formally, it is expressed as:

annual return = 100 ×
(

(

𝑛
∏

𝑖=1
(1 + 𝑅𝑛)

)1∕𝑛 − 1
)

,

where 𝑛 represents the number of years, and 𝑅𝑛 the correspond-
ing return at year 𝑛. High values are to be sought.

iii) Maximum drawdown (MDD) — the maximum amount of wealth
reduction that a cumulative return has produced from its max-
imum value over time. Formally, the drawdown is defined in
two steps: first, we find the maximum up to time 𝑡, i.e., 𝑀𝑡 =
max𝑢∈[0,𝑡] 𝑅𝑢, where 𝑅𝑡 are the cumulative returns up to time 𝑡.
The drawdown up to time 𝑡 (as a percentage) is, then: 𝐷𝐷𝑡 =
𝑅𝑡
𝑀𝑡

− 1. The maximum drawdown is thus the largest drop in
cumulative returns from its maximum rolling over a given time
frame:

𝑀𝐷𝐷𝑡 = max𝑢∈[0,𝑡] 𝐷𝐷𝑢.

Smaller absolute values are an indication of lower incurred risk.

.1. Overview

Briefly, we train three types of machine learning models, i.e., LGB,
F, and SVR. Each of them are fed with different types of input features,

.e., LR, TI, or jointly LR and TI. Also, we build models at two levels of
ata — stock or sector. Thus, we have 3 types of models × 2 levels ×
types of features, for an overall of 18 base regressors. For each of

hese combinations, we apply the three strategies of feature selec-
ion, namely PI best, PI running, and PI worst. To identify unimportant
eatures (feature selection), we employ two metrics to evaluate the
oss, that is MSE or mean return (details provided in Section 4.3).
oreover, we discard 𝐾 = 1, 3, 5, 7 unimportant features as given by

ach of the methods.
Firstly, in Fig. 5 we show an overview of the performance ob-

ained by the proposed feature selection strategy compared to the
aseRegressors. Specifically, we show the percentage of models that
btain improved performance compared to the BaseRegressors, given

the three evaluation criteria, i.e., MSE, annual returns, and MDD.
Additionally, we show, side-by-side, the performances of the models
when employing the two loss metrics for feature selection, i.e., MSE
nd mean return. Note that the MSE (as loss function for feature
emoval) is marked with diagonal lines, whereas the mean return
as no filling pattern. For each performance evaluation criteria, we
ave on the 𝑥-axis the three feature removal methods strategies and the
umber of features that we discard. The bars represent the percentage
f models that have an improved performance over the corresponding
aseRegressors.

Fig. 5(a) (MSE evaluation) shows that more than half of the models
more than 9 models out of 18 for each x-value) have an improvement
ver the BaseRegressors, reaching high values such as 88.89%. The
owest performance is registered by PI best , which is an expected
utcome given that we remove unimportant features but with higher
mportance than others. In terms of annual returns (Fig. 5(b)), the
erformance improvements are not as prominent as in the case of the
SE criterion, nevertheless having the highest value of 72.2% and the
10

owest of 38.89%. Values below 50% indicate that the BaseRegressors m
ave a better performance than the feature selection method in more
han half of the used setups, i.e. ML model type, data level, input
eature type. For the MDD, Fig. 5(c) shows an interesting trend where
ost of the models have an enhancement. The only exception to the

ule is PI best with 1 and 3 features removed. Also, we can see that the
mprovement is almost opposite to the percentage of models that have
n annual return increase, which is an indication that a higher return
omes with the cost of higher risk. Comparing the feature selection
oss metrics, i.e., MSE versus mean return, we cannot deduct a clear
ndication whether one metric is emerging over the other.

We complement these results by those depicted in Fig. 6, where
e qualitatively assess the performance improvements between the
ifferent approaches under the same criteria used for the experiments
eported in Fig. 5. Thus, for each feature selection method, loss metric,
nd number of removed features, Fig. 6 illustrates the average differ-
nces of the MSE, annual returns, and MDD among the feature selection
ethods and their corresponding BaseRegressors.

Starting with the forecasting performance evaluation, in Fig. 6(a)
egative values are sought, since lower MSE values relative to the
nes obtained by the base regressors imply a better forecasting per-
ormance. Conversely, for annual returns (Fig. 6(b)), positive values
re preferable, since an increase of the annual return relative to the
aseRegressors assumes an improvement of the trading strategy when
emoving features. Furthermore, given that a higher MDD (Fig. 6(c))
eans a higher risk, negative values for this metric are desired as

his denotes that the feature removal process decreases the trading
trategy risk. Under these considerations, we can state that all the
eature selection methods bring a performance improvement in the
redictive performance (Fig. 6(a)) since all the values are below 0.

In terms of both annual returns (Fig. 6(b)) and MDD (Fig. 6(c)),
very feature removal method brings improvements with regards to the
inancial performance, i.e., by increasing the returns or by lowering the
isk. However, there are exceptions to the rule, such as PI best , when
emoving one feature. Also, it is evident a similar pattern as in Fig. 5,
amely, higher returns imply increased risk. Furthermore, crossing the
wo figures (Fig. 5(b) and Fig. 6(b)), another surprising finding can be
educted: PI best improvements are significantly higher than PI worst
r PI running .

.2. Financial performance of the XAI StatArb trading strategies

The results from the experiments reported in Figs. 5 and 6 motivate
s to take a closer look at the financial performance of the XAI StatArb
trategies. Therefore, we present in Fig. 7 statistics of the returns and
isk characteristics. Provided that in this paper we have built a large
umber of models and configurations (3 types of models × 2 data levels
3 types of features × 3 feature selection methods × 2 feature selection
etrics × 4 number of features removed = 432 in total), we choose to
resent the performances of the best model per configuration, given by
he obtained annual return. Note that a configuration is provided by the
L model type, the data level, and the input feature type. Therefore,
e present the XAI StatArb performances for 18 such configurations,

n contrast to their corresponding BaseRegressors and Buy-and-hold
trategies, i.e., 6 XAI StatArb strategies per each ML model. In Fig. 7 we
how a representative set of financial performance indicators, and, in
he right-most columns, we present the differences between the annual
eturns/MDD of the XAI StatArb strategies and the BaseRegressors.
he differences are color-coded: red colors represent values where
he BaseRegressors have a better performance. Conversely, blue or
reen represent better performances of the strategies compared to the
aseRegressors. Also, the dimension of the bar is proportional to the
ifference.

As the reader can notice, all the models have a positive annual
eturn, between 4% and 21%, and most of the models have annual
eturns above the Buy-and-hold strategy (7%). The best performing

odel is LGB with technical indicators (TI) as features. Moreover, LGB
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Fig. 5. Percentage of ML models that exhibit improvements over the BaseRegressors in terms of (a) MSE, (b) annual returns, and (c) MDD, developed from 2007 to 2021 for
the three feature selection methods when removing 𝐾 = 1, 3, 5, 7 features. The MSE as loss function for feature removal is marked with diagonal lines, whereas the mean return
has no filling pattern.
appears to be the best performing forecasting technique on average,
with the highest annual returns in any given configuration. It reaches
an average annual return of 15%, followed by RF with 11%, and,
finally, SVR with 9%. This ranking is highly influenced by the data
level as models per sector learn from a large number of observations.
Consequently, SVR, that is notoriously unable to handle large datasets
having a high number of observations, obtains the worst performance
when trained at sector level versus stock level.

In terms of risk, all the models have a lower MDD than the Buy-
and-hold, with the lowest value (best performing) of 17% (RF, stock
level), and the highest value (worst performing) of 47% (SVR, sector
level).

Concerning the best-performing feature selection method, we can
see that out of the (best) 18 configurations presented, PI best yields
the best returns in 10 such cases, PI worst in 3 cases, and PI running
in 4. Furthermore, concerning the annual return difference, the PI best
11
attains the leading positions with values such as 12.49 (sector RF with
LR) and 5.22 (stock SVR with TI). The results confirm the findings in
Fig. 6, where the average difference between the annual returns of the
feature selection methods and BaseRegressors is higher for the PI best
strategy.

Concerning the feature selection metric, we can note in Fig. 7 that
the mean return has 11 occurrences whereas the MSE has 7, meaning
that changing the canonical MSE with the mean return introduces a
significant benefit in the financial performance.

Although all the feature selection methods introduce an improve-
ment in terms of returns, when it comes to the risk, 4 of them show a
higher MDD compared to the BaseRegressors (i.e., positive values in
the MDD difference column), signifying that these trading strategies are
more exposed to financial risks. Moreover, 2 of the XAI StatArb strate-
gies are based on SVR models. We could only suppose that XAI enabled
SVR are more sensitive to outliers and produce forecasts less calibrated
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Fig. 6. Average difference between the ML models and the corresponding BaseRegressors in terms of (a) MSE, (b) annual returns, and (c) MDD, developed from 2007 to 2021 for
the three feature selection methods when removing 𝐾 = 1, 3, 5, 7 features. The MSE as loss function for feature removal is marked with diagonal lines, whereas the mean return
has no filling pattern.
and accurate on the prediction interval extremes. This translates into
more volatile down movements.

5.3. Sub-period analysis

In the following, we make a sub-period breakdown to provide
more details about the performance of the XAI StatArb strategies in
terms of returns and risk profiles. We present such details in Table 2.
Additionally, we show in Fig. 8 an illustration of the cumulative profits
of the strategies.

For this study, we selected three periods.

Low Volatility Bull Market — represents a short period of only seven
months, ranging from January 2007 to August 2007. In this par-
ticular period, the XAI StartArb methods show a large diversity
of returns which is hard to explain. The mean return is either
12
strongly positive and higher than the Buy-and-hold (0.03%),
e.g., PI worst LGB stock level LR+TI (0.10%), or economically
non-significant, e.g., PI best LGB sector TI (−0.07). Works such
as Huck (2019), Krauss et al. (2017) attribute similar results
to the increase of computational power that made algorithmic
trading readily available, and the consequent imprint in the
market behavior and decrease of the returns. By comparing
the average returns of the XAI StatArb methods to the average
returns of the BaseRegressors (second-last row in Table 2),
we can assess that the feature selection process, on average,
introduces an improvement, that is, the average return increases
from 0.02% to 0.03%.

GFC Crash — corresponds to the period of the Global Financial Crisis
(GFC) starting, specifically, in August 2007, and finishing in
April 2009. In this turbulent period, with the market with a
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Table 2
Sub-period analysis of the XAI StatArb trading strategies performance. The best two financial returns are highlighted in bold.

Method Feature Selection
Metric

Feature
Type

Model
Type

Level K Low Volatility Bull Market GFC Crash New Normal

Base regressor Base regressor Base regressor

Mean
Return

SD MDD Mean
Return

SD MDD Mean
Return

SD MDD Mean
Return

SD MDD Mean
Return

SD MDD Mean
Return

SD MDD

PI worst MSE LR LGB sector 3 0.01 0.54 9.34 0.01 0.54 9.34 0.15 1.64 19.39 0.12 1.74 24.60 0.06 0.76 15.41 0.04 0.76 17.20

PI running MSE LR+TI LGB sector 1 −0.02 0.44 8.34 −0.03 0.42 8.29 0.09 1.32 21.91 0.05 1.24 29.25 0.08 0.70 14.44 0.04 0.70 21.83

PI best MSE TI LGB sector 3 −0.07 0.49 11.07 −0.07 0.48 10.58 0.06 1.61 31.04 0.02 1.61 32.71 0.07 0.70 12.83 0.06 0.71 17.84

PI best mean return LR LGB stock 7 0.10 0.54 4.19 0.10 0.51 3.73 0.16 1.14 16.77 0.11 1.15 18.76 0.07 0.67 18.71 0.04 0.68 16.88

PI worst mean return LR+TI LGB stock 5 0.11 0.45 4.16 0.11 0.45 4.16 0.15 1.37 12.58 0.15 1.38 13.42 0.05 0.67 19.42 0.05 0.67 25.66

PI best MSE TI LGB stock 7 0.06 0.61 5.20 0.03 0.58 6.77 0.23 1.20 11.30 0.22 1.14 12.20 0.09 0.70 20.69 0.06 0.70 25.09

PI best MSE LR RF sector 7 −0.03 0.44 7.97 0.02 0.52 7.03 0.14 1.23 13.48 0.04 1.45 30.27 0.08 0.74 20.25 0.03 0.80 26.65

PI running mean return LR+TI RF sector 7 −0.03 0.46 11.68 −0.04 0.48 11.39 0.06 1.57 26.12 0.04 1.69 40.07 0.07 0.77 14.46 0.05 0.76 14.49

PI running mean return TI RF sector 3 0.01 0.51 5.21 −0.03 0.50 6.06 0.06 1.74 32.90 0.07 1.73 33.13 0.07 0.73 23.65 0.05 0.72 23.89

PI best mean return LR RF stock 5 0.06 0.51 4.46 0.08 0.49 3.38 0.08 1.20 14.13 0.04 1.26 22.69 0.06 0.68 16.72 0.03 0.68 20.05

PI best mean return LR+TI RF stock 7 0.03 0.49 4.82 0.02 0.49 4.79 0.13 1.28 13.53 0.12 1.29 13.58 0.03 0.72 25.88 0.02 0.72 29.91

PI best mean return TI RF stock 5 0.01 0.55 9.35 0.02 0.56 8.48 0.11 1.30 17.51 0.05 1.40 22.64 0.05 0.72 40.42 0.03 0.74 36.10

PI best mean return LR SVR sector 5 0.02 0.44 3.71 −0.03 0.49 6.32 0.06 1.81 29.50 0.08 1.70 25.89 0.06 0.85 29.83 0.03 0.84 34.72

PI best MSE LR+TI SVR sector 7 0.01 0.43 3.92 0.01 0.44 4.39 −0.03 1.39 31.55 −0.07 1.47 42.22 0.05 0.63 20.62 0.03 0.64 36.21

PI running MSE TI SVR sector 3 0.05 0.50 4.59 0.04 0.47 6.47 −0.09 1.98 46.69 −0.09 1.93 47.93 0.05 0.60 18.42 0.03 0.60 17.63

PI worst mean return LR SVR stock 1 0.05 0.48 3.64 0.05 0.46 4.08 0.15 1.62 12.48 0.13 1.59 12.39 0.06 0.65 18.79 0.06 0.65 18.74

PI running mean return LR+TI SVR stock 5 0.01 0.44 5.09 0.00 0.44 5.19 0.10 1.01 7.61 0.09 1.00 8.13 0.04 0.63 20.01 0.03 0.63 17.74

PI best mean return TI SVR stock 5 0.01 0.54 7.30 −0.01 0.51 6.59 0.24 1.42 11.46 0.09 1.37 19.25 0.03 0.59 19.12 0.02 0.58 27.98

Average Returns 0.03 0.02 0.10 0.07 0.06 0.04

Buy-and-hold 0.03 0.80 6.42 −0.11 2.32 56.47 0.06 1.10 34.1
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Fig. 7. Financial performance of the XAI StatArb trading strategies gross of trading costs and fees, over the trading period 2007–2021. The best two return performances are
highlighted in bold.
steep decline and a very high level of VIX index (Krauss et al.,
2017), the XAI StatArb strategies are most proliferating. For
example, PI best LGB TI stock obtains an all-time high of 0.23%
daily mean return. By comparison, in the previous period, it
reaches only a 0.06% of daily mean return, or, in the next
period, only a 0.09%. The performance of the portfolios alter-
nates rapidly between significant rises and falls, a fact confirmed
by the higher standard deviations (SD) of the returns. The
same can be reaffirmed by looking at the cumulative returns
presented in Fig. 8. This figure also reveals that this behavior is
more noticeable in the case of sector-level models. Comparable
findings have been confirmed in the literature as well. For
example, Huck (2019) investigated the role that input features
play in the StatArb financial performance, in the period of GFC,
reporting for the best performing combination of ML models and
input features a daily mean return of 0.3%. However, the author
have reported as the average of daily returns of the models as
being 0.01%, that is significantly lower than the one of our
XAI StatArb strategies (0.10%) or our BaseRegressors (0.07%).
Even though most XAI StatArb methods exhibit positive daily
returns, not all models perform notably well in this period;
e.g., PI best SVR sector TI is the laggard of the whole set of
methods and has a performance similar to the Buy-and-hold
both in terms of returns and risk. PI best SVR sector TI mean
return is −0.09% whereas Buy-and-hold has a mean return
of −0.11%. The MDD for PI best SVR sector TI is 46% and
56% for Buy-and-hold. However, in Table 2, only 2 out of
18 methods register negative returns during this period. Huck
(2019) reported 17 out of 44 models with negative mean daily
returns, the worst performing model having −0.28%.

New Normal — the period ranges from 2009-04-01 to 2020-12-31
and corresponds to the recovery after the GFC, including short-
lived market events such as the European Debt Crisis of 2011,
the period between April and October 2014, the market down-
turn in August–September 2015, or the global COVID pandemic
market crisis. Nevertheless, this time-span accounts for a bull
market period. In the literature, post-Global Financial Crisis
periods (Carta, Consoli, Piras et al., 2021; Krauss et al., 2017)
reported modest returns by comparison with the other periods,
even reaching a plateau. In this interval, investing strategies
such as Buy-and-hold are particularly challenging as baselines,
14
as the literature brings empirical evidence that StatArb trading
strategies are not as profitable as they used to be. Even under
such setback, Table 2 shows that the XAI StatArb manages to
obtain mean daily returns above the Buy-and-hold. Indeed,
the Buy-and-hold strategy attains a return of on par with the
average returns of the XAI StatArb methods. Inspecting Fig. 8,
the reader can notice that most of the models show a positive
trend. But indeed, some of them reach a plateau after 2012,
e.g., SVR stock level LR+TI or LGB stock level LR. Contrarily, PI
best LGB stock level TI has a steep and positive curve in the most
recent period between 2014–2015, moderate positive/negative
fluctuations after 2016, and a sharp increase in the period of
2020 global COVID pandemic. We attribute such results to the
trait that tree-based methods such as LGB have, that is, their
robustness to noise and outliers that make them particularly
suitable to a financial forecasting setting.

6. Conclusions and future work

This work proposes a machine learning approach powered by ex-
plainability techniques as an integrative part of an algorithmic trading
pipeline. It aims at bridging the gap between typical financial prac-
tice (employing machine learning approaches) and robust explainable
artificial intelligence applied on a large stock set. At the same time,
this work aims to extend the existing literature on statistical arbitrage
trading based on machine learning. We follow the well-established
steps of a statistical arbitrage trading system: firstly forecasting the
stock price returns, then ranking the stocks based on the predicted
returns, and lastly, trading several pairs of stocks. The presented ap-
plications and forecasting models, focusing on the U.S. market, are
based on various input features and report results on a trading period
ranging from 2007 to 2021. Different than standard machine learning
approaches, we do not simply use a framework to produce buy and
sell signals. Instead, we introduce a feature selection step so that
the machine learning algorithms predict the next day returns on a
representative/informative feature set. To achieve this goal, we propose
three methods for feature selection: PI best, PI running, and PI worst. The
methods have the key traits of being model agnostic, and of performing
the feature selection process in a post-hoc manner without interfering
with the prediction and, most importantly, learning the relevant fea-
tures both at stock/sector level and in cross-sections (i.e., globally).
We test our proposed methods by considering several setups: various
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Fig. 8. Daily compounded returns gross of trading costs and fees for the XAI StatArb trading strategies compared to their corresponding BaseRegressors and Buy-and-hold,
respectively. The trading period ranges from 2007 to 2021. On the left-hand side, Figs. 8(a), 8(c), and 8(e) represent sector level models, whereas, on the right-hand-side,
Figs. 8(b), 8(d), and 8(f) represent stock level models. The Buy-and-hold is represented by a continuous black line. Input features are represented as: LR - squares, TI - diamonds,
and LR+TI - circles.
machine learning algorithms (i.e., Gradient Boosting, Random Forests,
and Support Vector Regressors), different input feature sets (i.e., lagged
returns, technical indicators, and their combination), and distinct data
levels (i.e., sector or stock levels), which yielded to an overall of 432
such models. By conducting such extensive testing from predictive as
well as financial performance angles, several discussion points emerge.
The feature selection methods introduce clearly improvements both
in terms of predictive and financial performance. All raw returns are
positive. Given that more predictors translate into potentially more
noise, there is a clear improvement over the compared base regressor
(i.e., the machine learning model without any features removed) when
dropping several features. Besides, replacing the widely-used MSE with
the mean return as a loss function within the feature selection process
constitutes an essential change of the XAI StatArb strategies. In terms of
annual returns, our approach brings the most significant enhancements
over the base regressors.

The feature selection approach we have pursued in this article still
has many possible refinements and details to be further analyzed, which
we aim in future research. Although the capacity of our proposed
15
methodology to provide valuable signals is investigated under a dif-
ferent number of features to remove, the dynamic adaptation of the
number of features to remove would represent a valuable addition to
the framework. Also, given that the main focus of this article consists
in exploring the impact of feature selection on building long–short
portfolios, we left over the study about the impact of the transaction
cost. This could be an interesting point to investigate further in the
future. Furthermore, from a more general perspective, a careful and
systematic study on the influence of the various employed hyperpa-
rameters (i.e., tailored hyperparameters for each stock or sector) on
the overall algorithmic performance, along with an analysis on the
temporal stability of the models (i.e., sensitivity to train and test
window lengths) would also be extremely useful and stimulating points
to investigate more in detail in future works.
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